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1. Introduction
Due to the global climate and energy crisis, the 
importance of sustainable development has become 
increasingly evident, leading to widespread attention in 
the research of carbon emission reduction and carbon 
neutrality (Sovacool and Griffiths, 2020; You et al., 2022). 
In the context of sustainable agricultural development, the 
integration of agriculture and photovoltaics is emerging as 
a highly promising green energy solution. This approach 
combines photovoltaic power generation with agricultural 
cultivation, allowing for the generation of electricity 
resources without affecting the normal growth of crops. It 
provides energy supply for agricultural field management 
while saving land area for photovoltaic installations. This 
enhances the utilization of land resources and has a positive 
impact on providing renewable energy and adding value 
to farmland (Nie et al., 2022a; Li et al., 2022a; Yang et al., 
2022b; Nie et al., 2022b). In the agricultural photovoltaic 
integration model, the photovoltaic systems are typically 
installed in idle areas of farmland or farms, as shown 

in Figure 1. This installation approach maximizes the 
utilization of land resources without compromising regular 
agricultural activities. It also supplies renewable electricity 
to support agricultural operations, thereby promoting 
the electrification process in the agricultural sector. 
Furthermore, the agricultural photovoltaic integration 
model can create value-added services for agriculture. 
The installation of photovoltaic systems can generate 
additional income for farms, enhancing their economic 
benefits and providing more opportunities for sustainable 
agricultural development. However, considering 
the complex and diverse agricultural production 
environment, it is inevitable for photovoltaic modules to 
experience various failures after prolonged exposure to 
harsh conditions. These failures may include broken glass, 
damaged batteries, plant obstructions, abnormal covers, 
short circuits, and surface contamination, as depicted in 
Figure 2 (Hernández-Callejo et al., 2019). Such failures 
can disrupt the stability of photovoltaic power generation, 
leading to reduced electricity production and potential 
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safety risks. Hence, it is of utmost importance to promptly 
identify and classify different types of hot spot faults in 
photovoltaic systems. This enables repair personnel to 
quickly conduct necessary repairs, ensuring continuous 
electricity production and mitigating safety hazards.

In order to improve the working stability of photovoltaic 
modules, the intelligent fault diagnosis studies of 
photovoltaic modules are necessary, which mainly include 
electrical performance evaluation and image recognition, 
the former is based on voltage and current characteristics, 
which is accurate but inefficient, the latter is to extract 
image features based on deep learning and establish fault 
patterns mapping relationship. Specifically, deep learning-
based image identification techniques require less labor 
and are more efficient than electrical testing methods (Li 
et al., 2021); thus, deep learning-based image processing 
methods are more suitable for the rapidly evolving 
photovoltaic module fault detection tasks. However, as 
a typical data-hungry machine learning paradigm, deep 
learning requires a large amount of labeled data for training, 

which will bring in serious data efficiency problems (Li 
et al., 2020; Khan et al., 2022; Alghazzawi et al., 2022). 
For instance, too much similar data without incremental 
information contribution will increase the training time of 
the used model and further increase power consumption 
and carbon emissions, which is not sustainable. To solve 
this matter, there have been several data quality evaluation 
studies in the field of deep learning applications (Li and 
Chao, 2022; Li et al., 2022b; Yang et al., 2022a; Yang et 
al., 2023a), which focus on screening high-quality image 
samples, reducing database redundancy, and improving 
task performance and efficiency.

In terms of photovoltaic module hot spot image 
identification, some recent relevant studies (Wang and 
Xuan, 2021; Ali et al., 2020; Ghosh et al., 2020; Su et al., 
2021) conducted the pattern recognition based on infrared 
images because the hot spot fault is a kind of thermal effect, 
and the fault area has a significant temperature difference 
with the normal area, resulting in color differences in 
infrared imaging. The presence of fine-grained fractures 

Figure 1. Agricultural photovoltaic combined development scenario.

Figure 2. Photovoltaic systems exposed to complex environments in farmland.
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within a photovoltaic system has detrimental effects, 
including energy loss, decreased power generation 
efficiency, and potential impact on the system’s overall 
lifespan. Implementing fine-grained detection techniques 
plays a crucial role in identifying and recognizing efficiency 
losses, precisely locating fault points, and undertaking 
suitable measures to enhance the performance of the 
photovoltaic system while extending its operational 
lifespan. By effectively addressing these fractures, the 
system’s energy production can be optimized, leading to 
improved efficiency and prolonged functionality (Dhoke 
et al., 2020; Malik et al., 2022). However, the hot spot fault 
of photovoltaic modules may have a variety of causes, 
such as circuit failure, guano dirt coverage, and shadow 
occlusion, and different cases of hot spot faults correspond 
to different treatments. For example, the short circuit fault 
needs to be repaired or replaced, the dirt cover fault needs 
to be cleaned, and the shading fault requires adjustment of 
photovoltaic panel spacing or angle. Therefore, it is very 
rough to only make the binary classification on whether 
hot spot fault occurs, which is not conducive to practical 
applications or production maintenance. 

The motivation of this paper is clear, which aims at 
this meaningful problem. We propose to combine the 
dual heterogeneous information of infrared and visible 
images to carry out the research of fine-grained hot spot 
fault recognition. As far as we know, this is the first time 
to conduct fine-grained detection work for photovoltaic 
module hot spot failures. Some related works in 
heterogeneous data processing cover many fields, such as 
medicine, agriculture, and industry (Xie et al., 2021; Zhang 
et al., 2021; Tang et al., 2022; Li et al., 2022c; Patil and 
Kumar, 2022), which often involve data feature extraction, 
alignment, and fusion. In general, the combination of 
heterogeneous data will improve the performance of 
various tasks because the heterogeneous data can provide 
additional information that single modal data could not.

In this paper, infrared and visible images of 
photovoltaic module hot spot fault were collected, and 
fine-grained labels were manually marked. Since the 
heterogeneous images are required as input, the infrared 
and visible images are bundled and appear in pairs with 
the same label. Next, a fine-grained detection framework 
of hot spot fault based on infrared and visible image 
fusion was established. Subsequently, a data information 
quality evaluation method named cosine distance pseudo-
label cross-entropy (CDPC) was designed to reduce data 
redundancy and screen out high-quality samples. Finally, 
the dimensionality reduction for fusional image feature 
was conducted to detect fine-grained hot spot faults. 
Through a large number of comparative experiments, the 
results show that the proposed fine-grained framework is 
effective and achieves 93.7% detection accuracy. Under 
the premise of the same accuracy, the used dataset can be 
compressed by 30%, effectively reducing the training time 
and carbon emission.

This study collected paired infrared and visible images 
of photovoltaic module hot spot faults and manually 
annotated fine-grained labels. Since heterogeneous images 
are required as inputs, the infrared and visible images 
were bundled together and appeared in pairs with the 
same labels. Subsequently, the collected infrared-visible 
image pairs were augmented using a generative adversarial 
network (GAN), and data augmentation methods were 
employed to further expand the dataset. A fine-grained 
hot spot fault detection framework based on the fusion 
of infrared and visible images was then established. 
Additionally, a cosine distance pseudo-label cross-entropy 
(CDPC) method was designed to evaluate the information 
quality of the data, aiming to reduce redundancy and select 
high-quality samples. Finally, the fused image features 
were dimensionally reduced to detect fine-grained hot spot 
faults. Extensive comparative experiments demonstrated 
that the proposed fine-grained framework was effective, 
achieving a detection accuracy of 93.7%. Furthermore, 
under the same level of accuracy, the utilized dataset could 
be compressed by 30%, effectively reducing training time 
and carbon emissions.

The rest of this paper is organized as follows. Section 
2, presents the collected fine-grained hot spot fault dataset 
and introduces the proposed data quality assessment 
method. Section 3 conducts comparison experiments and 
analyzes the results. Section 4 discusses the motivations, 
main works, core contributions, limitations, and future 
works. Finally, Section 5 provides a summary of the entire 
study.

2. Materials and methods
2.1. Dataset
In order to recognize the fine-grained hot spot faults of 
photovoltaic modules caused by different factors, we 
collected 6 types of hot spot failures in the agricultural PV 
development region, covering visible and infrared images 
at the same time, and presenting them in the form of 
image pairs. Some image pair samples are shown in Figure 
3, where the fine-grained fault types include broken glass, 
broken battery, plant occlusion, abnormal cover, short 
circuit, and surface contamination.

Due to the complex and harsh environment in which 
photovoltaic operations are carried out, conducting data 
collection of each individual photovoltaic panel would 
significantly increase the cost of data acquisition and 
decrease efficiency. It would also cause irreversible impacts 
on crops in the environment. Collecting a sufficient 
number of data samples from photovoltaic systems 
in agricultural planting areas may present challenges. 
However, at the same time, data samples are an important 
factor affecting the accuracy of photovoltaic fault 
detection. To address the issue of insufficient data samples 
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in the PV fault image dataset and optimize the agricultural 
PV integration development model, this study employs 
generative adversarial networks (GANs) to enhance the 
collected infrared-visible image pairs of PV faults in the 
field. By utilizing existing data samples, we can generate 
more synthetic data samples to improve the efficiency 
and accuracy of photovoltaic fault detection, while 
reducing environmental impact and data acquisition costs. 
Subsequently, traditional data augmentation methods are 
applied to optimize the samples, effectively addressing 
the problem of imbalanced data distribution in the PV 
fault image dataset. This approach improves the model’s 
generalization ability and reduces the risk of overfitting.

To better adapt to the photovoltaic fault detection process 
in agricultural production scenarios, improve the accuracy 
of photovoltaic fault detection, and ensure the normal 
operation of photovoltaic systems, this paper proposes an 
infrared-visible bundled generation model. The visible 
photovoltaic fault images and infrared photovoltaic fault 
images are defined as domain V and domain S, respectively. 
The model structure is shown in Figure 4.

The infrared-visible bundled generation augmentation 
model is based on a pair of generative adversarial 
networks (GANs), namely the visible-to-infrared image 
GAN (GANVS) and the infrared-to-visible image GAN 
(GANSV). Both the infrared image generator (GVS) and the 
visible image generator (GSV) have the same structure, 
consisting of five convolutional blocks. Each convolutional 
block includes a convolutional layer, a batch normalization 

layer, and a rectified linear unit (ReLU) activation function 
layer. The convolutional layer comprises numerous 
convolutional filters that conduct convolutional operations 
on the input data, resulting in the creation of a collection 
of feature maps. Each feature map corresponds to a specific 
learned feature captured by a convolutional filter, thereby 
facilitating the extraction of distinctive features from the 
input data. Through this process, the convolutional layer 
effectively identifies and highlights relevant patterns and 
structures within the input, enabling subsequent layers 
in the network to make more informed and accurate 
predictions or decisions based on the extracted features. In 
essence, the convolutional layer acts as a feature extractor, 
transforming the raw input data into a representation 
that captures important visual characteristics. The 
batch normalization layer normalizes the output of each 
convolutional layer, making the output have zero mean 
and unit variance, which helps the network converge faster 
and improves the model’s robustness. The ReLU activation 
function layer introduces nonlinear transformations by 
mapping the output of the convolutional layer nonlinearly, 
thereby enhancing the expressive power of the network. 
The kernel sizes of the first and second convolutional 
blocks are set as 7 × 7 and 5 × 5, respectively, indicating 
larger receptive fields for feature extraction. The kernel 
sizes of the third and fourth convolutional blocks are set 
as 3 × 3, favoring optimization of the feature maps. The 
kernel size of the last convolutional block is set as 1 × 1, 
primarily used for dimension reduction, ensuring the 
generated images have the desired color channels.

Infrared 
images

Visible 
images

Broken glass Broken battery Plant occlusion Abnormal cover Short circuit Surface dirtFault 
type

Figure 3. Samples of the dual-modal image pairs for fine-grained hot spot fault.
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The generator network takes pairs of collected 
images as input and generates corresponding images. 
Simultaneously, the discriminator network distinguishes 
between the generated images from the generator 
network and real images. Through iterative training, the 
discriminator’s feedback is utilized to update both the 
generator and discriminator networks. The generator 
gradually learns how to generate realistic output images 
from the input images, while the discriminator learns how 
to accurately determine the authenticity of input images. 
The specific steps of the bundled generation augmentation 
method are as follows:

Step 1: Input infrared-visible image pairs: A pair of 
infrared-visible images collected from the agricultural 
field, which demonstrate a corresponding relationship, are 
provided as input to the generator network.

Step 2: Generate visible and infrared images: The GSV 
generates the corresponding visible image from the input 
infrared image, and the GVS generates the corresponding 
infrared image from the input visible image.

Step 3: Discriminate visible and infrared images: The 
DS judges the generated infrared image against the real 
infrared image and calculates the loss between them. 
Similarly, the DV judges the generated visible image against 
the real visible image and calculates the loss between them.

Step 4: Update the generator: The GSV updates itself 
by minimizing the loss calculated by the DV for the 
generated visible image. Similarly, the GVS updates itself by 
minimizing the loss calculated by the DS for the generated 
infrared image.

Step 5: Update the discriminator: The DS updates itself 
by maximizing the log probability of correctly judging 
real infrared images and the negative log probability of 

correctly judging generated infrared images. Similarly, 
the DV updates itself by maximizing the log probability of 
correctly judging real visible images and the negative log 
probability of correctly judging generated visible images.

Step 6: Generate new image pairs: After training, 
the generator network gains the ability to produce 
corresponding images for any input image. This 
enables the creation of new image pairs, expanding the 
training dataset. These generated pairs resemble real 
images, adding diversity and enhancing the model’s 
generalization. By incorporating these realistic image pairs 
during training, the model learns from a wider range of 
examples, improving its performance on unseen data. This 
augmentation enriches the dataset, introducing variations 
that enhance the model’s robustness in handling different 
scenarios.

The training process of the model requires a loss 
function to measure the performance of the generator and 
discriminator networks while guiding the training process. 
The loss function of this model includes adversarial loss, 
cycle consistency loss, identity loss, and antirecovery 
consistency loss. The adversarial loss is primarily used to 
quantify the difference between the generated images and 
real images. The cycle consistency loss ensures that the 
generator can achieve bidirectional mapping, meaning 
that the generated visible image (infrared image) can be 
faithfully restored to the original infrared image (visible 
image) through the infrared image generator GVS (visible 
image generator GSV). The identity loss aims to maintain 
the stability of the generator by encouraging the generator 
to faithfully reproduce the original image when the original 
image is passed through the generator. The anti-recovery 
consistency loss encourages the generator not to fully 

+

+

+

…

Original infrared-
visible image pairs

Infrared 
images

Visible 
images

+

+

+

…

Generated infrared-
visible image pairs

Visible image 
discriminator DV

Infrared image 
discriminator DS

Is D 
Correct？

Visible image generator GSV

Infrared image generator GVS

Fine tune 
training

Fine tune 
training

Visible image 
generator GVS

Infrared image 
generator GVS

Visible 
images

Infrared 
images

Figure 4. Infrared-visible bundled generation model.
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recover the original image during the cycle conversion, 
resulting in some differences in the generated image 
pairs. By adjusting the weights of these loss terms in the 
overall loss function, the model generates image pairs with 
certain differences from the original image pairs, thereby 
achieving data augmentation. The specific formulas are as 
follows:

Adversarial loss is shown in Eqs. (1) and (2).

   SV VGAN(G ,D ,S,V) V V SVlog(D (V)) log(1 D (G (S)))L E E= + − .              (1) 

   VS SGAN(G ,D ,V,S) S S VSlog(D (S)) log(1 D (G (V)))L E E= + − .  ,            (2) 

SV VScycle(G ,G ,S,V) VS SV SV VS
1 1

G (G (S))-S G (G (V))-VL E E   = +   
.   ,         (3) 

VS SVcycle(G ,G ,V,S) SV VS VS SV
1 1

G (G (V))-V G (G (S))-SL E E   = +   
.    ,        (4) 

SV VSidentity(G ,G ,S,V) VS SV
1 1

(G (V))-V (G (S))-SL E E   = +   
.    ,          (5) 

VS SVidentity(G ,G ,V,S) SV VS
1 1

(G (S))-S (G (V))-VL E E   = +   
.    ,          (6) 

SV VSantirecovery(G ,G ,S,V) SV VS SV SV
1

(G (G (G (S))) G (S)L E  = − 
.  ,             (7) 

VS SVantirecovery(G ,G ,V,S) VS SV VS VS
1

(G (G (G (V))) G (V)L E  = − 
.  ,             (8) 

SV SV V VS VS S

SV VS SV VS VS SV VS SV

SV VS SV VS VS SV

GAN GAN(G ,D ,S,V) GAN GAN(G ,D ,V,S)
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identity(G ,G ,S,V) identity(G ,G ,S,V) identity(G ,G ,V,S)
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+ +
+ +

L L L
L L

L L

 
 
 

 
 
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identity(G ,G ,V,S)
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.     ,    (9) 
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where LGAN(GSV,DV,S,V) and LGAN(GVS,DS,V,S) are the adversarial 
loss functions for infrared-to-visible and visible-to-
infrared, respectively. Furthermore, E represents the 
expected value.

Cycle consistency loss is shown in Eqs. (3) and (4).

   SV VGAN(G ,D ,S,V) V V SVlog(D (V)) log(1 D (G (S)))L E E= + − .              (1) 

   VS SGAN(G ,D ,V,S) S S VSlog(D (S)) log(1 D (G (V)))L E E= + − .  ,            (2) 

SV VScycle(G ,G ,S,V) VS SV SV VS
1 1

G (G (S))-S G (G (V))-VL E E   = +   
.   ,         (3) 

VS SVcycle(G ,G ,V,S) SV VS VS SV
1 1

G (G (V))-V G (G (S))-SL E E   = +   
.    ,        (4) 

SV VSidentity(G ,G ,S,V) VS SV
1 1

(G (V))-V (G (S))-SL E E   = +   
.    ,          (5) 

VS SVidentity(G ,G ,V,S) SV VS
1 1

(G (S))-S (G (V))-VL E E   = +   
.    ,          (6) 

SV VSantirecovery(G ,G ,S,V) SV VS SV SV
1

(G (G (G (S))) G (S)L E  = − 
.  ,             (7) 

VS SVantirecovery(G ,G ,V,S) VS SV VS VS
1

(G (G (G (V))) G (V)L E  = − 
.  ,             (8) 

SV SV V VS VS S

SV VS SV VS VS SV VS SV

SV VS SV VS VS SV

GAN GAN(G ,D ,S,V) GAN GAN(G ,D ,V,S)

cycle(G ,G ,S,V) cycle(G ,G ,S,V) cycle(G ,G ,V,S) cycle(G ,G ,V,S)

identity(G ,G ,S,V) identity(G ,G ,S,V) identity(G ,G ,V,S)

= +
+ +
+ +

L L L
L L

L L

 
 
 

 
 
  VS SV

SV VS SV VS VS SV VS SV

identity(G ,G ,V,S)

antirecovery(G ,G ,S,V) antirecovery(G ,G ,S,V) antirecovery(G ,G ,V,S) antirecovery(G ,G ,V,S)+ +L L  

.     ,    (9) 

 

𝑐𝑐𝑐𝑐𝑐𝑐(A,B) = 𝐴𝐴⋅𝐵𝐵
‖𝐴𝐴‖×‖𝐵𝐵‖ =

∑ 𝐴𝐴𝑖𝑖𝐵𝐵𝑖𝑖𝑛𝑛
𝑖𝑖=1

√∑ 𝐴𝐴𝑖𝑖2𝑛𝑛
𝑖𝑖=1 √∑ 𝐵𝐵𝑖𝑖2𝑛𝑛

𝑖𝑖=1
 .                 （10） 

^ ^
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   SV VGAN(G ,D ,S,V) V V SVlog(D (V)) log(1 D (G (S)))L E E= + − .              (1) 

   VS SGAN(G ,D ,V,S) S S VSlog(D (S)) log(1 D (G (V)))L E E= + − .  ,            (2) 

SV VScycle(G ,G ,S,V) VS SV SV VS
1 1

G (G (S))-S G (G (V))-VL E E   = +   
.   ,         (3) 

VS SVcycle(G ,G ,V,S) SV VS VS SV
1 1

G (G (V))-V G (G (S))-SL E E   = +   
.    ,        (4) 

SV VSidentity(G ,G ,S,V) VS SV
1 1

(G (V))-V (G (S))-SL E E   = +   
.    ,          (5) 

VS SVidentity(G ,G ,V,S) SV VS
1 1

(G (S))-S (G (V))-VL E E   = +   
.    ,          (6) 

SV VSantirecovery(G ,G ,S,V) SV VS SV SV
1

(G (G (G (S))) G (S)L E  = − 
.  ,             (7) 

VS SVantirecovery(G ,G ,V,S) VS SV VS VS
1

(G (G (G (V))) G (V)L E  = − 
.  ,             (8) 

SV SV V VS VS S

SV VS SV VS VS SV VS SV

SV VS SV VS VS SV

GAN GAN(G ,D ,S,V) GAN GAN(G ,D ,V,S)

cycle(G ,G ,S,V) cycle(G ,G ,S,V) cycle(G ,G ,V,S) cycle(G ,G ,V,S)

identity(G ,G ,S,V) identity(G ,G ,S,V) identity(G ,G ,V,S)

= +
+ +
+ +

L L L
L L

L L

 
 
 

 
 
  VS SV

SV VS SV VS VS SV VS SV

identity(G ,G ,V,S)

antirecovery(G ,G ,S,V) antirecovery(G ,G ,S,V) antirecovery(G ,G ,V,S) antirecovery(G ,G ,V,S)+ +L L  

.     ,    (9) 

 

𝑐𝑐𝑐𝑐𝑐𝑐(A,B) = 𝐴𝐴⋅𝐵𝐵
‖𝐴𝐴‖×‖𝐵𝐵‖ =

∑ 𝐴𝐴𝑖𝑖𝐵𝐵𝑖𝑖𝑛𝑛
𝑖𝑖=1

√∑ 𝐴𝐴𝑖𝑖2𝑛𝑛
𝑖𝑖=1 √∑ 𝐵𝐵𝑖𝑖2𝑛𝑛

𝑖𝑖=1
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where Lcycle(GSV,DV,S,V) and Lcycle(GVS,DS,V,S) are the cycle 
consistency loss functions for infrared-to-visible and 
visible-to-infrared, respectively.

Identity loss is shown in Eqs. (5) and (6).

   SV VGAN(G ,D ,S,V) V V SVlog(D (V)) log(1 D (G (S)))L E E= + − .              (1) 

   VS SGAN(G ,D ,V,S) S S VSlog(D (S)) log(1 D (G (V)))L E E= + − .  ,            (2) 

SV VScycle(G ,G ,S,V) VS SV SV VS
1 1

G (G (S))-S G (G (V))-VL E E   = +   
.   ,         (3) 

VS SVcycle(G ,G ,V,S) SV VS VS SV
1 1

G (G (V))-V G (G (S))-SL E E   = +   
.    ,        (4) 

SV VSidentity(G ,G ,S,V) VS SV
1 1

(G (V))-V (G (S))-SL E E   = +   
.    ,          (5) 

VS SVidentity(G ,G ,V,S) SV VS
1 1

(G (S))-S (G (V))-VL E E   = +   
.    ,          (6) 

SV VSantirecovery(G ,G ,S,V) SV VS SV SV
1

(G (G (G (S))) G (S)L E  = − 
.  ,             (7) 

VS SVantirecovery(G ,G ,V,S) VS SV VS VS
1

(G (G (G (V))) G (V)L E  = − 
.  ,             (8) 

SV SV V VS VS S

SV VS SV VS VS SV VS SV

SV VS SV VS VS SV

GAN GAN(G ,D ,S,V) GAN GAN(G ,D ,V,S)

cycle(G ,G ,S,V) cycle(G ,G ,S,V) cycle(G ,G ,V,S) cycle(G ,G ,V,S)

identity(G ,G ,S,V) identity(G ,G ,S,V) identity(G ,G ,V,S)

= +
+ +
+ +

L L L
L L

L L

 
 
 

 
 
  VS SV

SV VS SV VS VS SV VS SV

identity(G ,G ,V,S)

antirecovery(G ,G ,S,V) antirecovery(G ,G ,S,V) antirecovery(G ,G ,V,S) antirecovery(G ,G ,V,S)+ +L L  

.     ,    (9) 

 

𝑐𝑐𝑐𝑐𝑐𝑐(A,B) = 𝐴𝐴⋅𝐵𝐵
‖𝐴𝐴‖×‖𝐵𝐵‖ =

∑ 𝐴𝐴𝑖𝑖𝐵𝐵𝑖𝑖𝑛𝑛
𝑖𝑖=1

√∑ 𝐴𝐴𝑖𝑖2𝑛𝑛
𝑖𝑖=1 √∑ 𝐵𝐵𝑖𝑖2𝑛𝑛

𝑖𝑖=1
 .                 （10） 

^ ^

1
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   SV VGAN(G ,D ,S,V) V V SVlog(D (V)) log(1 D (G (S)))L E E= + − .              (1) 

   VS SGAN(G ,D ,V,S) S S VSlog(D (S)) log(1 D (G (V)))L E E= + − .  ,            (2) 

SV VScycle(G ,G ,S,V) VS SV SV VS
1 1

G (G (S))-S G (G (V))-VL E E   = +   
.   ,         (3) 

VS SVcycle(G ,G ,V,S) SV VS VS SV
1 1

G (G (V))-V G (G (S))-SL E E   = +   
.    ,        (4) 

SV VSidentity(G ,G ,S,V) VS SV
1 1

(G (V))-V (G (S))-SL E E   = +   
.    ,          (5) 

VS SVidentity(G ,G ,V,S) SV VS
1 1

(G (S))-S (G (V))-VL E E   = +   
.    ,          (6) 

SV VSantirecovery(G ,G ,S,V) SV VS SV SV
1

(G (G (G (S))) G (S)L E  = − 
.  ,             (7) 

VS SVantirecovery(G ,G ,V,S) VS SV VS VS
1

(G (G (G (V))) G (V)L E  = − 
.  ,             (8) 

SV SV V VS VS S

SV VS SV VS VS SV VS SV

SV VS SV VS VS SV

GAN GAN(G ,D ,S,V) GAN GAN(G ,D ,V,S)

cycle(G ,G ,S,V) cycle(G ,G ,S,V) cycle(G ,G ,V,S) cycle(G ,G ,V,S)

identity(G ,G ,S,V) identity(G ,G ,S,V) identity(G ,G ,V,S)

= +
+ +
+ +

L L L
L L

L L

 
 
 

 
 
  VS SV

SV VS SV VS VS SV VS SV

identity(G ,G ,V,S)

antirecovery(G ,G ,S,V) antirecovery(G ,G ,S,V) antirecovery(G ,G ,V,S) antirecovery(G ,G ,V,S)+ +L L  

.     ,    (9) 

 

𝑐𝑐𝑐𝑐𝑐𝑐(A,B) = 𝐴𝐴⋅𝐵𝐵
‖𝐴𝐴‖×‖𝐵𝐵‖ =

∑ 𝐴𝐴𝑖𝑖𝐵𝐵𝑖𝑖𝑛𝑛
𝑖𝑖=1

√∑ 𝐴𝐴𝑖𝑖2𝑛𝑛
𝑖𝑖=1 √∑ 𝐵𝐵𝑖𝑖2𝑛𝑛

𝑖𝑖=1
 .                 （10） 

^ ^

1
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where Lidentity(GSV,DV,S,V) and Lidentity(GVS,DS,V,S) are the 
identity loss functions for infrared-to-visible and visible-
to-infrared, respectively.

Antirecovery consistency loss is shown in Eqs. (7) and (8).

   SV VGAN(G ,D ,S,V) V V SVlog(D (V)) log(1 D (G (S)))L E E= + − .              (1) 

   VS SGAN(G ,D ,V,S) S S VSlog(D (S)) log(1 D (G (V)))L E E= + − .  ,            (2) 

SV VScycle(G ,G ,S,V) VS SV SV VS
1 1

G (G (S))-S G (G (V))-VL E E   = +   
.   ,         (3) 

VS SVcycle(G ,G ,V,S) SV VS VS SV
1 1

G (G (V))-V G (G (S))-SL E E   = +   
.    ,        (4) 

SV VSidentity(G ,G ,S,V) VS SV
1 1

(G (V))-V (G (S))-SL E E   = +   
.    ,          (5) 

VS SVidentity(G ,G ,V,S) SV VS
1 1

(G (S))-S (G (V))-VL E E   = +   
.    ,          (6) 

SV VSantirecovery(G ,G ,S,V) SV VS SV SV
1

(G (G (G (S))) G (S)L E  = − 
.  ,             (7) 

VS SVantirecovery(G ,G ,V,S) VS SV VS VS
1

(G (G (G (V))) G (V)L E  = − 
.  ,             (8) 

SV SV V VS VS S

SV VS SV VS VS SV VS SV

SV VS SV VS VS SV

GAN GAN(G ,D ,S,V) GAN GAN(G ,D ,V,S)

cycle(G ,G ,S,V) cycle(G ,G ,S,V) cycle(G ,G ,V,S) cycle(G ,G ,V,S)

identity(G ,G ,S,V) identity(G ,G ,S,V) identity(G ,G ,V,S)

= +
+ +
+ +

L L L
L L

L L

 
 
 

 
 
  VS SV

SV VS SV VS VS SV VS SV

identity(G ,G ,V,S)

antirecovery(G ,G ,S,V) antirecovery(G ,G ,S,V) antirecovery(G ,G ,V,S) antirecovery(G ,G ,V,S)+ +L L  

.     ,    (9) 

 

𝑐𝑐𝑐𝑐𝑐𝑐(A,B) = 𝐴𝐴⋅𝐵𝐵
‖𝐴𝐴‖×‖𝐵𝐵‖ =

∑ 𝐴𝐴𝑖𝑖𝐵𝐵𝑖𝑖𝑛𝑛
𝑖𝑖=1

√∑ 𝐴𝐴𝑖𝑖2𝑛𝑛
𝑖𝑖=1 √∑ 𝐵𝐵𝑖𝑖2𝑛𝑛

𝑖𝑖=1
 .                 （10） 

^ ^

1
log( ) (1 ) log(1 )M

i i i ii
L y p y p

=

 = −  + −  −  


.                     (11) 

 

   SV VGAN(G ,D ,S,V) V V SVlog(D (V)) log(1 D (G (S)))L E E= + − .              (1) 

   VS SGAN(G ,D ,V,S) S S VSlog(D (S)) log(1 D (G (V)))L E E= + − .  ,            (2) 

SV VScycle(G ,G ,S,V) VS SV SV VS
1 1

G (G (S))-S G (G (V))-VL E E   = +   
.   ,         (3) 

VS SVcycle(G ,G ,V,S) SV VS VS SV
1 1

G (G (V))-V G (G (S))-SL E E   = +   
.    ,        (4) 

SV VSidentity(G ,G ,S,V) VS SV
1 1

(G (V))-V (G (S))-SL E E   = +   
.    ,          (5) 

VS SVidentity(G ,G ,V,S) SV VS
1 1

(G (S))-S (G (V))-VL E E   = +   
.    ,          (6) 

SV VSantirecovery(G ,G ,S,V) SV VS SV SV
1

(G (G (G (S))) G (S)L E  = − 
.  ,             (7) 

VS SVantirecovery(G ,G ,V,S) VS SV VS VS
1

(G (G (G (V))) G (V)L E  = − 
.  ,             (8) 

SV SV V VS VS S

SV VS SV VS VS SV VS SV

SV VS SV VS VS SV

GAN GAN(G ,D ,S,V) GAN GAN(G ,D ,V,S)

cycle(G ,G ,S,V) cycle(G ,G ,S,V) cycle(G ,G ,V,S) cycle(G ,G ,V,S)

identity(G ,G ,S,V) identity(G ,G ,S,V) identity(G ,G ,V,S)

= +
+ +
+ +

L L L
L L

L L

 
 
 

 
 
  VS SV

SV VS SV VS VS SV VS SV

identity(G ,G ,V,S)

antirecovery(G ,G ,S,V) antirecovery(G ,G ,S,V) antirecovery(G ,G ,V,S) antirecovery(G ,G ,V,S)+ +L L  

.     ,    (9) 

 

𝑐𝑐𝑐𝑐𝑐𝑐(A,B) = 𝐴𝐴⋅𝐵𝐵
‖𝐴𝐴‖×‖𝐵𝐵‖ =

∑ 𝐴𝐴𝑖𝑖𝐵𝐵𝑖𝑖𝑛𝑛
𝑖𝑖=1

√∑ 𝐴𝐴𝑖𝑖2𝑛𝑛
𝑖𝑖=1 √∑ 𝐵𝐵𝑖𝑖2𝑛𝑛

𝑖𝑖=1
 .                 （10） 

^ ^
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where Ladtirecovery (GSV,DV,S,V) and Ladtirecovery (GVS,DS,V,S) are the 
antirecovery consistency loss functions for infrared-to-
visible and visible-to-infrared, respectively.

Objective function is shown in Eq (9).
 

   SV VGAN(G ,D ,S,V) V V SVlog(D (V)) log(1 D (G (S)))L E E= + − .              (1) 

   VS SGAN(G ,D ,V,S) S S VSlog(D (S)) log(1 D (G (V)))L E E= + − .  ,            (2) 

SV VScycle(G ,G ,S,V) VS SV SV VS
1 1

G (G (S))-S G (G (V))-VL E E   = +   
.   ,         (3) 

VS SVcycle(G ,G ,V,S) SV VS VS SV
1 1

G (G (V))-V G (G (S))-SL E E   = +   
.    ,        (4) 

SV VSidentity(G ,G ,S,V) VS SV
1 1

(G (V))-V (G (S))-SL E E   = +   
.    ,          (5) 

VS SVidentity(G ,G ,V,S) SV VS
1 1

(G (S))-S (G (V))-VL E E   = +   
.    ,          (6) 

SV VSantirecovery(G ,G ,S,V) SV VS SV SV
1

(G (G (G (S))) G (S)L E  = − 
.  ,             (7) 

VS SVantirecovery(G ,G ,V,S) VS SV VS VS
1

(G (G (G (V))) G (V)L E  = − 
.  ,             (8) 

SV SV V VS VS S

SV VS SV VS VS SV VS SV

SV VS SV VS VS SV

GAN GAN(G ,D ,S,V) GAN GAN(G ,D ,V,S)

cycle(G ,G ,S,V) cycle(G ,G ,S,V) cycle(G ,G ,V,S) cycle(G ,G ,V,S)

identity(G ,G ,S,V) identity(G ,G ,S,V) identity(G ,G ,V,S)

= +
+ +
+ +

L L L
L L

L L

 
 
 

 
 
  VS SV

SV VS SV VS VS SV VS SV

identity(G ,G ,V,S)

antirecovery(G ,G ,S,V) antirecovery(G ,G ,S,V) antirecovery(G ,G ,V,S) antirecovery(G ,G ,V,S)+ +L L  
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where λ represents the weight coefficients for each loss 
term.

In this study, the original dataset was collected from 
a pilot project on agricultural-photovoltaic integration. 
After collecting the images, they underwent normalization 
processing, resulting in an image resolution of 300×600. 
From this dataset, a total of 120 pairs of visible light-
infrared images were selected, encompassing six types 
of photovoltaic faults: broken glass, broken battery, plant 
occlusion, abnormal cover, short circuit, and surface 

contamination. Among these pairs, 100 were used for 
training, while 20 pairs were reserved for testing purposes. 
To enhance the training dataset, the collected image data 
undergoes Cycle GAN to increase the number of image pairs 
in each category to 500. Furthermore, data augmentation 
techniques are applied, expanding the dataset to contain 
1000 image pairs per category. These techniques involve 
operations like mirroring, contrast adjustment, rotation, 
and scaling. By employing these augmentation methods, 
the dataset becomes more diverse, offering a wider range 
of examples and improving the model’s ability to handle 
various scenarios effectively.
2.2. Fine-grained hot spot fault detection framework
The occurrence mechanism of hot spot faults causes 
them to be clearly reflected in infrared images. However, 
different kinds of hot spot faults cannot be clearly 
distinguished from infrared images only, and the auxiliary 
information of visible images are important. Photovoltaic 
fault detection commonly involves using both infrared 
and visible light images, which complement each other. 
Infrared images capture temperature distribution, 
revealing anomalies caused by damage, poor contacts, or 
blockages. Visible light images provide information about 
surface morphology and color, detecting issues like cracks, 
contamination, or corrosion. Integrating these image types 
enables comprehensive fault detection and localization. 
By combining them, faults can be accurately assessed, 
allowing for timely interventions and ensuring the 
photovoltaic system’s optimal performance and reliability. 
Therefore, this paper proposes a fine-grained infrared-
visible image fusion hot spot fault detection framework, as 
shown in Figure 5.

The whole framework is divided into two stages. The 
first stage is to evaluate the quality of the input image pairs 
to screen out high-quality infrared and visible samples with 
rich information, and carry out feature extraction by CNN 
model. In the second stage, the global average pooling 
(GAP) operation is conducted on the stacked features. 
Subsequently, the high-dimensional fusional embeddings 
are reduced in dimension by principal component analysis 
(PCA) to obtain informative fusional features, which are 
finally fed into the classifier to carry out fine-grained hot 
spot fault classification into 6 categories.
2.3. Cosine distance pseudo-label cross-entropy
Visible-infrared image pairs are extensively used in 
photovoltaic fault detection as a prevalent data format. 
Evaluating paired data involves assessing visible and 
infrared images simultaneously, leading to accurate and 
reliable results. However, this approach requires obtaining 
and aligning both types of images. In contrast, unpaired 
data evaluation independently evaluates visible and 
infrared images, simplifying the data acquisition process 
but potentially compromising evaluation accuracy. When 
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selecting an evaluation method, careful consideration of 
factors such as feasibility, cost, and accuracy requirements 
is crucial. By weighing these factors, an optimal evaluation 
approach can be chosen to achieve effective photovoltaic 
fault detection. In this paper, we propose a novel image 
data information quality evaluation method called cosine 
distance pseudo-label cross-entropy (CDPC), which is 
referred to as the image quality assessment module in 
Figure 5. Since infrared and visible images appear in pairs 
in this work, the proposed quality assessment method 
evaluates image pairs, which is different from many 
existing methods (Schlett et al., 2022; Madhusudana et al., 
2022; Yang et al., 2023b; Li and Ercisli, 2023).

The workflow of the proposed CDPC image pair 
quality evaluation method is shown in Figure 6. 

Specifically, there are six categories of fine-grained 
photovoltaic hot spot failures, each of which contains 1000 
infrared-visible bundled image pairs, totaling 6000 pairs. 
These image pairs were randomly divided into the base set 
and the pool set at 5% and 95%, respectively. Furthermore, 
the image pairs in the pool set were evaluated and screened, 
and the samples in the base set were used to fine-tune the 
feature extractor. Taking an image pair as an example, the 
pair was fed to the model to extract its feature maps, and 
the two feature maps were stacked and average pooled as 
the new feature embedding representing the image pair. In 
this way, the categorical feature prototypes were obtained 
by taking average of all the sample pairs in the base set. 
Then, the stacked features of the image pairs in the pool set 
were extracted by the model in the same way, using shared 

parameters for evaluation. Here, the cosine distance 
between each prototype and the image pair was calculated 
to obtain the similarity score between the evaluated image 
pair and each class.

Considering two stacked high-dimensional feature 
vectors A (a1, a2, ..., an) and B (b1, b2, ..., bn), the cosine 
distance is calculated according to Eq. (10).
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In the equation, cos (A, B) represents the cosine 
distance between feature vector A and feature vector B.

The corresponding pseudolabel was determined 
according to the similarity score, and the higher the 
similarity, the more likely it would be because their feature 
space mapping positions were very close. In addition, 
the stacked feature vector was also fed to the classifier to 
predict the probability. Finally, the predicted probability 
and the pseudolabel were used together to calculate 
the cross-entropy as the indicator of uncertainty of the 
infrared-visible image pair, denoted as CDPC loss and 
expressed as Eq (11).
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 Note that the above process can completely sort the 
image pairs in the pool set and screen out high-value 
sample pairs based on the CDPC loss, also known as 
uncertainty. However, the data information quality is a 
dynamic evolution process, along with the learning of the 
neural network, it is necessary to update and filter high-
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Figure 5. The fine-grained hot spot fault detection framework.
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information image pairs in batches. In this work, 5% of the 
step size is adopted to screen out high-information image 
pairs and add them to the base set, and then the whole 
process is updated to evaluate and screen the pool set to 
supplement the base set. Lastly, once the data budget of 
image pairs is reached, the updated base set is output as 
the screened high-information data consisting of infrared 
images and visible images.

3. Results and analysis
3.1. Experimental setup
In this study, there are six types of fine-grained 
photovoltaic hot spot defects, including glass breakage, 
battery breakage, plant occlusion, abnormal coverage, 
short circuit, and surface contamination. To enhance the 
detection performance, the data samples used in the study 
consist of visible light-infrared image pairs generated using 
generative adversarial networks and data augmentation 
methods. These measures were employed to improve the 
effectiveness of identification and detection in the study. 
Each type comprises 1000 infrared-visible training image 
pairs, totaling 6000 pairs in the entire training dataset. 
Data augmentation is adopted in image preprocessing, 
which enlarges the experimental setup of the training data 
scale and inevitably increases the data redundancy.
The study utilizes a framework, shown in Figures 5 and 6, 
that incorporates well-established CNN models known for 
their exceptional feature extraction capabilities in image 
analysis. These models have been extensively validated 
across diverse domains, affirming their credibility and 
effectiveness. Additionally, to evaluate the universal 
applicability of the proposed image pair evaluation method, 

the study plans to conduct ablation experiments exploring 
various network architectures. These experiments aim 
to comprehensively investigate the performance and 
versatility of the evaluation method in different scenarios, 
providing valuable insights into its potential benefits.

The image pairs in the used dataset are randomly 
divided into the base set and the pool set, according 
to the ratio of 5% and 95%. When the data pair quality 
assessment based on CDPC starts, the step size is 10%, 
and the recognition accuracies based on infrared image 
fusion with different data pair quality are compared until 
the data budget of 65% of the whole training set is reached. 
Moreover, each group experiment is repeated 5 times 
to take the average accuracy as the result, reducing the 
influence of training noise.
3.2. Comparison of infrared-visible image pairs of 
different quality
The infrared-visible image pairs with high and low 
informativeness were identified using the proposed CDPC 
quality assessment method. In this section, the average 
test accuracies using infrared-visible fusion image pairs 
of different quality were compared as shown in Figure 
7. As described in the experimental setup, the training 
image pairs are augmented by typical methods, but the 
fusion image pairs in the test set are fixed. Although image 
augmentation in conventional computer vision tasks 
increases the data scale, it inevitably increases information 
redundancy, wastes training time, and increases power 
consumption and carbon emissions.

The experimental results have shown clear 
differences among different selected image pairs in 
terms of information contributions. Specifically, a higher 
CDPC score means that the current model has a higher 
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uncertainty about the image pair, that is, it can bring more 
meaningful knowledge to the model learning. On the 
contrary, a low score means that the current model has very 
high confidence in the image pair and has a good grasp of 
the pattern and abstract knowledge. Furthermore, random 
sampling can be considered to be uniform sampling with 
both high- and low-information-quality. Thus, the average 
test accuracy performance of high-information-quality 
image pairs is significantly better than that of random 
and low-information-quality image pairs. In the case 
of training with 25% of the whole training set, the test 
accuracy after training with high-quality samples is 10% 
higher than that after training with low-quality samples.
3.3. Comparison with other data quality assessment 
methods
Data quality in this study refers to data characteristics 
of data such as accuracy, completeness, consistency, 
timeliness, and reliability. Accuracy represents the 
consistency of the data with the actual situation, while 
completeness represents the comprehensiveness of 
the data. Consistency pertains to whether the data 
remains consistent across different locations, times, and 
applications. Timeliness refers to the ability of data to be 
provided in a timely manner when needed. Reliability 
relates to the credibility and stability of the data. In this 
study, data quality is primarily measured by the accuracy 
of predicted results and the CDPC score obtained using 
the agreed model.

The proposed CDPC quality assessment method is 
proved to be able to distinguish image pairs with high- or 
low-information-quality and realize data-efficient fine-
grained photovoltaic hot spot faults recognition. In this 
section, the comparison with other related works is further 
carried out to demonstrate the advantage of the proposed 
CDPC method. The specific experimental settings are 
consistent and the results are shown in Figure 8.

The above results show that the proposed CDPC 
method outperforms those in related works in recent 
years, including coreset (Sener and Savarese, 2017), 
learning loss (Yoo and Kweon, 2019), feature range (Li and 
Chao, 2021), and feature mixing (Parvaneh et al., 2022). 
Better results mean that less training samples are required 
for the same test accuracy, which means that the proposed 
CDPC method can select image pairs suitable for efficient 
learning with richer information diversity.
3.4. Ablation experiment analysis on model structure
After verifying the effectiveness and advancement of 
the proposed CDPC method, we further carried out 
ablation experiments to analyze the influence of the 
model structure. Specifically, the default model structure 
adopted in this paper was ResNet50, here, the ResNet18 
and DenseNet121 were added for comparison. The results 
are shown in Figure 9.

The performance of the models used in the study 
exhibits slight variations based on their structures. 
Deeper models tend to yield better performance, but 
the consistent differences and trends between high- and 
low-information-quality image pairs remain evident. It is 
important to note that, as a data-centric research approach, 
introducing model differences is not encouraged. Instead, 
it is recommended to select high-quality data with a fixed 
model to facilitate efficient learning and obtain reliable 
results.
3.5. Ablation experiment analysis on feature dimension
In this section, we further conducted the ablation 
experiments on feature dimension. The dimensionality of 
the default fusional feature after dimensionality reduction 
is 256, corresponding to the stage II in Figure 5. Here, 
we adjusted the threshold setting of PCA dimensionality 
reduction and set the dimensionality of fusional feature 
to 128 and 512, respectively. The ablation experimental 
results are shown in Figure 10.

Figure 7. The comparison of infrared-visible 
image pairs of different quality.
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The results show that there should be an information 
bottleneck in the feature dimension. If the number of 
feature dimensions is too low, the represented information 
will be lost. In the case of the same amount of training data, 
the recognition performance will decline. However, when 
the number of dimensions increases, the information may 
be redundant and will not significantly improve the test 
performance.

4. Discussions
This study explores the research motivation from 
two perspectives. Firstly, focusing on the agricultural 
photovoltaic integration development model, we 
emphasize the investigation of a fine-grained hot spot 
fault detection method based on infrared-visible image 
fusion. It is well known that hot spot faults reflect in 
thermal distribution, exhibiting distinct characteristics 
in infrared imaging. However, different types of hot 
spots require specific remedial actions. For instance, dust 
coverage necessitates cleaning, while component short 

circuit faults call for replacement. Therefore, fine-grained 
hot spot identification and analysis are crucial for ensuring 
the operation of photovoltaic systems and enhancing 
additional benefits in agricultural photovoltaic integration. 
Secondly, we specifically study the quality assessment of 
infrared-visible image pairs. Currently, deep learning-
based approaches overlook the influence of data quality, 
which leads to wastage of training time and data cost while 
increasing power consumption and carbon emissions.

In this paper, we conducted four main parts of 
work. Firstly, we collected visible light-infrared image 
pairs specifically targeting six types of fine-grained hot-
spot faults in the agricultural-photovoltaic integration 
development mode. Additionally, we utilized generative 
adversarial networks and data augmentation techniques to 
expand the dataset, resulting in a relatively comprehensive 
collection of data. Secondly, we developed a fine-grained 
hot spot fault detection framework based on data 
quality assessment and information fusion. Within this 
framework, we proposed a method called combined data 

Figure 8. The comparison of infrared-visible 
image pairs of different quality.

Figure 9. The comparison of infrared-visible image pairs of different quality.
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quality and pixel-level consistency (CDPC) for evaluating 
the information quality of infrared-visible image pairs. 
Thirdly, we performed extensive experimental analysis 
to validate the effectiveness and advancement of the 
proposed methods. Additionally, we conducted ablation 
experiments to analyze the relevant influencing factors.

The core contributions of this work are the following 
two points. Firstly, it addresses the lack of research focus 
on fine-grained hot-spot faults. Most existing studies 
primarily optimize models using publicly available single 
infrared photovoltaic (PV) fault datasets. In contrast, we 
collect and establish an infrared-visible light image pair 
dataset specifically tailored to the context of agricultural-
photovoltaic integration by introducing generative 
adversarial networks and data augmentation techniques. 
Building upon this dataset, we propose a hot-spot fault 
detection framework driven by fine-grained information 
fusion. Secondly, we propose a novel method to evaluate 
the information quality of infrared-visible light image 
pairs, enabling effective differentiation of data quality. 
These contributions are beneficial for photovoltaic fault 
type recognition, enhancing detection efficiency and 
accuracy, and enabling timely maintenance decisions 
based on fault types. 

The current limitations of the work lie in the fact that 
it adopts a data-centric research approach. Although the 
use of generative adversarial networks has addressed the 
issue of insufficient data volume to some extent, it has 
led to a decrease in the quality of generated data samples. 
Additionally, the optimization of the model structure has 
not received sufficient attention. Our future work aims 

to address these shortcomings by enhancing the quality 
assessment and selection of the dataset, optimizing the 
design of lightweight models, and focusing on semantic 
segmentation tasks.

5. Conclusions
This paper focuses on the fine-grained detection of 
photovoltaic hot spot faults caused by six different 
factors in the context of agricultural photovoltaic 
integration development. The proposed methodology 
leverages generative adversarial networks and data 
augmentation techniques to expand the dataset based 
on a small collected sample. Subsequently, by fusing and 
reducing the features of infrared and visible light images 
and evaluating the information quality of the image 
pairs, an efficient hot-spot fault recognition framework 
is established. Through extensive experiments, the 
proposed evaluation method effectively distinguishes 
the quality of image pairs, reduces data redundancy, and 
achieves stable hot-spot fault recognition. The results 
demonstrate that the proposed data evaluation method 
is not influenced by different network structures, and 
compressing the fused feature dimensions enables 
efficient learning. However, excessive compression can 
lead to the loss of feature information and reduce overall 
learning effectiveness.
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