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1. Introduction
Strawberry (Fragaria × ananassa Duch) is a tasty and 
nutritious fruit crop whose production is becoming more 
prominent. Global production over the past 25 years 
linearly increased by 0.21 million t per year, currently 
exceeding 9 million t per year (FAOSTAT, 2021). Strawberry 
cultivation is not without difficulty as its root environment 
is particularly sensitive to many biotic and abiotic stresses 
(Amil-Ruiz et al., 2011; Hautsalo et al., 2016; Keutgen and 
Pawelzik, 2008). For example, strawberry is very sensitive to 
osmotic stress caused by salinity (NaCl) (Kaya et al., 2002; 
Khayyat et al., 2007; Mozafari et al., 2019; Saied et al., 2005; 
Sarooshi and Cresswell, 1994). Yet, the use of greenhouse 
hydroponic systems can reduce stress and improve the 
productivity and quality of strawberries (Caruso et al., 
2011; Hautsalo et al., 2016; Silber and Bar-Tal, 2008). This 
improvement is mainly accomplished by the use of clean 

growth substrates, proper irrigation regimes, and tailored 
nutrient solutions. Optimal nutrient solution formulations 
have been identified for many species (Steiner, 1961; Van 
Delden et al., 2020), including strawberries (Jun et al., 
2013; Neocleous and Savvas, 2013; Sarooshi and Cresswell, 
1994; Shirko et al., 2018). However, high-quality fertigation 
water is not always available and is forecasted to decline 
on a global scale (Hassani et al., 2020). Poor water quality, 
suboptimal watering frequency, or high fertilizer dosing, 
all lead to osmotic stress, i.e. high electrical conductivity 
(EC in dS.m–1) in the rhizosphere, thereby compromising 
plant growth (Awang and Atherton, 1995; Kaya et al., 
2002; Keutgen and Pawelzik, 2008; Khayyat et al., 2007; 
Mozafari et al., 2019; Saied et al., 2005; Sarooshi and 
Cresswell, 1994). 

Arbuscular mycorrhizal fungi (AMF) and plant 
growth-promoting bacteria (PGPB) are known to 
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mitigate the effects of biotic (Li et al., 2006; Matsubara 
et al., 2004b; Norman et al., 2016) and abiotic stress (Fan 
et al., 2011; Matsubara et al., 2004a; Sinclair et al., 2013) 
in strawberry plants. These studies indicate that plants 
under stress conditions inoculated with either AMFs or 
PGPB have better root and shoot growth, nutrient uptake, 
hydration, chlorophyll content, and resistance to diseases. 
Increased nutrient uptake is partly due to better nutrient 
mobilization and retention but also selective uptake, such 
as against sodium and in favor of potassium (Wakeel et 
al., 2011). Both AMFs and PGPB can serve as biocontrol 
agents of phytopathogens by direct competition but also 
by the production of antibiotic metabolites (e.g., hydrogen 
cyanide (HCN), vitamin B groups, and amino acids), 
which reduce biotic stress and induce systemic resistance 
in plants (Nakkeeran et al., 2006; Rouphael et al., 2015; 
Tian et al., 2020). Moreover, AMFs and PGPB can induce 
the production of phytohormones (abscisic acid and 
ethylene) and antioxidative molecules (vitamin C, phenolic 
compounds) and enzymes (catalase and peroxidase), 
thereby reducing oxidative stress, supporting the plants 
defense systems, and potentially improving product quality 
(Gray and Smith, 2005; Nakkeeran et al., 2006).

Although a plethora of research on beneficial 
microorganisms has been performed, a huge amount 
of knowledge gaps need to be addressed to facilitate 
microorganisms  commercialization in soilless agriculture 
(Azizoglu et al., 2021). Despite the frequently reported 
beneficial effects of AMF and PGPB on strawberry grown 
under stress conditions, some studies reported no effects 
(Calvo-Bado et al., 2006; Maboko et al., 2013; Martínez 
et al., 2015; Palencia et al., 2013) or even adverse effects 
under optimal conditions (Chávez, 1990; Sowik et al., 
2016). This is because effects can be cultivar specific 
(Sowik et al., 2016; Vestberg, 1992a), substrate-specific 
(Vestberg et al., 2005; Vestberg, 1992b), and, in some 
cases, AMF and PGPB only work in a consortium (de 
Andrade et al., 2019; Trevizan Chiomento et al., 2019). In 
addition, the high nutrient levels are commonly used in 
commercial soilless culture, e.g., EC 1.3 dS.m–1 (Caruso et 
al., 2011), cause inevitable stress for sensitive horticultural 
species such as strawberry. To date, only a few studies 
have been performed on using coinoculation of AMF and 
PGPB to mitigate yield reduction under these seemingly 
optimal horticultural conditions (Emmanuel and 
Babalola, 2020). Coinoculation might simply cumulate 
the benefits of AMF and PGPB but can also cause positive 
interactive effects, as PGPB has been shown to stimulate 
the beneficial role of AMF and vice versa (Selvakumar et 
al., 2016; Xie et al., 2018). Therefore, this study aims to 
clarify the effects of AMF (Glomus mosseae, and Glomus 
intraradices) and PGPB (Azospirillum lipoferum DSM1691, 
and Pseudomonas fluorescens DSM 50090), and their 

coinoculation on quality and productivity of greenhouse 
grown strawberry (Fragaria x ananassa Duch ‘Selva’) 
under controlled stress (EC = 1.9 dS.m–1) and optimal (EC 
= 1.3 dS.m–1) conditions.

2. Materials and methods
To attain our research aim we conducted a factorial 
study in a climate-controlled greenhouse from April 
to December. Each isolated PGPB strain (Azospirillum 
lipoferum DSM1691, or Pseudomonas fluorescens DSM 
50090), and each isolated AMF strain (Glomus mosseae, 
or Glomus intraradices), and their combinations were 
used as inoculum for plants grown under either optimal 
(1.3 dS.m–1) or moderate osmotic stress (1.9 dS.m–1) 
(Table 1). Quality and productivity in response to these 
treatments were characterized by leaf and fruit fresh 
weight. To gain a better understanding of the underlying 
plant physiological response, we measured relative water 
content (RWC), membrane ion leakage, chlorophyll index 
(SPAD), stomatal conductance, and leaf nutrient status 
(N-P-K-Ca). To assess plant stress levels, catalase (CAT) 
and peroxidase (POD) were measured as indicators for 
enzymatic antioxidant capacity and leaf phenol and fruit 
vitamin C content as nonenzymatic antioxidant capacity; 
together with fruit pH, EC, and phenol content.
2.1. Growth conditions, plant material, and microorganism 
inoculation
This experiment was conducted in a climate-controlled 
greenhouse located in Mahabad, Iran; using a 10/14  h 
light/dark cycle with 65% ± 2% atmospheric humidity at 
23/16 ± 2 °C light/dark temperature.

Strawberry (Fragaria × ananassa Duch ‘Selva’) 
propagules were transferred to autoclaved (120 °C at 1 
bar for 1 h) pots (4 L, 1 plant per pot), filled with washed 
and autoclaved (120 °C at 1 bar for 1 h) cocofibre-perlite 
substrate (70: 30 V/V; Porous 66%).  In more detail, 
autoclavable propylene nylon (25 cm × 50 cm dimension 
and 120-micron thickness) bags were used to autoclave 
the substrate media. Each bag was filled for 75% with the 
substrate (cocofibre-perlite) along with 300 mL of distilled 
water to ensure the vapor penetration within the media for 
1 h (120 °C, 1 bar). After a cooling period, the substrate 
was inoculated with one of nine inoculum combinations 
(Table 1) established by using isolated AMF strains (either 
Glomus mosseae, or Glomus intraradices) or isolated 
PGPB strains (either Azospirillum lipoferum DSM1691, 
or Pseudomonas fluorescens DSM 50090). All strains 
were supplied by Water and Soil Institute, Karaj, Iran. Pot 
substrate inoculation with AMF was done by mixing 50 g 
inoculated sphagnum peat (1 g contains 1.6 × 104 spores) 
with the cocofibre-perlite substrate. PGPB inoculation was 
done by mixing 2 mL suspension (1 mL contains 9.8 ×107 
colony forming units) with the cocofibre-perlite substrate 
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in the pot. Plants of all 9 treatments were grown at two 
EC levels (1.3 and 1.9 dS. m–1) resulting in a total of 18 
treatments that were replicated 3 times (n = 3 pots per 
treatment); one set of 18 treatments formed a statistical 
block (with n = 1), resulting in 3 blocks in total. To establish 
the two EC levels, plants were drip irrigated daily with a 
300 mL nutrient solution of either 1.3 or 1.9 dS. m–1 (Table 
2), and the nutrient solution was allowed to freely drain 
from the pots. To guarantee the set point EC within the 
substrate and prevent potential salt accumulation, an extra 
nutrient solution (>500 mL) was used weekly to wash the 
substrate until the set point EC was reached.
2.2. Plant physiological measurements
Leaf stomatal conductance (mM H2O m–2 s–1) (Leaf 
Porometer; SN: LP2402; Decagon, USA) and chlorophyll 
index (portable SPAD Opt science CCM-200: USA) were 
measured on two to three fully expanded mature leaves per 
plant. Measurements were conducted during fruiting waves, 
per block, and at fixed moments early in the morning.

Relative water content (RWC) was calculated based on 
Ritchie et al. (1990): 

RWC =  FW − DW
SW − DW × 100 

 L1
L2

 × 100 
Where leaf fresh weight (FW) was represented by four 

leaf disks (1 cm diameter) punched and weighed directly 
after sampling; saturated weight (SW) was obtained by 
weighing these disks after a 4 h incubation period at 4 °C 
in a Petri dish filled with distilled water; before weighing, 
excessive water was removed by placing the disks shortly 

on filter paper; dry weight (DW) was obtained by drying 
the disks at 72 °C for 72 h.

Cell membrane stability was assessed by estimating 
ion leakage as described by Lutts et al. (1996). Briefly, 
1 g of fresh leaf tissue was transferred into a falcon tube 
containing 20 mL of deionized water. After 24 h (25 °C), 
the ionic leakage of the samples (L1) was measured by a 
conductivity meter (Aqualytic sensdirect, CD24). The 
samples were then autoclaved for 20  min at 120 °C and 
1 bar. Samples were cooled down,  the ionic leakage of 
the solution (L2) was measured, and ion leakage (%) was 
calculated as 

RWC =  FW − DW
SW − DW × 100 

 L1
L2

 × 100 IL(%) =

At the end of the experiment, plants were harvested per 
block, roots and leaves were separated. Fresh weight was 
directly measured, and leaves were counted; leaf area (LA) 
(cm2·plant−1) was measured using a Li-Cor-3100 (Li-Cor 
Biosciences, Lincoln, NE, USA). To obtain dry weights, 
aerial and underground biomass were dried separately at 
70 °C until constant weight (approximately 3 days). 

For analysis of mineral content, fully expanded mature 
leaves were sampled and washed using distilled water. 
Samples were oven dried (70 °C) for 48 h, ground, and 
divided into two subsamples. The first sample was used 
to determine nitrogen concentration using the Kjeldahl 
method (Jones, 1991). The second sample minerals were 
extracted using chloric acid to determine phosphate (P) 
and potassium (K) concentration using the Oliveira 

Treatment count EC (dS. m–1) Applied AMF species Applied PGPB species
1 1.3 None None
2 1.3 None A. lipoferum
3 1.3 None P. fluorescens
4 1.3 G. mosseae None
5 1.3 G. mosseae A. lipoferum
6 1.3 G. mosseae P. fluorescens
7 1.3 G. intraradices None
8 1.3 G. intraradices A. lipoferum
9 1.3 G. intraradices P. fluorescens
10 1.9 None None
11 1.9 None A. lipoferum
12 1.9 None P. fluorescens
13 1.9 G. mosseae None
14 1.9 G. mosseae A. lipoferum
15 1.9 G. mosseae P. fluorescens
16 1.9 G. intraradices None
17 1.9 G. intraradices A. lipoferum
18 1.9 G. intraradices P. fluorescens

Table 1. Treatment overview with the combinations of applied electrical conductivity (EC), arbuscular mycorrhizal fungi (AMF), and 
plant growth promoting bacteria (PGPB) inoculums (n = 3 plants per treatment).
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method (Oliveira et al., 2010), and calcium (Ca) was 
determined using atomic absorption spectrophotometry 
(Perkin-Elmer Corporation 1964).
2.3. Plant chemical analysis
Phenolic content was measured as described by Velioglu et 
al. (1998). Briefly, 0.1 g of the fresh leaf tissue was ground 
with 5 mL of 80% methanol containing 1% choleric acid. 
The solution was mixed for 2 h at 51 rpm on a shaker 
and then centrifuged at 3000 rpm for 10 min, 100 µL of 
the obtained supernatant was mixed with 750 µL of folin 
reagent. After 5 min, 750 µL of 6% sodium carbonate 
was added to the mixture, and the absorption (UV/VIS 
Lambda25 Perkin Elmer) at 725 nm was measured after 90 
min. The standard curve of gallic acid (Supplementary File 
Figure S1) was used to calculate the total phenolic content 
(mg gallic acid/g fresh weight).

Total protein was measured by grinding 1 g of fresh 
leaf tissue in 5 ml of 0.05 M Tris-HCL buffer, pH 7.5. 
The extraction was centrifuged for 25 min in 10,000 g 
at 4 °C (Hermle Z216 MK; Germany), and 0.1 mL of 
the supernatant and 5 mL biuret reagent were vortexed 
immediately. The biuret reagent was prepared beforehand 
by adding 0.1 g Coomassie brilliant blue G250 to 50 mL 
of 95% ethanol mixed with 100 mL of 85% phosphoric 
acid. This solution was filled to 1L using distilled water. 
The absorbance of the supernatant-biuret mixture was 
measured at 595 nm (Perkin Elmer UV/VIS Lambda 25; 
USA) on basis of Bradford (1976). 

To measure the antioxidant enzyme activity, i.e. 
peroxidase (POD) (EC1.11.1.7) and catalase (CAT) 
(EC1.11.1.6) activity, enzymatic extractions were made 
from fully matured leaves that were uniform in colour 
and size. Leaves were directly stored after harvest in a –80 
°C freezer. Frozen leaf tissue (1 g) was ground with 4 mL 
potassium-phosphate buffer (1% polyvinyl pyrrolidone 
and 0.1 mM EDTA, pH 7) in a chilled mortar; the obtained 
homogenate was centrifuged at 10,000 rpm for 30 min at 4 
°C (Hermle Z216 MK). This extract was used to measure 
the POD and CAT enzymatic activity.

POD activity was determined as described by Malik 
and Singh, (1980). Briefly, 3.5 mL of phosphate buffer (pH 
6.5), 0.2 mL leaf extract, and 0.1 mL of freshly prepared 
o-dianisidine solution were pipetted in a dry cuvette. 

The mixture’s temperature was raised to 28–30 °C then 
0.2 mL of 0.2 M H2O2 was added. After mixing, the 
spectrophotometric (UV/VIS Lambda25 Perkin Elmer) 
absorbance at 430 nm was determined in 30 s intervals 
over 3 min. The POD activity was expressed as ∆OD430 
min–1 mg–1 protein.

CAT activity was determined as described by Aebi 
(1984). The reaction mixture contained 2.5 mL of 50 mM 
phosphate buffer (pH 7), 0.2 mL of 0.2 M H2O2, and 0.3 mL 
enzyme extract. CAT activity was measured as a decline 
in absorbance at 240 nm with an extinction coefficient 
(0.0436 mM–1 cm–1). The CAT activity was expressed as 
∆OD240 min–1mg–1 protein.
2.4. Fruit yield and quality
Marketable fruit yield per individual plant was assessed by 
collecting, counting, and weighing ripe fruits throughout 
the whole experiment. Fruit quality was assessed by 
measuring fruit pH, EC, anthocyanin, and ascorbic acid 
(vitamin C) content. 

The fruit pH and EC were measured in a filtered fruit 
extract using a pH meter (Mettler - S20 SevenEasy™ pH) 
and an EC meter (Sartorius-PT-20, Germany) (dS m–1). 
The fruit extract was made by grinding fully grown, ripe, 
and uniform strawberries first and then suspending 10 g of 
fruit pulp in 100 mL distilled water. 

The vitamin C content of the ripe fruits was measured 
using an HPLC (Unicam-cristal-200, UK) (Nisperos-
Carriedo et al., 1992). Briefly, 1 g of fresh fruit tissue was 
ground and then centrifuged in a 40 mL buffer solution 
containing oxalic acid and sodium acetate; after separating 
the supernatant, 2% potassium phosphate was added. 
Samples were injected into HPLC that had an inner 
diameter and pillar length of 4.6 and 25 mm Supelcosil LC-
18 respectively with a pillar washing solution of KH2PO4 at 
a speed of 0.5 mL per min and UV/Vis detector at 260 nm. 
The vitamin C content was determined based on output 
peak retention time, the area under the curve (AUC), and 
comparison with ascorbic acid standards/control samples.

Anthocyanin extraction of strawberry fruits was 
prepared based on the Kallithraka et al. (2005) method with 
some modifications. Briefly, 1 g of freeze-dried strawberry 
powder was added to 100 mL methanol containing 1% HCl 
and stirred for 48 h. This mixture was used for the HPLC 

EC*1(dS.m-1)
Macronutrients (mmol L–1) Micronutrients (µmol L–1)
N*2 P K Ca Mg Fe Cu Mn Zn B Mo

1.3 6.1 0.5 2.6 2 1.4 51.2 27.5 19.2 38.2 16.2 1.5
1.9 9.3 0.9 4.4 3 1.7 51.2 27.5 19.2 38.2 16.2 1.5

*1 Applied nutrient solution EC did not deviate more than ± 0.06 dS.m–1 from the set point.
*2 NH4

+: NO3
- ratio was 10:90%

Table 2. Macro and micro elements concentrations per electrical conductivity (EC) level of the used nutrient solutions (pH range 
5.5–6.0).
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analysis and prepared three times per plant. Samples were 
diluted 1:3 with 0.1 M HCl and filtered through 0.45mm 
syringe filters before chromatography. Chromatography 
analyses (HP 1050 chromatography apparatus coupled to 
a diode array detector) were performed based on Arnous 
et al. (2002). Results were expressed as mg·kg–1 fresh fruit 
weight.
2.5. Statistical analysis
The experiment was setup as a randomized complete 
block design with 18 treatments and 3 blocks that each 
contained one replicate, resulting in a total of 3 replicates 
per treatment. All statistical analyses were done in R 
version 4.0.4. To test for the difference between means 
of the response variables, linear mixed effects regression 
models were used, i.e. the lmer function from the lme4 
package version 1.1–26. Assessment for significant 
differences (p > 0.05) was done using Tukey adjusted least 
square means (emmeans version 1.5.5–1). PGPB was 
regarded as random variable and AMF treatments as the 
main effect (n = 9). This was reasonable because both the 
absolute PGPB effect and interactive effects between PGPB 
and AMF were minor (Supplementary File Figure S2) for 
interaction plots. Random variables at each harvest were 
tested for homogeneity of variance (Levene’s test 3.0–10). 
The residuals of the lmer models were tested for normality 
(Shapiro–Wilkinson test, histogram and QQ-plots 
inspection) and homogeneity (Levene’s test 3.0–10 and 
residual plots). The lmer models for stomatal conductance 
and vitamin C showed a minor deviation from normality; 
however, the residuals were homogenous, and we decided 
that it was safe to use the lmer models for these data. 
However, the data of leaf fresh weight, protein, and phenol 
content significantly violated the assumptions required 
for lmer models; therefore, a Kruskal–Wallis Rank Sum 
Test was used, followed by a Dunn test (FSA package 
version 0.8.32) to identify differences between groups. To 
get a better appreciation of the correlations between the 
response parameters we added Pearson correlation plots 
as supplementary material (Supplementary File Figure 
S3a,S3b,S3c).

3. Results
The nutrient solution concentration with a moderately 
elevated electrical conductivity (EC) (1.9 dS m–1) reduced 
plant growth, i.e. leaf fresh (29%) and dry (18%) weight 
and fruit production (18%), compared to an optimal EC of 
1.3 dS·m–1 (Figure 1). Many other morpho-physiological 
parameters were also significantly (p < 0.001) lower at 
elevated EC compared to optimal EC (Table 3, Figure 
2): leaf relative water content (RWC) (40%), stomatal 
conductance (25%), chlorophyll index (24%), leaf protein 
level (31%), leaf phenolic compounds (10%), and catalase 
activity (CAT) (41%). 

Plants at elevated EC were visibly stressed (chlorosis), 
as confirmed by increased peroxidase activity (POD) 
(61%), and ion leakage (30%). Elevating the EC did 
increase plant nitrogen (N) and potassium (K) levels but 
had no significant effect on leaf phosphate (P) and calcium 
(Ca) content (Table 4).

Not only fruit yield (Figure 1), but also fruit quality 
aspects such as fruit pH, anthocyanin, and vitamin C 
content were all significantly lower at elevated EC compared 
to optimal EC (Figure 2 and Table 3). Surprisingly, the 
nutrient solution EC did not significantly affect fruit EC 
(Table 3). 

While the effect of plant growth-promoting bacteria 
(PGPB) (Azospirillum lipoferum and Pseudomonas 
fluorescents) were biologically insignificant (Supplementary 
File Figure S2), arbuscular mycorrhizal fungi (AMF) 
(Glomus mosseae and Glomus intraradices) did affect plant 
growth (Figure 1 and 2; Table 3 and 4). More specifically, 
inoculation with AMF at elevated EC resulted in significant 
beneficial effects on stomatal conductance, POD activity 
(Figure 1), RWC, ion leakage (Table 3), chlorophyll index, 
phosphate (P), and potassium (K) concentration (Table 4). 
Still, fruit yield, phenolic compounds, pH, and vitamin C 
content were not significantly affected by AMF at 1.9 dS m–1 

(Figure 1 and 2). However, at optimal EC (1.3  dS  m–1) 
both AMF species were able to increase these parameters 
(Figure 1). G.  mosseae did increase the fruit EC at both 
EC levels of the nutrient solution (Table 3). However, none 
of the measured fruit related parameters were affected 
by substrate inoculation with PGPB nor did PGPB have 
substantial interaction with AMF (Supplementary File 
Figure S2).

4. Discussion
Strawberry (Fragaria × ananassa Duch ‘Selva’) plants 
grown at a moderately elevated electrical conductivity 
(EC), 1.9 dS·m–1 instead of 1.3 dS·m–1, show a significant 
reduction in plant leaf fresh weight (29%) and fruit 
production (18%) (Figure 1). To some extend this finding 
is in line with earlier studies (Gallace et al., 2017; Jun et 
al., 2012, 2013) where the EC for optimal yield situates 
between 0.8 and 1.6 dS·m–1. However, the significant yield 
reduction (Figure 1) and physiological responses (Figure 
2, Table 3 and 4) of cultivar ‘Selva’ with a moderate EC 
increase (0.6  dS·m–1) (Figure 1) show that ‘Selva’ is very 
sensitive to EC concentration when compared to other 
cultivars (Gallace et al., 2017; Jun et al., 2012, 2013). For 
example, the relative water content (RWC) of cultivar 
‘Selva’ was reduced by 40% in response to a 0.6 dS.m–1 

EC increase (Table 3); whereas Karlidag et al. (2011) 
found that the RWC of cultivars ‘Fern’ and ‘A6’ was 
reduced by 11% and 13% in response to an increase of 
~3.5 dS m–1 NaCl. The cause of salinity stress, i.e. NaCl or 
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macronutrient concentrations, might also play a role here. 
Under soilless conditions, macronutrients are typically the 
predominant cause of salinity, while most literature studies 
NaCl effects. Nevertheless, increasing the EC level does, in 
itself, limit water availability in the substrate (0.6 dS.m–1 = 
–0.0216 MPa), which can directly affect root water uptake 
(Marschner, 2012). However, aside from reducing water 
availability, high nutrient concentrations are themselves 
also toxic (Marschner, 2012). This toxicity combined 
with lowered water availability can explain the observed 
chloroplast deterioration and the lower chlorophyll index. 
Furthermore, the stomata closure presumably results in a 
CO2 deficiency in the leaf apoplast. Altogether these effects 
lower photosynthetic capacity (Figure 1, Table 3, and 4) and 
result in growth retardation (Razavi et al., 2008). Thus, our 

findings suggest a strong salinity effect of macronutrients 
on strawberry. However, the molecular reasons underlying 
strawberry’s sensitivity were out of scope for this study and 
remain unclear.

The EC sensitivity was, to some extent, counteracted 
by substrate inoculation with arbuscular mycorrhizal 
fungi (AMF) (Glomus mosseae and Glomus intraradices). 
The AMF species G.mosseae was especially able to 
exhibit positive effects under elevated EC, as plants 
appeared to be healthier and stomatal conductance, RWC, 
chlorophyll index, fruit EC, leaf phosphate, and potassium 
concentration were all significantly elevated compared to 
the control. Additionally, the overall stress response was 
also reduced by AMF, based on the decrease in POD and 
ion leakage. Altogether, this indicates that AMF positively 

Figure 1. Leaf (light/green) and fruit (dark/red) fresh weight (A) and stomatal 
conductance (blue) and peroxidase activity [POD] (white) (B) for each AMF 
treatment. Boxplots (A) display data distribution (n = 9), from bottom to 
top: lower whisker as a minimum, bars as: the first quartile, median, and 
third quartile, and the upper whisker as maximum. The dots represent outliers, 
and diamonds are mean values. Bar size (B) corresponds with the least square 
(LS) means of AMF treatments modelled with PGPB as random variable, error 
bars represent the model standard error. Boxes or bars sharing the same letter 
are not significantly different p > 0.05. Tukey-adjusted comparisons were used 
for fruit fresh weight, stomatal conductance and POD; and a Kruskal–Wallis 
test was followed by the Dunn test for plant fresh weight.
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EC (dS m–1) AMF treatment CAT(µmol·min–1·g–1) CIL (%) RWC (%) LDW (g) Fruit pH Fruit
EC(dS m–1)

1.3 Control 2.8 b 43.6 c 61.1 b 31.5 b 3.53 bc 4.48 b
G.intraradices 3.3 a 40.1 d 75.7 a 36.4 a 3.60 ab 4.48 b
G.mosseae 3.5 a 38.3 d 79.0 a 38.2 a 3.69 a 4.63 a

1.9 Control 2.1 d 59.5 a 43.5 d 29.0 b 3.47 c 4.44 b
G.intraradices 2.2 cd 56.3 a 46.8 cd 32.3 b 3.49 bc 4.42 b
G.mosseae 2.4 c 50.0 b 50.7 c 36.4 a 3.58 abc 4.60 a

standard error 0.055 0.981 1.592 1.493 0.028 0.033

The least square (LS) means (n = 9) of AMF treatments were modelled with PGPB as random variables. LS means sharing the same letter 
are not significantly different (p > 0.05, Tukey-adjusted comparisons). 

Table 3. Effects of nutrient solution electrical conductivity (EC) and arbuscular mycorrhizal fungi (AMF) application on: catalase 
activity (CAT), cell ion leakage (CIL), relative water content (RWC), leaf dry weight (LDW), pH and EC of the fruits. 

Figure 2. Fruit vitamin C (light/yellow) and anthocyanin (light/purple) content 
(A) and plant protein (white) and Phenol content (light/orange) (B) for each 
AMF treatment (regarding PGPB as random variable). Boxplots display data 
distribution (n = 9), with from bottom to top: lower whisker as a minimum, 
bars as: the first quartile, median, and third quartile, and the upper whisker as 
maximum. The dots represent outliers, and diamonds are mean values. Boxes 
sharing the same letter are not significantly different p > 0.05. Tukey-adjusted 
comparisons were used for vitamin C and Anthocyanin; and a Kruskal–Wallis 
test followed by the Dunn test for protein and phenol content.
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affected plant nutrient and water status, cell membrane 
stability, and photosynthetic machinery. High EC lowered 
CAT activity (Table 3), which was also found for high 
salinity in rye (Feierabend and Dehne, 1996) and maize 
(Gondim et al., 2012), presumably due to the inability 
of catalase synthesis at high salt concentration. Hence, 
the increased CAT activity upon inoculation with AMF 
confirms that these fungi can alleviate EC stress to some 
extent. 

Under optimal EC (1.3 dS m–1), AMF, and especially 
G. mosseae, significantly increased leaf fresh weight (18%), 
fruit yield (20%), and fruit quality -- i.e. increased levels 
of vitamin C, anthocyanin, total phenolics, fruit EC, and 
pH (Figure 1 and 2, Table 3, and 4). Bona et al. (2015) 
found similar results at low nitrogen and phosphorus 
levels regarding increased fruit weight and vitamin 
C content. Cecatto et al., (2016) also found increased 
levels of anthocyanin and total phenolics upon AMF 
inoculation. Moreover, our study shows that inoculation 
with AMF increased both relative water content (RWC) 
(Table 3) and leaf nutrient levels, i.e. nitrogen, phosphate, 
and potassium (Table 4). These improvements might have 
contributed to the observed elevation of indicators for 
photosynthetic capacity, i.e. chlorophyll index (SPAD) 
(Table 4) and stomatal conductance (Figure 1). Most 
likely the combined effects of the increase in nutritional 
status, RWC, and indicators for photosynthetic capacity 
are the underlying cause for the increase in both plant and 
fruit biomass. These positive effects of AMF, resulting in 
higher photosynthetic capacity, have been reported for 
many species under suboptimal greenhouse conditions 
(Rouphael et al., 2015) and field conditions, e.g., for 
strawberry Borkowska (2002), but not under optimal 
conditions in the author’s knowledge. Dunne and Fitter 
(1989) and Stewart et al. (2005) already predicted that 
even under optimal conditions strawberry might benefit 
from AMFs phosphorus delivering capacity. This is 
because the phosphorus demand caused by the high fruit 
production greatly exceeds the capacity of the root system, 

even at the relatively high phosphorus levels (Sharma and 
Adholeya, 2004) that are typically encountered in substrate 
culture. Our results confirm that AMF can increase leave 
phosphorus concentration, even under optimal conditions 
(Table 4), thereby alleviating this yield limiting factor. 
Interestingly, our data shows that under optimal conditions 
AMF concurrently causes a biomass increase and a mild 
stress response; as both enzymatic antioxidant capacity, 
i.e. catalase (CAT) (Table 3) and peroxidase (POD) 
(Figure 1) activity, and nonenzymatic antioxidant capacity, 
i.e. vitamin C, anthocyanin, and phenolic compounds 
(Figure 2) were significantly elevated. This is of interest for 
growers as higher levels of these antioxidants are generally 
associated with better fruit quality and nutritional value 
(Flores-Félix et al., 2015). 

Yet, the findings of this study should be considered 
with some limitations. Firstly, the sample size of n = 3 is 
rather small. However, the PGPB treatments as a random 
variable result in a more robust sample size (n = 9). This 
is reasonable because both the absolute PGPB effect and 
interactive effects between PGPB and AMF were minor 
(supplementary file Figure S2). Secondly, no observations 
were made on the rooting system. In other words, the 
results reported here can only be related to substrate 
inoculation with AMF and PGPB, as no tests were done 
to identify whether the roots were hosting these micro-
organisms. 

Hence, the poor establishment of growth promoting 
bacteria in the substrate could be the reason behind the 
absence of biologically relevant effects of Azospirillum 
lipoferum DSM1691, and Pseudomonas fluorescens DSM 
50090. We used cocofibre instead of peat as substrate, 
because peat is known to negatively affect strawberry’s 
symbiosis with AMF (Vestberg et al., 2005; Vestberg, 
1992b). However, the cocofibre might have hindered 
PGPB-root symbiosis. Karlidag et al. (2013) and Flores-
Félix et al. (2015), who both used peat as substrate, did 
find significantly beneficial effects of PGPB, which is 
similar to many open-field soil based studies (Erturk 

EC (dS m–1) AMF treatment SPAD (%) N (%) P (%) K (%) Ca (%)
1.3 Control 27 d 2.15 c 0.39 e 1.85 c 1.12 a

G.intraradices 31 bc 2.35 bc 0.45 c 1.98 c 1.17 a
G.mosseae 38 a 2.46 b 0.52 a 2.60 a 1.26 a

1.9 Control 22 e 2.70 a 0.43 d 2.14 b 1.12 a
G.intraradices 29 c 2.92 a 0.48 b 2.25 b 1.17 a
G.mosseae 32 b 2.86 a 0.53 a 2.70 a 1.22 a

standard error 0.979 0.054 0.008 0.065 0.075

The least square (LS) means (n = 9) of AMF treatments were modelled with PGPB as a random variable. LS means sharing the same letter 
is not significantly different (p > 0.05, Tukey-adjusted comparisons).

Table 4. Effects of nutrient solution electrical conductivity (EC) and arbuscular mycorrhizal fungi (AMF) application on chlorophyll 
index (SPAD), and leave mineral element concentration: nitrogen (N), phosphate (P), potassium (K) and calcium (Ca) concentration.
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et al., 2012; Ipek et al., 2014; Kokalis-Burelle, 2003). 
Moreover, Pırlak and Köse, (2009)showed that, if PGPB 
root inoculation is ineffective, inoculating both roots and 
leaves may help to establish beneficial effects.

In essence, our study shows that AMF inoculation 
of substrate cultured strawberry in a greenhouse, 
increased fruit yield up to 21%, mitigated salinity 
stress, and significantly improved quality parameters 
like total phenolics, vitamin C, anthocyanin, fruit EC, 
and pH. Therefore, our findings are of direct interest to 
strawberry growers around the globe and challenge the 
current paradigm that AMF inoculation does not benefit 
strawberry yield under optimal conditions, e.g., in high 
tech greenhouses and vertical farms.

5. Conclusions
Inoculation with arbuscular mycorrhizal fungi (AMF) 
species Glomus mosseae, at optimal EC (1.3 dS.m–1), 
significantly increases fruit yield (21%) and quality 

parameters like total phenolics, vitamin C, anthocyanin, 
fruit EC, and pH. Increasing nutrient solution strength 
from 1.3 to 1.9 dS.m–1 decreases leaf fresh weight (29%) and 
fruit yield (18%) in strawberry (Fragaria × ananassa Duch 
‘Selva’). This stress effect at 1.9 dS.m–1 can be partly mitigated 
by AMF; plants in inoculated pots appear to be healthier, 
and the stress indicators–peroxidase activity (POD) and ion 
leakage–are both reduced. Moreover, AMF inoculation also 
significantly elevates stomatal conductance, relative water 
content (RWC), chlorophyll index (SPAD), fruit EC, leaf 
phosphate, and leaf potassium levels. For pots inoculated 
with plant growth promoting bacteria (PGPB) (Azospirillum 
lipoferum DSM1691, or Pseudomonas fluorescens DSM 
50090), no biologically relevant effects are observed.
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S1. Standard absorbance curve gallic acid for total phenolic content 2 
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Figure S1. Standard absorbance curve of gallic acid to determine total phenolic content 5 

(mg Gallic acid/g fresh weight) 6 
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S2. PGPR interaction plots 1 

Effects plots of plant growth promoting bacteria (PGPR) (Azospirillum lipoferum 2 

DSM1691, and Pseudomonas fluorescens DSM 50090) under EC 1.3 and 1.9 dS m-1 in 3 

presence and absence of arbuscular mycorrhizal fungi (Glomus mosseae, and Glomus 4 

intraradices). 5 
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 1 

Figure S2. Effects plots of plant growth promoting bacteria (PGPR) (Azospirillum 2 

lipoferum DSM1691, and Pseudomonas fluorescens DSM 50090) under EC 1.3 and 1.9 3 

dS m-1 in presence and absence of arbuscular mycorrhizal fungi (Glomus mosseae, and 4 

Glomus intraradices). 5 
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S3. Scatterplots and Pearson’s correlations coefficients of the response variables 1 

 2 
Figure S3a. Scatterplots and Pearson’s correlations coefficients of the response 3 
variables: catalase (CAT), peroxidase activity (POD), anthocyanin concentration (Ant), 4 
membrane ion leakage (mem), Vitamin C content (Vitamin_C), Electrical Conductivity 5 
of Fruits (EC_Fruit), and the pH of the Fruits (pH_Fruit). Colors correspond to the 6 
different treatments, legend shown in Figure S2c. 7 
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 1 

Figure S3b. Scatterplots and Pearson’s correlations coefficients of the response 2 
variables: Fruit Fresh Weight (FFW), Leaf Fresh Weight (PFW), Relative Water 3 
Content (RWC), Leaf Dry Weight (LDW), and elemental leaf content of phosphorus 4 
(P), nitrogen (N), potassium (K), calcium (Ca). Colours correspond to the different 5 
treatments, legend shown in Figure S2c. 6 
 7 
 8 
 9 
 10 
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Figure S3c. Legend of colour codes used in Figure S2a and b for the different treatments. 2 

 3 
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