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1. Introduction
The interaction of plants with the environment is 
obvious but when plants face stressful conditions, these 
conditions ultimately lead to a reduction in their growth 
and development (Zhu, 2016; Abeed et al., 2022). Plants 
have a variety of tolerance mechanisms that include the 
accumulation of proteins, osmoprotectants, modifications 
in ion transporters, and transcriptional regulation and ion 
homeostasis (Abeed et al., 2022). The signalling cascades are 
also stimulated to counteract biochemical and molecular 
changes (Saharan et al., 2022). The current climatic 
scenarios rapidly exaggerated salt stress, especially in cereal 
crops. The salt stress imposes a negative effect on seedling 
growth, photosynthesis, and yield (Salama et al., 2022). 
Salt stress also disrupts intracellular ion homeostasis and 
results in osmotic stress, which imbalances intracellular 
K+ in roots, shoots, and leaves. Additionally, promotes the 

reactive oxygen species (ROS) and these ROS scavenge the 
cellular antioxidant and shut down the levels of organic 
osmolytes and reduce membrane permeability (Ye et al., 
2022). To counteract these serious threats, salt-tolerant 
crops, improved the defensive mechanisms by enhancing 
the antioxidants, flavonoids and phenolics contents, 
free amino acids and soluble sugars (Zhao et al., 2020). 
Nowadays, screening of salt-tolerant genotypes is the main 
focus of most of the researches of the current era, because 
these crops are mandatory to fulfil the food demand of 
the world (Talaat et al., 2022). Overcoming soil salinity is 
one of the major global issues and needs to be solved by 
phytoremediation strategies and planting tolerant plant 
ecotypes (Adhikari et al., 2020).

Salt stress is considered to determine the reason 
for seed dormancy, nutrient deficiency and low profile 
foods across the world (Shiade et al., 2020). Salinity 
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affected about considerable portion of the agricultural 
land of world (Srivastava et al., 2019). Soil salinization is 
expanding rapidly across the world due to poor drainage 
and agricultural practices (Rasel et al. 2021; Wang et 
al., 2020).  In contrast, human-induced anthropogenic 
activities include water irrigation by using a water table, 
inadequate drainage, and runoff nutrients by rains toward 
the water reserves (Santpoor 2020; Syed et al., 2021). 
The expanding salt stress has a severe effect on Pakistan’s 
economy (ur Rehman et al., 2021). Many cereal crops have 
a negative correlation with salt stress in terms of food 
production (Arif et al., 2020; ur Rehman et al., 2021). 

Maize (Zea mays L.) is an important cereal crop 
belonging to the family Poaceae and included staple 
food is required to cope with food deficiency worldwide 
(Jacob et al., 2020). Maize is a valuable cereal crop and 
provides food for humans as well as fodder for livestock. 
It contributes 36% (782 Mt) of global grain production 
(Kaleem et al., 2021). It is a rich source of nutrition; 
carbohydrates (18.7%), lipids (1.35%), proteins (3.27%), 
and vitamins (Kaushal et al., 2023). Maize (Zea mays L.) can 
adapt changings under unfavourable conditions (salinity, 
drought, chilling, and heat stress) and environmental 
changes (Kumar et al., 2022; Lee et al., 2021; Sabagh et al., 
2021; ur Rehman et al., 2021). Plant growth, physiology, 
and biomass are highly affected by an elevated level of 
abiotic stresses (Dekobe et al., 2021). While, plant growth 
promotors are requisite to attain the increased growth 
regeneration (Wu et al., 2022; Asghar et al., 2023). Salt 
stress is key limiting factor for plant leaf expansion and 
grain numbers and germination (Hadia et al., 2023). This 
also causes a reduction in chlorophyll pigments (Chl a, 
b, and total chlorophyll), and starch levels (Hassanein 
et al., 2002). Flavonoid accumulation is decreased when 
a crop is subjected to salt stress (Perveen et al., 2021). 
Increasing environmental changes have a deleterious effect 
on Z.mays growth and yield rate ultimately decreasing the 
food availability and leading to corn deficiency. There is a 
reduced production rate to meet the need of Z. mays (Kaya 
et al., 2020).

The salt stress influence on cereal crops is currently 
expanded, so it is a dire need to overcome this problem 
by screening salt-stress-tolerant crops to enhance the 
production of the food. Our present study hypothesized 
that current results should help to differentiate salt-
susceptible and tolerant genotypes by ascertaining the 
growth rate, photosynthetic pigments and enzymatic and 
nonenzymatic antioxidants. This work will also provide 
information for future researchers to consider the most 
suitable cultivars grown under saline conditions.

2. Materials and methods
A pot (10 cm × 7 cm) experiment following a completely 
randomized design (CRD) was performed in the stress 

physiology lab of the Department of Botany, Government 
College University Faisalabad during the month of March. 
Day to night temperature was 25–30 °C and humidity 
average was 60%–70%. The seeds of 10 maize (Zea mays 
L.) varieties; Malika 2016, Sadaf, Agaiti 2002, Akbar, 
MMRI(Y), Pak afghoi, Neelum, Pioneer, Pearl, and 
Sahiwal were collected from Ayub Agricultural Research 
Institute Faisalabad and Maize and Millet Research 
Institute (MMRI) Sahiwal. Before seed sowing, seeds were 
well washed with double distilled water. Then healthy 
seeds were selected for sowing purposes. Pots were filled 
with washed and air-dried sand. To avoid water logging, 
a hole was made in the bottom of plastic pots before seed 
sowing. Five seeds per pot were sown and each variety 
had three replicates. After 7 days of seed sowing, uniform 
germination was observed and at this stage, salt (NaCl) 
stress along with Hogland’s solution was applied to plants 
through the sand medium. For each of the ten maize 
varieties, four salts (NaCl) stress levels (S1 = 0 mM, S2 = 
40 mM, S3 = 70 mM, S4 = 100 mM) were applied. While 
the control plants were only watered along with Hogland’s 
solution. Plants condition and their stress response were 
monitored (thinning was also done when needed) on 
daily bases for up to four weeks. After the 27th day of stress 
application, plants were uprooted to measure growth and 
physiological parameters and leaves were placed in airtight 
bags for further biochemical and antioxidative analysis.
2.1. Sampling and data curation
All plants were uprooted in April 2019. Three plants 
from each pot were harvested for different morphological 
measurements. Each of the plants was washed and divided 
into two parts (root and shoot) to avoid dust. Leaves of 
plants from all pots were packed in air-tight bags and stored 
in the freezer for chlorophyll and other physiological traits. 
Root and shoot length was measured by using a measuring 
scale. Root and shoot fresh weight was measured through 
a digital weighing balance. Then, the root and shoot were 
packed in brown paper and placed in an oven at 105 °C for 
1 h. Then at 70 °C for 72 h (3 days and nights) to measure 
their dry weight.
2.2. Plant analysis and measurements
Leaf area was calculated by using a method proposed by 
Carleton and Foote (1965). Relative water content was 
calculated by following the techniques of Jones and Turner 
(1978). The 0.5 g of fresh leaves were cut into pieces and 
ground with 80% acetone (10 mL). Then centrifuged and 
absorbance values were recorded at 480, 645, and 663 nm 
by Arnon’s methods (Arnon 1949) described method. 
Malondialdehyde (MDA) contents were measured by 
using TBA (Thiobarbituric acid) by following the method 
of Cakmak and Horst (1991). Hydrogen peroxide (H2O2) 
was calculated at a wavelength of 390 nm through a UV-
visible spectrophotomete. Flavonoids were measured at 
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510 nm by using AlCl3 (10%) and NaOH (1M) (Karadeniz 
et al., 2005). The 0.5 g of leaf sample was used for grinding 
in 10 mL of acetone (80%) and the treatment of Folin-
Ciocalteau’s phenol reagent absorbance for phenolic 
content estimation was noted at 750 nm by using a 
described method of Julkunen-Tiitto (1985). For sodium 
ion estimation acid digestion by Allen et al. (1986) was 
applied where sulphuric acid and hydrogen peroxide were 
used and chloride ion was estimated by AgCl precipitation 
following the method of Johnson and Ulrich (1959) by 
using bartend’s reagent and value was noted at a wavelength 
of 460nm. The analysis of variance (ANOVA) was used to 
examine all the data, and the least significant differences 
(LSD) test was used to identify any significant differences 
in arsenic stress at the p < 0.05 level.

3. Results
3.1. Plant growth traits
The present experiment was designed to evaluate the 
salinity stress effect in various maize (Z. mays) cultivars. 
The present findings depicted that salt stress has a negative 
effect on growth rate. The Sadaf variety showed significantly 
(p ≥ 0.001) highest reduction in growth parameters (root 
length, shoot length, root fresh weight, shoot fresh weight, 
root dry weight, shoot dry weight, and leaf area) while 
the Malika 2016, Agaiti 2002 and Pak Afghoi varieties 
also showed reduced root and shoot length and root 
and shoot fresh and dry weight but their reduction rate 
was less as compared to the Sadaf cultivar. Pearl cultivar 
showed significantly (p ≥ 0.001) least salt stress effect on 
growth rate of plants than the MMRI(Y) and Sahiwal 2002 
varieties, which showed little effect of sodium chloride 
on growth attributes of maize (Z. mays) (Figure 1, Table 
1). All maize cultivars showed that gradual increased salt 
stress level have higher damaging effect on growth rate 
respectively. All cultivars showed least decrease in root and 
shoot length, fresh and dry weight, LA and RWC when 
plant was exposed to 0 mM of NaCl and their reduction 
rate was increased as salt stress level was increased as 0,40, 
70, and 10 mM sodium chloride concentration.  
3.2. Photosynthetic pigments
Chlorophyll pigments (chlorophyll a, b, carotenoids, and 
total chlorophyll) were highly reduced in the Sadaf cultivar 
under sodium chloride stress while Pearl showed the least 
reducing effect of salinity stress on its photosynthetic 
pigments (Figure 2, Table 1). The statistically significant 
(p ≥ 0.001) effect of salt stress was observed on all Z. mays 
cultivars but according to statistics its greater reducing 
effect was observed in the Sadaf, Malika 2016, and the 
Agaiti cultivars while less salinity effect was observed in 
the Pearl, Sahiwal 2002 and Pioneer varieties.  All other 
Z. mays cultivars showed a moderate effect of salinity. 
Plants grown without stress conditions showed increased 

chlorophyll pigments but salinity-subjected plants showed 
more reduction with elevated salinity stress levels (0 mM, 
40 mM, 70 mM, 100 mM).	
3.3. Oxidative stress markers and osmoprotectants
In this experiment, ten maize (Zea mays L.) varieties 
were used to check tolerance levels against salinity stress. 
MDA and H202 were accumulated under salinity stress as 
compared to control conditions (Figure 2, Table, 1). Under 
stress-subjected conditions, nonenzymatic antioxidants are 
increased in concentration to mitigate the oxidative stress 
effect produced by ROS. The Sadaf cultivar statistically 
showed more significant (p > 0.001) accumulation under 
stress exposure as compared to the Pearl variety. So, Pearl 
is considered salinity tolerant and Sadaf a salt-sensitive 
variety. The trend of tolerance rate to sodium chloride 
stress among different maize (Zea mays L.) cultivars was 
Peal > Sahiwal 2002 > Pioneer > MMRI(Y) > Neelum > 
Akbar > Pak Afghoi > Agaiti 2002 > Malika 2016 > Sadaf.  
Salinity stress showed a significant (p > 0.001) increase in 
these oxidative stress biomarkers.

Phenolics and flavonoids are highly accumulated under 
different levels of salinity stress. Their accumulation was 
more (p > 0.001) in salinity tolerant (Pearl) and least in 
sensitive (Sadaf) cultivar. The salt stress showed a greater 
changed effect (p > 0.001) on all varieties (Figure 2, Table 
1). Some varieties (Pear, Sahiwal 2002, Pioneer) showed 
higher accumulation under stress exposure while others 
showed the least accumulation (the Sadaf, Malika 2016, 
Agaiti 2002 varieties). While, the Pak Afghoi, Akbar and 
Neelum varieties showed moderately tolerant behaviour 
towards saline conditions.
3.4. Ionic contents 
Salinity stress significantly (p > 0.001) increased sodium 
and chloride ions in the Sadaf cultivar under highly 
saline conditions while significantly (p > 0.001) least ion 
accumulation was observed in Pearl (salt tolerant variety) 
(Figure 3, Table 1). All other Z. mays cultivars showed 
moderate Na+ and Cl- ions accumulation rates in the order 
of Malika 2016 > Agaiti 2002 > Pak Afghoi > Akbar > 
Neelum > MMRI(Y) > Sahiwal 2002 > Pioneer.
3.5. Pearson’s correlation
A Pearson’s correlation graph was constructed to analyze 
the relationship between various growth characteristics 
of Z. mays (Malika 2016, Sadaf, Agaiti 2002, Akbar, 
MMRI(Y), Pak afghoi, Neelum, Pioneer, Pearl and 
Sahiwal) cultivars with MDA and H2O2 formation (Figure 
4). MDA and H2O2 were positively correlated with each 
other. Similarly, all growth attributes such as SL, RL, SFW, 
RFW, SDW, RDW, LA, Chl a, b, T. Chl and carotenoids were 
positively correlated with each other while, were negatively 
correlated with MDA and H2O2.  Phenolic, flavonoid and 
relative water content were also negatively correlated with 
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MDA and H2O2 and were slightly correlated with all other 
studied attributes. This Pearson’s correlation demonstrated 
a strong connection between plant growth and ROS 
production.

3.6. Principal component analysis 
Principal component analysis (PCA) provides loading 
plots to assess the effect of NaCl-stress on Z. mays 

(Malika 2016, Sadaf, Agaiti 2002, Akbar, MMRI(Y), Pak 
afghoi, Neelum, Pioneer, Pearl and Sahiwal) cultivars as 
presented in Figure 5. Among the entire main component 
PC1 and PC2 provide more than the overall data base 
and comprises the largest portion of all components 
(Figure 5). Accordingly, MDA and H2O2 were positively 
correlated with each other. Similarly, all growth attributes 
such as SL, RL, SFW, RFW, SDW, RDW, LA, Chl a, b, T. 

Figure 1. Physio-morphological attributes of maize (Zea mays L.) 
(p ≤ 0.05) between four salt treatments (0, 40, 70, and 100 mM).
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Chl and carotenoids were positively correlated with each 
other while, were negatively correlated with MDA and 
H2O2. Phenolic, flavonoid and relative water content were 
also negatively correlated with MDA and H2O2 and were 
slightly correlated with all other studied attributes.

4. Discussion
Salt stress is the most harmful threatening factor for 
food production because it decreases the growth and 
production rate of any crop (Li et al., 2020). Sodium 
chloride stress is a ubiquitous threat to crops of their 
reduced growth and development. Reclaimation ability 
of shoot is highly important for effective transformation 
system (Asghar et al., 2022). Saline areas have consisted of 
large amounts of soluble salts and exchangeable ions which 
ultimately reduce the plant growth rate by minimizing the 
height, weight and biomass of any plant. This stress has a 
negative effect on commercially produced crops; it harms 
above 800 million ha of land all over the world (FAO 
and Rome, 2005). Salt stress may be the cause of reduced 
morphological, physiological, and biochemical changings 
and result in altered growth and productivity rate (El-Naim 
et al., 2012; Moud and Maghsoudi, 2008; Nxele et al., 2017; 
Rady et al., 2019). In the present experiment noticeable 
gradual decrease in plant height, fresh and dry weight 
along with leaf area was noticed with four salt stress levels 

(0, 40, 70, 100 mM) (Figure 1, Table 1). The mechanism of 
this reduced height, fresh and dry matter and LA might 
be less water uptake by plant leading to reduced growth 
rate (Deinlein et al., 2014). Plant cell injury and cell death 
caused by the entrance of an extra amount of salt may be 
the reason for the reduced growth rate of plants (Muchate 
et al., 2016). Another reason might be the limited water, 
nutrient and air supply to plants which ultimately reduces 
plant biomass (Attia et al., 2008). Reduced root and shoot 
length might be due to increased osmotic pressure in the 
root zone under a saline condition which ultimately affects 
the root water uptaking process and results in short plant 
height (Aydınşakir et al., 2013). Another reason for the 
reduced growth and height rate of a plant under salinity 
stress may be the increased osmotic stress, oxidative 
stress, nutrient deficiency, and ion imbalance (El-Naim 
et al., 2022). The same findings were observed in wheat 
(Gholizadeh et al., 2021) and rice (Sarwar et al., 2022).

Photosynthesis is an important process for the food 
production of any plant. Photosynthesis is controlled by 
chlorophyll pigments (chl a, chl b, and carotenoids) and 
the functioning of these pigments is highly reduced under 
saline conditions (Riaz et al., 2019).  Salt stress minimizes 
photosynthesis by reducing RUBISCO activity ultimately, 
the photosystem activity is reduced (Parvin et al., 2019). 
The present experimental work consisting of four stress 

SOV NaCl stress (S) Variety (V)  V×S Error
RL 321.67003*** 72.8756*** 4.4240*** 1.122
SL 170.7645*** 165.1286*** 0.5629ns 0.665
RFW 12.0579*** 2.8955*** 0.0220*** 0.005
RDW 0.607544*** 0.025910*** 0.0013154*** 0.00012
SFW 1.5542*** 0.85096*** 0.0158*** 0.0026
SDW 0.0041*** 0.0019*** 3.899*** 0.00011
LA 108.9842*** 22.9983*** 0.5023*** 0.0017
RWC 4635.358*** 25965.138*** 190.2267*** 5.240
Chl. a 0.2493*** 0.4393*** 0.003914*** 0.00018
Chl. b 0.56077*** 0.32136*** 9.5416*** 0.00048
Total Chl. 1.5478*** 1.4880*** 0.0059117*** 0.00062
Caroten. 0.01057*** 0.00105*** 1.255** 0.00061
MDA 207.3744*** 235.82*** 1.3594*** 1.1320
H2O2 145.5388*** 36.6033*** 0.3143*** 0.112
Flavo. 6113.13*** 4429.14*** 146.87*** 1.2883
Phenol. 64.3398*** 25.9915*** 0.2502*** 0.6581
Root Na+ 1376.5639*** 571.39352*** 45.144136*** 1.3334
Shoot Na+ 3138.3778*** 624.04074*** 53.64321*** 1.625
Root Cl- 1087.5556*** 470.38519*** 51.481481*** 1.658
Shoot Cl- 1556.2972*** 581.3787*** 44.223148*** 1.334
Df 3 9 27 80

Table 1. Mean square values of salt induced changes in growth, physiological and ionic traits of maize (Zea mays L.) where *, ** and *** 
= Significant at 0.05, 0.01, and 0.001 levels respectively; ns = nonsignificant; df = degree of freedom. 
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levels showed a gradual reduction in chlorophyll pigments 
in all maize (Zea mays L.) cultivars. The Pearl variety 
showed less effect on chlorophyll pigments while Sadaf 
cultivars’ photosynthetic pigments were highly affected 
by salinity stress. This effect was gradually increased by 
increasing stress levels (Figure 1, Table 1). 

Reduced chlorophyll contents may be due to the 
inhibitory effect of accumulated ions (Srinieng et al., 
2015). Another reason may be the increased chlorophyllase 
activity which leads to structural damage in chlorophyll 
pigments and ultimately reduced the chlorophyll contents 
in plant (Nazar et al., 2014). This pigment reduction 
may be due to increased cholorophylase, a chlorophyll 
degradation enzyme produced as a result of elevated 
salinity level (Noreen et al., 2009). Another reason might 
be stomatal closure due to water deficiency by increased 

nutrient uptake in presence of high salt level (Chatrath 
et al., 2000). One more reason may be the pigmental 
variabilities, chlorophyll structural damage and altered 
carotenoid combinations (Aazami et al., 2021). Another 
reason for decreased photosynthetic rate might be the 
reduced PS11 effectiveness and reduced yield of photons 
under salinity stress (Yang and Lu, 2005). One more reason 
may be the production of toxic compounds; H2O2 which 
breakdown the thylakoid membrane chlorophyll pigments 
(Cha-Um and Kirdmanee, 2009). The same findings of 
reduced photosynthetic pigments under salinity stress 
were observed in rice (Alam et al., 2022) in pumpkin 
(Taibi et al., 2016).	

Malondialdehyde (MDA) is the pointer of stress 
introduction which damages the membrane when the plant 

Figure 2. Biochemical traits attributes of maize (Zea mays) (p ≤ 0.05) 
between four salt treatments (0, 40, 70, and 100 Mm).
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Figure 3. Nutritional status of maize (Zea mays) (p ≤ 0.05) 
between four salt treatments (0, 40, 70, and 100 Mm).

Figure 4. Correlation of several growth and physiological attributes with 
MDA and H2O2 production in Z. mays plants. RL, root length; SL, shoot 
length; RFW, root fresh weight; SFW, shoot fresh weight; RDW, root dry 
weight; SDW, shoot dry weight; Chl a, chlorophyll a; Chl b, chlorophyll b; T. 
chl, total chlorophyll; Caro, carotenoids; Phenol, phenolic; Flavo, flavonoid; 
LA, leaf area; MDA, malondialdehyde; H2O2, hydrogen peroxide; RWC, 
relative water content.
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is exposed to salt stress (Datir et al., 2020). The present 
experiment depicted that MDA and H2O2 accumulated 
when the plant was subjected to four different stress levels (0 
mM, 40 mM, 70 mM, and 100 mM) and this accumulation 
gradually increased as the stress level was increased. The 
Sadaf variety was the most sensitive and the pearl was 
most tolerant to salinity stress. The accumulation rate of 
these two nonenzymatic antioxidants was more in Pearl 
variety than in the Sadaf (Figure 2, Table 1). A possible 
reason for this MDA and H2O2 accumulation might be 
membrane breakage, ion leakage, lipid peroxidation and 
nutrient deficiency (Katsuhara et al., 2005). Similar results 
of accumulated malondialdehyde and hydrogen peroxide 
accumulation were observed in sorghum by Huang (2018) 
and in rice (Khan et al., 2002).

Flavonoids are water-soluble pigments that are 
accumulated on salt stress exposure of plants. These are 
important for the mitigation effect against oxidative stress 
(Sacala, 2017). In the present experiment, the most tolerant 
variety (Pearl) showed more flavonoid accumulation than 
the salt-sensitive variety (Sadaf) and this accumulation rate 
gradually increased as the stress level was increased. The 
reason for this accumulation may be the overproduction 
of ROS (reactive oxygen species) which is due to oxidative 

stress exposure resulting in osmotic damage, quenching of 
reactive oxygen species, and photo-protection (Pervaiz et 
al., 2017). The same findings were studied in Barley (Ali et 
al., 2003).

Phenolics are nonenzymatic antioxidants which help 
plants to survive under unfavourable conditions. In the 
present experiment, ten maize cultivars were used and 
they were left to grow under four salt stress levels. Phenolic 
accumulation was greater in the Pearl cultivar which declared 
it as a tolerant variety while it was less accumulated in all 
other varieties, least phenolic accumulation was in the Sadaf 
cultivar, and its accumulation rate was increased under stress 
conditions. The mechanism behind phenolic accumulation 
may be highly produced ROS because these are more 
accumulated for scavenging deleterious effects of reactive 
oxygen species (Mechri et al., 2015; Posmyk et al., 2009). 
Another reason for its accumulation might be the donation 
of hydrogen ions (Posmyk et al., 2009) restriction to the 
H2O2 conversion into free radicals (Pearse et al., 2005). One 
more reason may be that this prevents the plasma membrane 
from being damaged by scavenging the harmful effect of 
reactive oxygen species (Laus et al., 2021). The same results 
of phenolic accumulation under salinity stress in cucumber 
and tomato were studied (Abdel-Farid et al., 2020). 

Figure 5. Score and loading plots of principal component analysis (PCA) 
on different studied attributes of Z. mays plants grown under salt stressed 
environment. The abbreviations are as follows: RL, root length; SL, shoot 
length; RFW, root fresh weight; SFW, shoot fresh weight; RDW, root dry weight; 
SDW, shoot dry weight; Chl a, chlorophyll a; Chl b, chlorophyll b; T. chl, total 
chlorophyll; Caro, carotenoids; Phenol, phenolic; Flavo, flavonoid; LA, leaf area; 
MDA, malondialdehyde; H2O2, hydrogen peroxide; RWC, relative water content.
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Higher salt ions concentration either in the root or 
shoot is the result of salinity stress. This ultimately causes 
water regulation in plant cells due to disturbed ion level in 
the plant cells and produce ion toxicity (Barros et al., 2021; 
Katerji et al., 2004). Increase in Cl- ion concentration 
in the root results in chloride ion elevation in the shoot 
also (Yousif et al., 1972). The present experiment showed 
that as sodium chloride stress is applied to different 
maize (Zea mays L.) varieties; the growth rate is highly 
affected depending on the stress level. The same findings 
were observed by Turan et al. (2007). The reason may be 
depolarising of the membrane and ultimate K+ ion leakage 
(Cramer et al., 1985).

5. Conclusion
The current experiment depicted that sodium chloride had 
a highly negative impact on growth rate and chlorophyll 

contents which ultimately results in oxidative stress. It 
also resulted that Pearl, Sahiwal, and Pioneer varieties 
are salinity tolerant while the Sadaf, Malika 2016, and 
Agaiti 2002 cultivars were salt sensitive. All other varieties 
showed moderate behaviour toward saline conditions. 
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