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1. Introduction
The problem with land degradation, water pollution and 
with decrease and lose of natural resources is one of the 
key environmental problems. Soil pollution by heavy 
metals due to agricultural and industrial practices is a 
serious environmental concern today (Yazdanpanah-
Ravari et al., 2022). Over the course of the 20th century, 
population growth and the expansion of human activities 
led to an increase in per capita water consumption 
(Hosseini Beryekhani and Parsa, 2021). Water is essential 
to humanity, but it is associated with soil depletion 
through water erosion, which is one of the leading causes 
of soil degradation worldwide (Spalevic et al., 2020). It is 
a natural process intensified by human lifestyle (Khosravi 
et al., 2023). The main consequences of water erosion 
are losses of soil, nutrients, soil organic matter (SOM), 
and soil organic carbon (SOC) (Dechen et al., 2015). 

Approximately 75 Pg of soil is eroded annually from arable 
land worldwide at a projected economic value of US$ 400 
billion (Borrelli et al., 2017). In Brazil, it is estimated that 
approximately 3 Pg is lost per year, with an estimated loss 
of US$ 15.7 billion, considering the replacement costs of 
fertilizers and limestone (Polidoro et al., 2021).

The carbon reserves in the Earth’s biosphere have 
been significantly altered in recent centuries due to 
anthropogenic disturbances, such as the transformation 
of natural lands into agricultural systems, which regularly 
results in the loss of carbon from the soil.  (Janes-Bassett et 
al., 2021). The global SOC stock is in the order of 1350 Pg, 
which is greater than that of the atmosphere and vegetation 
cover combined (Georgiou et al., 2022). Most of the SOC 
is in the first 2 m of the soil profile (Lal, 2004).  The SOC 
content is conditioned by the parent material, climate, 
slope, structure, texture, amount of SOM, vegetation, and 

Abstract: Organic carbon performs essential functions in soils, which act as sources or sinks of atmospheric organic carbon. Agricultural 
management affects the carbon cycle in the soil, with effects on climate change. One of the crops most vulnerable to climate change 
is coffee. Brazil is the world’s largest coffee producer, with a predominance of management under a conventional system, with sloping 
terrain and the absence of conservationist practices. The absence of conservationist practices increases in soil loss rates due to water 
management and carbon emissions, as well as a reduction in coffee production. This paper intended to estimate soil and organic carbon 
losses by RUSLE in coffee farms in southern Minas Gerais, south-eastern Brazil. Data were obtained from fieldwork, laboratory analysis, 
and cartographic products. The results indicated, exclusively for coffee crops, soil and carbon losses between 7 and 32 Mg ha−1 year−1 
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, respectively. However, the highest soil losses occurred on sloping terrains with eucalyptus plantations 
located downhill, and the lowest losses occurred on flat land with native forests. Organic carbon losses were linked directly to soil 
losses, as a result from the land practices, slope and agricultural management adopted. These results can be used for the planning 
and priority definition of areas needing conservationist practices, such as green manuring, planting in contour and maintaining of 
vegetation between coffee rows, which are already used in some sites of the study area.
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management (Muhammed et al., 2018; Koç et al., 2020). 
It is an indicator of the sustainability of the management 
adopted in agricultural areas. High SOC rates denote 
higher soil physical quality and better soil characteristics 
(Davis et al., 2018) and contribute to mitigating climate 
change and extreme weather phenomena (Jordahl et al., 
2023). Water erosion causes the oxidation of SOC, which 
releases carbon dioxide (CO2) into the atmosphere. Such 
emissions, even at small rates, are sufficient to elevate 
greenhouse gases (GHG) and adversely affect climate 
change (Friedlingstein et al., 2020). Worldwide, between 
42 and 78 Pg of SOC have been lost in the last century 
due to badly management practices and erosion (Lal, 
2004). In this scenario, land conversion from native 
forest to agricultural systems can emit 20% to 40% of 
the initial SOC stock over dozens of years of cultivation 
(Polyakov and Lal, 2008). Therefore, the incorporation 
of sustainable agricultural practices is crucial (Sedighi et 
al., 2022), and thus, the loss of soil organic matter (SOM) 
through intensive cultivation is the focus of studies that 
encompass climate change and food security (Jakab et al., 
2023).  In this scenario, coffee is one of the most important 
commodities produced in Brazil. Production began in the 
18th century, and in the 20th century it became the world’s 
largest coffee producer and exporter (Castro and Queiroz 
Neto, 2009). Minas Gerais state accounts for approximately 
50% of national production. However, for historical and 
cultural reasons, cultivation characterized by extensive land 
use predominates, with inadequate conventional production 
systems, such as the absence of permanent preservation areas 

and mechanical, edaphological, and vegetative conservation 
practices, which result in soil degradation by increasing 
water erosion and GHG emissions (Aslam et al., 2021).

Water erosion impact studies can use digital simulation 
models. Such models allow for low-cost applications, 
quickness and good accuracy compared to traditional 
empirical models (Liu et al., 2021). The most commonly 
used model is the Revised Universal Soil Loss Equation 
(RUSLE) (Renard et al., 1997), which allows spatialization 
and estimation of soil losses and SOC. Its success worldwide 
stems from its low input requirements and applicability at 
regional scales (Halder, 2023). However, there is still a lack 
of studies on SOC losses caused by water erosion (Wang 
et al., 2022). In view of the above and considering the 
different land uses in coffee plantation areas in the south 
of Minas Gerais, soil and SOC losses were estimated by 
RUSLE.

2. Materials and methods
2.1 Study area
The research was carried out at the Conquista coffee 
producing units (Conquista Farm) in Alfenas Municipality 
(Figure 1a), Capoeirinha (Capoeirinha Farm) in Alfenas 
and Machado Municipalities (Figure 1b), and Rio Verde 
(Rio Verde and Pinheirinho Farms) in Conceição do Rio 
Verde and Cambuquira Municipalities (Figure 1c), owned 
by company Ipanema Coffees.

Alfenas and Machado are part of the Guaxupé Massif 
(Hasui, 2010). The slope of rounded and gentle hills 
is partially conditioned by the lithological type, with 

Figure 1. Location maps of Conquista (a), Capoeirinha (b), and Rio Verde and Pinheirinho (c) farms.
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mountains supported by gneisses and quartzites; the lower 
altitude and flat areas consist of granulites, orthogneiss 
and paragneiss (CPRM, 2020). Clayey colluvial and eluvial 
soils predominate in large areas without rocky outcrops 
(CPRM, 2020). Native vegetation is formed by the Cerrado 
with transition zones to the Atlantic Forest (CPRM, 2020).

Cambuquira and Conceição do Rio Verde are located 
on the outskirts of the Mantiqueira mountain range, next 
to the Rio Verde Depression, and between the Lambari, 
Baependi and Rio Verde Rivers (Brasil, 1983). The area is 
characterized by elevations with irregular relief, hills with 
gentle slopes and shallow valleys with broad bottoms with 
river plains and alluvial terraces. The region is part of the 
Atlantic Forest biome (Silva et al., 2021).

According to Köppen (1936), the areas are classified as 
humid subtropical climate (Cwb). Alfenas and Machado 
have an average annual temperature of 21.2 °C and average 
annual rainfall of 1500 to 1750 mm. On the other hand, 
Conceição do Rio Verde and Cambuquira have a mean 
annual temperature of 20.1 °C and 19.9 °C and mean 
annual rainfall of 1660 to 1900 mm and 1690 to 1920 mm, 
respectively (Alvares et al., 2013). 

The Conquista farm has an area of 2045 ha, of which 
82.26% is coffee cultivation, 14.54% is native forest, 1% 
is eucalyptus, 0.91% is pasture, 0.88% is facility area and 
0.41% is water bodies. The Ferralsol (Red Latosol) type 
and the gentle-wavy slope predominate, with altitudes 
ranging from 760 to 890 m. The Capoeirinha farm has 
an area of 1772 ha, of which 68.07% is coffee cultivation, 
23.08% is native forest, 5.26% is eucalyptus, 1.8% is water 
bodies, 0.93% is pasture and 0.86% is facility area. Ferralsol 
(Red and Red‒yellow Latosol) and undulating slope 
predominate, with altitudes ranging from 781 to 971 m. 
The Rio Verde and Pinheirinho farms have a total area of 
1666 ha, of which 45.28% is native forest, 44.90% is coffee 
cultivation, 8.29% is pasture, 0.60% is facility area, 0.49% 
is eucalyptus and 0.44% is water bodies. Acrisol (Red 
Argisol) and Ferralsol (Red‒yellow Latosol) predominate, 
the slope is gentle-wavy, and the altitudes range from 839 
to 1341 m.

Mechanized harvesting is 100% at the Conquista, 98% 
at the Capoeirinha and 69% at the Rio Verde. Manual 
harvesting, in turn, occurs in approximately 12% of the 
coffee area, especially in the steeper slopes of the Rio Verde 
and Pinheirinho farms. In the Conquista, spacing varied 
from 3.5 to 4.0 m between planting lines and from 0.5 to 
1USGS United States Geological Survey (2023). EarthExplorer [online]. Website www.earthexplorer.usgs.gov [accessed 11 March 2023].
2Projeto MapBiomas (2021). Map Biomas Project - Collection 7 Annual Series Maps of Land Use and Land Cover in Brazil [online]. Website https://
brasil.mapbiomas.org/download [accessed 17 May 2023].
3USS International Union of Soil Sciences (2015). World Reference Base for Soil Resources (WRB) Sistema Universal Recognized by the International 
Union of Soil Science (IUSS) and FAO [online]. Website. http://www.fao.org/3/a-i3794e.pdf. [accessed 16 January 2023].
4ALOS PALSAR (2015). Radiometric_Terrain_Corrected_low_res; Includes Material © JAXA/METI 2007 [online]. Website. https://doi.org/10.5067/
JBYK3J6HFSVF [accessed 17 March 2023]. 

1.0 m between plants; in the Capoeirinha from 2 to 4.8 m 
and 0.5 to 1.5 m; and in the Rio Verde from 2 to 4 m and 
from 0.5 to 2 m, respectively.
2.2 Methodological procedures
All maps were made in ArcGIS 10.8 software (ESRI, 
2020). The land use map was based on field observations, 
Landsat-8 TM (Thematic Mapper) satellite images, orbit 
219/75, TM6, TM5, and TM4, obtained on USGS digital 
platform1 from 2023 and the MapBiomas collection 7 from 
20212. The data were compared and validated in fieldwork, 
confirming the absence of significant changes in land use. 
The classes of native forest, coffee, eucalyptus, water bodies, 
pastures, and facilities were identical (Figures 2a–2d).

The soil class map was produced according to 
McBratney et al. (2003), based on the Minas Gerais Soil 
Map, at a scale of 1:650,000 (UFV et al., 2010). Next, we 
mapped the indiscriminate floodplain soils (IFS) with 
delimitation adjacent to the water bodies (Figures 3a–3d). 
The soil classification was based on Santos et al. (2018) 
and was correlated with the World Reference Base for Soil 
Resources3 (WRB). The slope was processed using a digital 
elevation model (DEM) with 30 m spatial resolution from 
the ALOS PALSAR mission (Figures 4a–4d), obtained 
from the L band with images from February 2011 
(absolute orbit n° 27875) and extracted from the NASA 
digital platform4.

The slope was classified, according to EMBRAPA 
(1979), as flat (0–3%), gently undulating (>3–8%), 
undulating (>8–20%), strongly undulating (>20–45%), 
mountainous (>45–75%), and rugged (>75%) (Figures 
5a–5d).
2.3 Revised Universal Soil Loss Equation (RUSLE)
The RUSLE was used to estimate and spatialize annual soil 
losses. The RUSLE considers the factors of rainfall erosivity, 
soil erodibility, slope length and steepness, land use and 
management, and conservation practices (Equation 1).
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; K is the soil erodibility factor 
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; LS is the topographic factor expressing 
slope length and steepness (dimensionless); C is the factor 
for land use and management (dimensionless); and P is 
the factor for conservation practices (dimensionless) 
(Wischmeier and Smith, 1978).

http://www.earthexplorer.usgs.gov/
http://www.fao.org/3/a-i3794e.pdf
https://doi.org/10.5067/JBYK3J6HFSVF
https://doi.org/10.5067/JBYK3J6HFSVF
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Figure 2. Mapping of land use; Conquista (a), Capoeirinha (b), 
Rio Verde (c), and Pinheirinho (d) farms.

Figure 3. Mapping of soil classes; Conquista (a), Capoeirinha (b), 
Rio Verde (c), and Pinheirinho (d) farms.
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Figure 4. Mapping of digital elevation model; Conquista (a), 
Capoeirinha (b), Rio Verde (c), and Pinheirinho (d) farms.

Figure 5. Mapping of slope; Conquista (a), Capoeirinha (b), 
Rio Verde (c), and Pinheirinho (d) farms.
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The R factor was acquired from Souza et al. (2022), 
the K factor for Latosols from Lense et al. (2020a) and 
the K factor for Argisols from Marques et al. (1997). 
The researchers disregarded K for the IFS because it is a 
sediment deposition area.

The LS factor was estimated from the DEM, according 
to the equation proposed by Moore and Burch (1986), 
using the Raster Calculator tool (Equation 2):
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where LS is a topographic factor (dimensionless); FA 
is the flow accumulation, which represents the upstream 
contributing area accumulated for a cell; sin S is the sine 
of the slope area (degrees); and ResDEM is the spatial 
resolution of the DEM (meters).

The values of C and P were adapted from the specialized 
literature (Table 1). The values range from 0 to 1 and 
indicate higher erosive potential as they approach 1.

The RUSLE factors were changed to raster files and 
multiplied in the Raster Calculator tab, which resulted in 
the spatial distribution of soil losses.

The RUSLE results were validated by integrating this 
model with the sediment delivery rate (SDR), which 
represents the ratio between total erosion and sediment that 
reaches water bodies (Ebrahimzadeh et al., 2018); the SDR 
was monitored at hydro-sedimentological stations of the 
Minas Gerais Institute for Water Resources Management 
(IGAM), located in Alfenas and Cambuquira, according 
to Batista et al. (2017). The SDR was estimated using 
Equation 3 of Vanoni (1975):
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where SDR is the sediment delivery rate (%) and A is 

the watershed area (
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).
2.4 Soil organic carbon (SOC) losses
Unlike soil losses, which were calculated for all land 
uses, the SOC loss rates were calculated based on the 
SOM contents exclusively under coffee crops. The soil 
was sampled at a depth of 0 to 20 cm by Ipanema Coffees 
and analyzed by Cooperativa Cooxupé, which calculated 

SOM contents, according to EMBRAPA (2017), in 
January 2023 (Supplementary document). We performed 
spatial distribution by kriging interpolation using the 
Geostatistical Wizard tool (Chen et al., 2019).

SOC concentrations were calculated according to the 
USDA and NRCS (1996) by multiplying the SOM by Van 
Bemmelen’s constant of 0.58 (Van Bemmelen, 1890). We 
then calculated the SOC losses by water erosion (Starr et 
al., 2000) by multiplying the SOM values by the soil losses 
in the Raster Calculator tool.

3. Results and discussion
3.1 Revised Universal Soil Loss Equation (RUSLE)
Table 2 presents the RUSLE results.
The R factor varied between 7070 and 7390 
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 (Table 2) and was thus classified 
as strong erosivity (Mello et al., 2013). The K factor was 
classified as medium, with values ranged from 0.015 
to 0.030 
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, due to the predominance of 
Latosols, which have a low natural susceptibility to water 
erosion as a result of their textural and permeability 
characteristics (Bertol and Almeida, 2000; Mannigel et 
al., 2002).  As the areas have high erosivity rates, proper 
land use planning and priority adoption of conservation 
practices are required (Zanchin et al., 2021, Lense et al., 
2022).

The highest mean LS factor was observed at Pinheirinho 
farm (Table 2). The highest LS values are associated with 
the highest slopes, more susceptible to water erosion. The 
Capoerinha and Rio Verde farms too have steep slopes, 
which indicate the need for water erosion mitigation.

Due to high R values, land use and management 
(factor C) and conservation practices (factor P) play key 
roles in controlling soil losses in places most vulnerable 
to water erosion; this is because lower C values result in 
higher plant density and lower water erosion rates (Renard 
et al., 1997). Alternative soil management strategies 
can also reduce soil and SOC losses. Examples are the 
addition of sewage sludge in maize cultivation (Moreira 
et al., 2020), and farmyard manure and green manure in 
sesame cultivation (Jalilian et al., 2022), which contribute 

Land use C factor Source C factor P factor*
Water bodies - - -
Facilities - - -
Coffee 0.086 Prochnow et al. (2005) 0.350
Eucalyptus 0.121 Silva et al. (2016) 0.560
Native forest 0.015 Silva et al. (2016) 0.200
Pasture 0.061 Galdino et al. (2015) 0.350

* Senanayake et al. (2022).

Table 1. C and P factor values.
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to improving the physicochemical properties of soils and 
agricultural production.

The lowest C values were obtained on the Pinheirinho 
farm (Table 2), which is composed almost entirely of 
native forest and coffee. On the Rio Verde and Pinheirinho 
farms, the smaller spacing between planting lines provides 
a higher density of plants per hectare, which generates 
higher levels of SOM, increases the water infiltration rate 
and reduces runoff. Manual harvesting was higher on these 
two farms, which reduces soil compaction by agricultural 
machinery. Regarding the P factor, in all productive areas, 

the planting of coffee was associated with conservation 
practices such as level planting, the construction of 
drainage terraces and the presence of infiltration basins.

The annual total soil losses were approximately 60 
thousand tons on all four farms. The highest average soil 
losses were observed on the Pinheirinho, Rio Verde and 
Capoeirinha farms due to the higher slopes (Table 2). The 
results were close to those of Lense et al. (2020b), with an 
average soil loss of 19.0 
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. In Conquista, was 
estimated an mean soil loss of 6.2 
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 due to 
the lower slope (Figures 6a–6d).

RUSLE factors and SDR Conquista Capoeirinha Rio Verde Pinheirinho

R(
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) 0.020 0.020 0.022 0.024
LS (dimensionless) 1.80 3.60 4.00 5.30
C (dimensionless) 0.074 0.068 0.051 0.049
P (dimensionless) 0.032 0.031 0.280 0.270
Total soil losses (
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Average soil losses (
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) 6.20 11.40 13.4 17.2

SDR (%) 32.1% 32.6% 32.5% 40.6%

Estimated SDR (
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) 2.7 3.04 1.16 1.22

Table 2. Mean values of rainfall erosivity (R), soil erodibility (K), topographic (LS), land use and management (C), and conservation 
practices (P) factors; total and average soil loss rates, sediment delivery rate (SDR), estimated and observed sediment by areas.

Figure 6. Spatialization of soil losses from Conquista (a), 
Capoeirinha (b), Rio Verde (c), and Pinheirinho (d) farms.
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The SDR ranged from 32.1% to 40.6%, with an average 
of 34.45%. The areas with a higher SDR also had higher 
LS and C values (Table 1), which highlights the greater 
gravitational potential that favors the acceleration of runoff 
and hydrosedimentological flow and the intensification of 
water erosion in these areas.

The comparison of the estimated and observed SDRs 
(Table 2) showed that on the Conquista and Capoeirinha 
farms, the results were close, with errors of 26% and 22%, 
respectively. However, on the Rio Verde and Pinheirinho 
farms, the variation was high (Table 2), which could be 
explained by the greater slope, since the RUSLE tends to 
overestimate soil erosion on high-slope terrain (Nearing, 
1998; Bircher et al., 2022). Nevertheless, the lowest errors 
were associated with the highest soil loss estimates (Amorim 
et al., 2010). However, Bircher et al. (2022) consider that 
overestimated results are better than underestimated ones, 
especially when assessing environmental risks. Notably, 
all modelling is prone to inaccuracies. However, the 
application of a model must be understood with all the 
interrelationships of a given process, such as water erosion 
(Alewell et al., 2019). Estimating soil losses on farms is an 
important tool to evaluate the dimensions of the erosion 
process and to identify priority areas for the adoption of 
conservation practices (Amorim et al., 2010). 

Figure 7 illustrates the average soil loss rates according 
to land use.

The highest average soil loss rates occurred in 
eucalyptus areas, with values between 19 and 62.50 
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 . Such areas create shades by the canopy of 
the plants, which, associated with litter, make it difficult 
to plant other species, reduce soil aggregation and 
structuring and can even harm agricultural production 
in the surrounding areas (Latini et al., 2020; Desta et al., 
2023). Eucalyptus is planted downhill on farms, with 

a spacing of up to 2 m between plants in steep areas. In 
addition, the eucalyptus cycle, which is approximately 
6 years, as a source of energy biomass that can be used 
for drying coffee, tends to leave the soil exposed for long 
periods at the beginning of planting compared to coffee, 
though there are plants up to 45 years old in the area.

Soil losses in coffee ranged from 7 to 32 
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. The values were similar to those of Cerretelli et al. (2023), 
who estimated losses of 20.8 
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 in Costa 
Rica and 7 
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 in Guatemala in agroforestry 
systems. Therefore, the similarities between the results 
obtained in Central America and the study area reveal 
the effectiveness of the different management strategies 
adopted. In the case of farms, these practices ensure better 
protection of the soil against rainfall and favor the stability 
of soil aggregates due to (i) vegetation in coffee growing; (ii) 
planting on contour lines; (iii) infiltration basins; (iv) the 
use of manual harvesting in steep areas; (v) incorporation 
of plant residues into the soil; and (vi) organic fertilization 
(Didoné et al., 2019; Alele et al., 2023).

The lowest average soil loss was found in the native 
forest (Figure 6) due to (i) vegetation hindering the release 
of soil particles by runoff (Alele et al., 2023); (ii) vegetation 
protects the supply of environmental and ecosystem 
services; (iii) increased soil moisture; and (iv) increased 
pollination, increasing productivity gains (Roubik, 2002; 
Latini et al., 2020).
3.2 Soil organic matter (SOM) content
Contrary to expectations, the SOM content ranged from 
1.5% to 4.4%. The lowest values were obtained in the flat 
and lower altitude areas of Conquista, and the highest were 
obtained in greater altitudes in Rio Verde (Figures 8a–8d).

Research presents conflicting information regarding 
the change in SOM content with altitude. Some indicate 
an increase in SOM at lower altitudes (Jeyakumar et al., 

Figure 7. Average soil loss(

ha−1 year−1 

 kg ha−1 year−1 

A = R × K × LS × C × P 

Mg ha−1 year−1 

MJ mm ha−1 h−1 year−1; 

MJ−1 mm−1 

 LS = {(FA×ResDEM)
22.13 }

0.4
×  {(sin S)

0.0896}
1.3

,    

SDR = 0.472 × A−0.125 

km2 

MJ mm ha−1 h−1 year−1 

Mg h MJ−1 mm−1 

Mg ha−1 year−1 

 Mg C ha−1 

kg ha−1 year−1 

 

) according to land use classes.
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2020), while others indicate a decrease (He et al., 2023). 
This variation can be explained by climatic zones (Li et al., 
2022; Yin et al., 2022). In tropical zones, SOM contents 
increase with altitude; in temperate regions, they decrease 
(Sundqvist et al., 2013). According to Yin et al. (2022), in 
tropical regions, high altitudes have lower temperatures, 
which slow decomposition and increase SOM levels and in 
temperate regions with higher altitudes, there is less plant 
biomass and consequently lower SOM.

There are higher levels of SOM due to manual 
harvesting in the higher altitudes and slopes of the Rio 
Verde and Capoeirinha farms, which incorporates a large 
amount of plant residues into the soil. In these areas, there 
is also a denser distribution of coffee plants, with smaller 
spacing, which provides a greater amount of SOM (Liu et 
al., 2021). In this scenario, the main indicator affecting the 
SOM content was agricultural management, as highlighted 
by Angeletti et al. (2021).

On the Conquista farm, although the climate is 
warmer and has lower rainfall, there is greater runoff due 
to the presence of streets and the wider spacing between 
plants. The crops are more spaced and less densely planted; 
therefore, there is a greater incidence of solar radiation on 
the soil, which reduces moisture and the incorporation 
of C. In addition, mechanized harvesting and sweeping 
management, which removes coffee that falls on the ground, 

removes plant residues and prevents their incorporation 
in the environment. Pinheirinho, with lower temperatures 
and higher precipitation, has lower SOM contents due to 
its lower altitude, similar to the Jinghe River Basin on the 
Chinese Loess Plateau (Zhao et al., 2021).
3.3 Soil organic carbon (SOC) losses
As expected, higher rates of SOC loss were associated with 
higher soil losses (Li et al., 2016; Imamoglu and Dengiz, 
2017) (Figures 9a–9d).

The areas with the highest susceptibility to SOM loss 
and C emission from the soil occurred in Rio Verde and 
Pinheirinho farms while Conquista and Capoeirinha 
had the lowest susceptibility. These deleterious impacts 
showed similar patterns to water erosion, resulting from 
topography and erosivity. However, the management 
practices adopted also affect the intensity of water erosion.

In this context, eucalyptus areas were subject to more 
intense deleterious effects than coffee areas. Despite the 
variable soil loss rates, it is worth noting that there is 
no safe level of soil loss (Mendes Júnior et al., 2018), as 
the sustainability of agricultural systems demands the 
reduction of erosion rates to values close to zero (FAO and 
ITPS, 2015).

The spatialization of soil and SOC losses were similar 
to the results of Lense et al. (2019; 2020c) and Lense et 
al. (2022), who used the Erosion Potential Method (EPM) 

Figure 8. Spatial distribution of SOM content on Conquista (a), 
Capoeirinha (b), Rio Verde (c) and Pinheirinho (d) farms.
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(Gavrilovic, 1962), even when considering that EPM 
tends to underestimate such losses, unlike the RUSLE 
(Dragičević et al., 2016; Chalise et al., 2019; Lense et al., 
2020a).

In Capoeirinha, the mean soil loss for coffee plantation 
was 12.60 
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, higher than the previously 
reported values of 1.58 and 2.12 
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 (Mendes 
Júnior et al., 2018; Lense et al., 2019). These authors 
classified access roads and streets as exposed soil. 
Regarding the average SOC losses, the values were similar 
to the agricultural areas in Italy, Spain, and Romania, with 
values between 50 and 450 kg (Lugato et al., 2016).

The average SOC loss is shown in Figure 10.
The adoption of sustainable management practices 

can mitigate soil, nutrient, and SOC losses through water 
erosion. The study areas have already adopted measures 
to improve soil aggregation and SOC fixation by reducing 
runoff. The vegetation cover in coffee streets improves soil 
structure, increases water retention capacity, and reduces 
the requirement for fertilizers and pesticides, all of which 
benefit the environment.  This set of actions, combined 
with technologies in the field, increases productivity and 
reduces costs due to water erosion (Ayer et al., 2015); 
furthermore, this approach can help maintain and open 
new C credit markets (Caramori et al., 2020; Guimarães 
et al., 2021).

SOC sequestration reduces GHG emissions. According 
to Hergoualc’h et al. (2012), a full sun coffee growing 
system stores an average carbon amount of 10.38
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, while the system afforested with Inga densiflora, a fruit 
tree species widely grown in Central America, stores 
an average of 12.55 
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. In addition to positive 
climatic effects, such management reduces temperatures, 
which delays fruit ripening and generates larger grains of 
better quality (Muschler, 2001). In addition, the forests 
surrounding coffee plantations favor the presence of birds 
and insects, which contribute to pollination and plague 
control (Chain-Guadarrama et al., 2019). This type of 
management is an alternative method for the study area 
and is intended to reduce susceptibility to water erosion 
and increase carbon sequestration.

4. Conclusion
1. Average soil losses in coffee production ranged from 6.2 
to 17.2 
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, with higher rates on the steeper 
slopes. The values indicate that conservation management 
is mainly responsible for reducing soil losses and mitigating 
the impacts associated with water erosion.

2. SOC levels in coffee growing varied because of 
agricultural management, with higher values associated 
with higher altitudes in fields with denser coffee plants and 
manual harvesting.

Figure 9. Spatial distribution of SOC losses in Conquista (a), 
Capoeirinha (b), Rio Verde (c), and Pinheirinho (d) farms.
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3. SOC losses ranged from 1 to 6600
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, 
with high rates on the highest slopes. The methodological 
procedures were successful in spatializing the areas 
with the highest SOC losses. The use of conservation 
management favors SOC stocks and reduces the impacts 
of coffee growing on climate change.

4. The use of environmental modelling and remote 
sensing technologies is a fast and efficient tool to monitor 
the water erosion processes, soil, nutrient, and SOC losses 
under spatiotemporal variations.
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Figure 10. Average SOC loss (
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) in coffee growing areas.
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FID (for ArcGIS) Sequence number Latitude Longitude Gleb coffee identification Soil organic matter (%) Soil organic carbon (%)
0 1 -45,93690109 -21,25740051 A1 2,90 1,68

109 2 -45,24700165 -21,85930061 A10 2,70 1,57
23 3 -45,93989944 -21,30279922 A12 3,10 1,80
27 4 -45,93270111 -21,33069992 A15 2,90 1,68
25 5 -45,93030167 -21,31139946 A16 2,80 1,62
29 6 -45,9292984 -21,30660057 A17 2,40 1,39
36 7 -45,92660141 -21,30150032 A18 2,30 1,33
2 8 -45,93690109 -21,26519966 A2 2,90 1,68
31 9 -45,92409897 -21,31139946 A20 2,60 1,51
32 10 -45,92050171 -21,31170082 A21 2,60 1,51

138 11 -45,18500137 -21,94020081 A22 2,40 1,39
133 12 -45.193677 -21.941174 A24 2,60 1,51
164 13 -45,16460037 -21,95219994 A25 3,50 2,03

6 14 -45,9396019 -21,27599907 A28 2,70 1,57
34 15 -45,91749954 -21,30209923 A29 2,50 1,45
3 16 -45,93619919 -21,27179909 A3 2,80 1,62

114 17 -45,23730087 -21,85339928 A31 3,10 1,80
117 18 -45,2344017 -21,85289955 A32 3,40 1,97
159 19 -45,17070007 -21,95409966 A33 2,90 1,68
130 20 -45,19169998 -21,95919991 A35 2,50 1,45
40 21 -45,92419815 -21,28949928 A36 1,90 1,10
77 22 -45,90650177 -21,52709961 A37 4,00 2,32
78 23 -45,90660095 -21,5298996 A38 3,20 1,86
79 24 -45,91080093 -21,53149986 A39 2,70 1,57
7 25 -45,93349838 -21,2772007 A4 2,60 1,51
43 26 -45,17440033 -21,96240044 A40 2,60 1,51

151 27 -45,92060089 -21,27709961 A40 2,90 1,68
167 28 -45,16529846 -21,95590019 A41 3,00 1,74
51 29 -45,97230148 -21,55290031 A41 2,30 1,33
41 30 -45,97829819 -21,55540085 A42 1,80 1,04
49 31 -45,92160034 -21,28910065 A42 2,70 1,57
9 32 -45,93849945 -21,28310013 A46 2,80 1,62
45 33 -45,18489838 -21,96220016 A48 2,20 1,28

100 34 -45,88119888 -21,53569984 A48 3,00 1,74
129 35 -45,91680145 -21,27890015 A48 3,10 1,80
19 36 -45,17449951 -21,95549965 A49 2,40 1,39

156 37 -45,93920135 -21,2947998 A49 2,70 1,57
1 38 -45,94129944 -21,26490021 A5 3,10 1,80

153 39 -45,17100143 -21,96139908 A50 3,30 1,91
105 40 -45,17620087 -21,95330048 A51 1,90 1,10
157 41 -45,87639999 -21,54059982 A51 2,70 1,57
97 42 -45,89339828 -21,53429985 A53 2,10 1,22
62 43 -45,95529938 -21,54780006 A55 2,60 1,51
61 44 -45,95819855 -21,54450035 A56 2,50 1,45
73 45 -45,91260147 -21,52490044 A57 2,80 1,62
46 46 -45,97999954 -21,54759979 A58 2,20 1,28
66 47 -45,1731987 -21,95050049 A61 2,00 1,16

158 48 -45,93289948 -21,52599907 A61 3,70 2,15
70 49 -45,16650009 -21,94849968 A62 2,00 1,16

163 50 -45,9292984 -21,52160072 A62 3,50 2,03
143 51 -45,18030167 -21,94820023 A7 2,70 1,57
136 52 -45,18349838 -21,93099976 A74 2,80 1,62
21 53 -45,25090027 -21,86190033 A9 2,50 1,45

108 54 -45,93790054 -21,2989006 A9 2,80 1,62
33 55 -45.922198 -21.315642 AR1 2,90 1,68
30 56 -45.7925975 -21.313495 AR2 2,90 1,68

142 57 -45,18389893 -21,94560051 B1 3,00 1,74
104 58 -45,2397995 -21,85499954 B11 2,90 1,68
115 59 -45,87870026 -21,54490089 B11 3,10 1,80
110 60 -45,24150085 -21,8491993 B12 3,30 1,91
92 61 -45,89799881 -21,52499962 B19 3,30 1,91
85 62 -45,90480042 -21,54290009 B20 2,20 1,28
81 63 -45,90790176 -21,53639984 B21 2,30 1,33
71 64 -45,92520142 -21,51910019 B22 2,00 1,16

123 65 -45,19430161 -21,96660042 B23 3,00 1,74
91 66 -45,9015007 -21,5272007 B27 4,40 2,55
93 67 -45,8973999 -21,51959991 B28 3,20 1,86
96 68 -45,8927002 -21,53089905 B29 2,50 1,45
82 69 -45,1833992 -21,94020081 B3 3,10 1,80

139 70 -45,90719986 -21,53689957 B3 2,90 1,68
99 71 -45,8852005 -21,54170036 B30 2,60 1,51

124 72 -45,1841011 -21,97120094 B34 3,10 1,80
131 73 -45,18500137 -21,96109962 B36 2,60 1,51
152 74 -45,17219925 -21,96220016 B42 2,40 1,39
150 75 -45,17720032 -21,96010017 B5 2,50 1,45
144 76 -45,18099976 -21,9538002 B64 2,70 1,57
122 77 -45,19100189 -21,97270012 B65 3,40 1,97
84 78 -45,16799927 -21,96509933 B66 2,20 1,28

154 79 -45,9109993 -21,54030037 B66 3,50 2,03
145 80 -45,18069839 -21,95779991 B67 3,80 2,20
126 81 -45,18980026 -21,96450043 B68 4,20 2,44
125 82 -45,18870163 -21,96699905 B69 3,10 1,80
149 83 -45,17770004 -21,96279907 B70 3,50 2,03
128 84 -45,19369888 -21,96209908 B71 2,30 1,33
121 85 -45,19649887 -21,97330093 B73 4,40 2,55
60 86 -45,96590042 -21,54000092 B75 2,50 1,45
69 87 -45,92589951 -21,52280045 B77 2,40 1,39
72 88 -45,92070007 -21,52669907 B78 2,20 1,28

146 89 -45,18119812 -21,96170044 C14 2,50 1,45
160 90 -45,16790009 -21,9545002 C16 2,20 1,28
147 91 -45,17340088 -21,96590042 C26 3,00 1,74
148 92 -45,17649841 -21,96769905 C27 3,00 1,74
113 93 -45,23649979 -21,84939957 C28 3,70 2,15
112 94 -45,23939896 -21,84980011 C29 4,00 2,32
111 95 -45,2419014 -21,85280037 C30 4,20 2,44
89 96 -45,90259933 -21,53240013 C31 3,80 2,20
35 97 -45,92129898 -21,30529976 C33 2,30 1,33

127 98 -45,19219971 -21,96199989 C38 2,90 1,68
155 99 -45,17350006 -21,9647007 C39 3,80 2,20
141 100 -45,18040085 -21,94510078 C46 2,40 1,39
119 101 -45,23270035 -21,85359955 C52 2,90 1,68
140 102 -45,17699814 -21,93969917 C56 2,30 1,33
98 103 -45,89410019 -21,53689957 C6 2,30 1,33
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171 104 -45,15909958 -21,96220016 C80 3,60 2,09
170 105 -45,15940094 -21,96150017 C81 3,00 1,74
169 106 -45,15909958 -21,96069908 C82 2,90 1,68
168 107 -45,15800095 -21,95730019 C83 2,90 1,68

5 108 -45,94120026 -21,2730999 I30 3,40 1,97
4 109 -45,90650177 -21,53790092 I32 2,90 1,68
83 110 -45,94309998 -21,2758007 I32 2,60 1,51
52 111 -45,97439957 -21,55470085 I33 2,10 1,22
88 112 -45,90110016 -21,53420067 I45 2,00 1,16

135 113 -45,18600082 -21,92959976 I58 2,40 1,39
137 114 -45,18209839 -21,93429947 I59 2,50 1,45
63 115 -45,16930008 -21,94239998 I63 2,40 1,39

162 116 -45,93849945 -21,52359962 I63 2,90 1,68
74 117 -45,91120148 -21,52280045 I64 2,30 1,33
80 118 -45,91249847 -21,53000069 I65 2,60 1,51
67 119 -45,93040085 -21,52750015 I67 2,60 1,51
68 120 -45,9314003 -21,52969933 I69 2,70 1,57
90 121 -45,89889908 -21,53129959 I79 2,30 1,33

106 122 -45,92100143 -21,54809952 I83 2,30 1,33
161 123 -45,17210007 -21,95960045 L13 2,20 1,28
95 124 -45,89199829 -21,52510071 L25 2,70 1,57
65 125 -45,93659973 -21,52169991 L26 2,00 1,16
16 126 -45,94689941 -21,29080009 L44 2,40 1,39
15 127 -45,94469833 -21,28949928 L45 1,80 1,04
59 128 -45,96870041 -21,56609917 M1 2,70 1,57
17 129 -45,91059875 -21,51810074 M10 2,60 1,51
75 130 -45,94820023 -21,29570007 M10 2,50 1,45
24 131 -45,89960098 -21,53440094 M13 2,50 1,45
87 132 -45,93690109 -21,31749916 M13 4,00 2,32
26 133 -45,93239975 -21,31909943 M14 2,30 1,33

103 134 -45,88460159 -21,54809952 M17 2,70 1,57
39 135 -45,92660141 -21,29140091 M19 2,00 1,16
13 136 -45,94960022 -21,28910065 M22 2,00 1,16
11 137 -45,94710159 -21,2845993 M23 2,30 1,33
12 138 -45,95080185 -21,28269958 M24 2,50 1,45
28 139 -45,93529892 -21,33720016 M25 2,30 1,33

134 140 -45,19100189 -21,94409943 M57 2,60 1,51
118 141 -45,23270035 -21,85499954 M8 2,50 1,45
165 142 -45,16109848 -21,94980049 M84 2,60 1,51
166 143 -45,16199875 -21,95219994 M85 2,10 1,22
102 144 -45,8871994 -21,54319954 P14 2,10 1,22
37 145 -45,92309952 -21,2989006 P34 2,30 1,33

101 146 -45,88410187 -21,53949928 P4 3,00 1,74
14 147 -45,94219971 -21,29150009 P41 2,60 1,51
18 148 -45,94509888 -21,28720093 P41 2,60 1,51
38 149 -45,92860031 -21,29430008 P43 2,90 1,68
8 150 -45,93529892 -21,28190041 P6 2,70 1,57
94 151 -45,89210129 -21,52249908 P68 2,40 1,39
22 152 -45,93360138 -21,29949951 P8 3,20 1,86

107 153 -45,91199875 -21,5489006 R24 2,70 1,57
42 154 -45,92829895 -21,28100014 R38 2,90 1,68
64 155 -45,94269943 -21,52729988 R74 2,50 1,45
20 156 -45,94340134 -21,30120087 S11 2,50 1,45

116 157 -45,23839951 -21,85779953 U20 3,20 1,86
132 158 -45,19639969 -21,93779945 U21 3,30 1,91
76 159 -45,90599823 -21,5258007 U23 3,00 1,74
10 160 -45,94100189 -21,28380013 U27 2,90 1,68
44 161 -45,92670059 -21,27829933 U47 2,10 1,22
86 162 -45,90050125 -21,53989983 U54 2,80 1,62

120 163 -45,22880173 -21,85890007 U55 2,60 1,51
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