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1. Introduction
Since it was first invented, plastic has gradually permeated 
every aspect of our daily lives, becoming an almost 
inseparable part of modern life. This is mainly due to the 
physical properties of plastics. Accordingly, plastics have 
found applications in virtually all sectors of life, including 
chemicals, energy, automotives, defense, aviation, logistics, 
transportation, real estate, tourism, packaging, and 
agriculture (Aydın et al., 2023; Baztan et al., 2024). The 
widespread consumption of plastics has led to an increase in 
global annual plastic production from 1.5 million tons in the 
1950s to over 450 million tons in 2023 (Baztan et al., 2024). 
Approximately half of these produced plastics, due to their 
unalterable nature, end up in all layers of the ecosystem, 
from water and soil to the air, affecting the environment 
(Geyer, 2020; Aydın et al., 2023).

Thus, plastic pollution has become a widespread form 
of pollution today, contributing significantly to major 
environmental problems. The extensive production and 
multiple uses of these materials, combined with limited 
environmentally sound disposal options, result in pollution 
that goes beyond mere aesthetic issues and threatens all 

forms of life. Plastic pollution has become a transboundary 
issue, affecting both ecosystems and human health (Prata et 
al., 2019). Once plastics become pollutants, several factors 
contribute to their degradation. In addition, the methods 
used to dispose of plastics after use, such as landfills, recycling, 
or incineration, further contribute to their fragmentation 
into smaller sizes that leach into the ecosystem (Silva et al., 
2021; Brown et al., 2023; Jin et al., 2024). This necessitates the 
categorization of plastic pollutants, as different sizes of plastics 
have different impacts and affect a wide range of organisms.

According to widely accepted classifications, plastic 
pollutants are categorized according to their sizes as 
megaplastics (greater than 100 cm), macroplastics (25 mm 
to 100 cm), mesoplastics (5 mm to 25 mm), microplastics (1 
µm to 5 mm), and nanoplastics (less than 1 µm) (Kershaw 
et al., 2015). The most ubiquitous plastic pollutants are 
microplastics (MPs). To date, the Web of Science (WoS) 
database has catalogued approximately 20,000 studies that 
include the term “microplastic” in their titles (Figure). When 
we consider publications not indexed by WoS, the number 
of relevant studies is significantly higher. This demonstrates 
that the issue of MPs is receiving considerable attention.
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MPs, as small plastic particles formed by the breakdown 
of larger plastic waste, enter the marine environment 
through various pathways and are found throughout it, 
from the water’s surface to the deep-sea floor. Marine 
organisms can ingest MPs through inhalation, ingestion, 
or contact, indicating extensive interactions between 
these plastics and marine life, which may result in genetic 
consequences. Considering the role of marine organisms 
as both vital ecosystem components and significant 
protein sources for humans, the presence of MPs within 
them and the resultant toxicological effects can adversely 
impact both aquatic resources and human health (Naz et 
al., 2024). To ensure a sustainable environment and secure 
food sources, it is crucial to mitigate MP pollution in 
marine ecosystems. Current evidence suggests that due to 
the persistent and cumulative nature of plastic pollution 
(Junaid et al., 2023a), merely improving plastic removal 
and recycling technologies may not adequately address 
the global crisis (Bergmann et al., 2022; Baztan et al., 
2024). Notably, even with a 1% to 3% annual reduction 
in plastic production, global plastic pollution is projected 
to rise, with cumulative production expected to reach at 
least 2 billion tons by 2040 (Assefa-Aragaw et al., 2024). 
Consequently, there is a pressing need for binding global 
treaty instruments, such as the plastics treaty that the 
UN began negotiating in 2022. Effective mitigation of 
plastic and MP pollution will require these instruments 
to incorporate both production reductions and decreases 
in the use of hazardous chemicals (Bergmann et al., 2022; 
Dey et al., 2022; Baztan et al., 2024).

Although extensive research has been conducted 
on the ingestion of MPs and its consequences, detailed 
review publications on this topic have been scarce until 
recently. The predominance of bibliometric analyses over 
comprehensive evaluations has limited our understanding 

of the scientific research outcomes. This review, therefore, 
explores various types and interactions of MPs with 
different aquatic organisms in aquatic environments based 
on 171 studies, drawing insights from environmental 
science, ecology, toxicology, and genetics. It also examines 
MPs in the oceans and related aquatic environments, 
focusing on how plastic pollution levels influence 
ecological dynamics. Moreover, this review identifies 
uncertainties and knowledge gaps in our understanding of 
the fate, distribution, and detrimental mechanisms of MPs 
on aquatic organisms.

2. Microplastic occurrence in marine environments 
MP pollution spans an extensive geographical area, from 
the Arctic to Antarctica and from deep oceans to high 
mountains, affecting megacities, slums, towns, rural 
communities, and remote settlements alike (Tekman 
et al., 2016; Mihai et al., 2022; Gündoğdu et al., 2023). 
As a result, new studies are continually providing more 
detailed information about the extent of this pollution, 
emphasizing the need for further research to address 
existing knowledge gaps (Mihai et al., 2022). 

MPs in marine environments predominantly 
originate from terrestrial sources (Aydın et al., 2023). 
These MPs enter marine ecosystems through various 
pathways, including surface runoff, wind, and riverine 
systems  . Surface currents and wind waves influence the 
distribution of MPs, which may remain near shorelines or 
be transported to the seabed over time. Additionally, MPs 
can directly enter marine ecosystems through maritime 
activities such as shipping, fishing, and aquaculture . 
Terrestrial sources of MPs include wastewater treatment 
plants (Akarsu et al., 2020), landfills, illegal dumping, the 
plastic production process (particularly nurdles), the use of 
plastics in agriculture (e.g., single-use greenhouse covers, 

Figure. Number of publications with the term “microplastic” in their titles indexed in the Web of 
Science database between 2016 and 2024 (data accessed via Web of Science on 11 May 2024).
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drip irrigation system pipes, or mulching), polymer-based 
paints, textiles, and tire wear (Gündoğdu, 2022). One 
of the primary pathways for MPs entering the marine 
environment is via rivers (Gündoğdu et al., 2023). When 
MPs infiltrate river systems, they are distributed along 
various sections of the river. MPs can be found floating 
on the surface, accumulating on riverbanks, in floodplains 
and in coastal vegetation, suspended in the water column, 
and deposited on and within sediments. 

MP pollution in water bodies directly impacts UN 
Sustainable Development Goal (SDG) 6, “Clean Water and 
Sanitation,” and SDG 14, “Life Below Water.” Therefore, 
there is a global call to transition from a linear economy 
to sustainable alternatives to mitigate plastic pollution 
in aquatic environments, a shift that is encapsulated in 
the ongoing negotiations for the UN’s plastics treaty 
(Bergmann et al., 2022).

Plastics are notably durable, allowing them to persist 
in the marine environment for decades before degrading. 
Borrelle et al. (2020) reported that between 19 and 23 
million metric tons, or 11% of the global plastic waste 
generated in 2016, entered marine ecosystems. They 
projected that 20–53 million tons of plastic would annually 
enter marine ecosystems by 2030. Such estimates rely 
on data collected using 333-µm mesh Manta or Neuston 
nets, which means that MPs smaller than 333 µm are not 
captured in such datasets. Consequently, the actual volume 
of MPs in marine ecosystems could be significantly higher 
than estimated. Studies on the concentrations of MPs in 
marine waters suggest that they reflect only 1% of the 
estimated global marine plastic budget (Mihai et al., 2022).

Depending on their origins, MPs in marine 
environments can be classified into primary and 
secondary categories. Primary MPs generally come from 
sources such as textiles, cosmetics, and traffic-related 
activities. Secondary MPs, on the other hand, are derived 
from the breakdown of larger plastic items due to various 
environmental factors. In terms of chemical composition 
and density, the most commonly found MPs in marine 
environments are low-density polyethylene (LDPE), 
high-density polyethylene (HDPE), polypropylene (PP), 
polyvinyl chloride (PVC), polyethylene terephthalate 
(PET), polyester (PES), and polystyrene (PS) (Gündoğdu, 
2022). All other types of MPs, such as nylon and acrylic, 
are categorized as “others.”

3. Occurrence of microplastics in aquatic organisms
High amounts of MPs in aquatic environments have 
become a well-recognized and growing global issue, 
posing a threat to aquatic life (Junaid et al., 2023b). 
However, it is crucial to recognize that not just MPs but 
1Tekman MB, Gutow L, Bergmann M, Peter C (2024). LITTERBASE. Online Portal for Marine Litter [online]. Website: https://litterbase.awi.de 
[accessed 30 May 2024].

all forms of plastic litter impact aquatic ecosystems (Aydın 
et al., 2023). It is estimated that 4076 marine species are 
currently threatened by marine litter, predominantly 
comprising plastics.1 According to the LITTERBASE 
database1, the organisms most affected by marine litter 
include fish (23.7%), seabirds (14.3%), crustaceans and 
arthropods (11.2%), and mollusks (7.9%). Reports indicate 
that the impacts of litter on marine organisms mainly 
involve ingestion (40.4%), colonization (34.3%), and 
entanglement (17.4%).1 Moreover, numerous studies have 
shown that aquatic organisms such as fulmars, oysters, 
mussels, and fish are adversely affected by MPs.1 Due to 
their size, even small organisms like zooplankton and fish 
larvae can directly ingest MPs during feeding (Lusher, 
2015).
3.1. Microplastics in aquatic invertebrates
The impact of MPs found in every layer of aquatic 
ecosystems has been the subject of many scientific 
studies, especially in the last decade. In this review, we 
focus on MPs in aquatic organisms from studies of wild 
organisms and aquaculture research conducted between 
2020 and 2024. Our literature review determined that the 
effects of MPs on 136 species belonging to the taxonomic 
groups Porifera, Cnidaria, Mollusca, Arthropoda, and 
Echinodermata were examined in 89 research articles. 
These studies evaluated relationships between the habitats 
and diets of aquatic organisms and MP uptake as well 
as the type, size, and trophic level transfer of MPs into 
different tissues.

MPs are often mistaken for food by many organisms 
upon their entry into the water. The acquisition of MPs 
by aquatic organisms can occur either directly from 
nature or indirectly through trophic pathways from 
their prey (Walkinshaw et al., 2020). The extent of MP 
uptake by aquatic organisms is influenced by various 
factors, including the species’ diet and the prevailing 
environmental conditions (Xu et al., 2020a). Filter feeders, 
for instance, take up MPs from the water column, while 
MPs that settle in the sediment over time are ingested by 
grazers or deposit feeders that feed on algae in the benthic 
zone. Seagrass sediments have been found to contain 
higher levels of MPs than sandy sediments (Huang et al., 
2020; Jones et al., 2020), making aquatic organisms grazing 
on seagrass more susceptible to MP ingestion (Jones et al., 
2020; Curren et al., 2024).

The feeding mode of organisms is a key factor 
influencing the concentration of MPs in their bodies. 
Deposit feeders or grazers were found to have higher 
concentrations of MPs than filter feeders and predators (Xu 
et al., 2020a). In a study conducted on the Red Sea coast 
of Egypt, the MP concentration (items/g) in the tissues of 
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filter-feeding bivalves was found to be higher than that in 
benthic-feeding gastropods or grazing echinoids (Abd-
Elkader et al., 2023). Walkinshaw et al. (2020) studied 11 
species of fish, crustaceans, and bivalves with different 
feeding strategies. The MP ratios of filter-feeding mussels 
Mytilus spp. and cupped oysters Crassostrea spp. were 0.2–
5.36 MPs/g and 0.18–3.34 MPs/g, respectively, while those 
of planktivorous-herbivorous brown shrimp Crangon 
crangon were 0.13–1.23 MPs/g and that of piscivorous 
yellowfin tuna Thunnus albacares was 0.00059 MPs/g.

The habitat of an organism is critically important for 
MP ingestion, as is the type of diet. It has been found that 
organisms living in different habitats with the same diet 
type ingest different MPs (Cho et al., 2021). Xu et al. (2020a) 
found that the abundance of MPs varied significantly in 
different habitats along the coastline of Hong Kong.

There are different results on the transfer of MPs 
between organisms in the food chain. Evidence suggests 
that MPs are most concentrated in the food chain at the 
level of primary consumers (Sfriso et al., 2020), but there is 
also evidence of bioaccumulation in the food chain (Wang 
et al., 2021a). Walkinshaw et al. (2020) indicated that there 
is a decrease in the concentration of MPs in organisms 
as the trophic level increases. Similarly, in Antarctica, 
filter feeders and grazers were found to have higher MP 
concentrations than omnivores and predators (Sfriso et al., 
2020). A study conducted on Ecuador’s Pacific coastline 
examined the abundance of MPs in aquatic organisms 
such as fish, mollusks, and crustaceans. That study 
considered the feeding habits of these species and found 
that carnivorous species had an abundance of 2.04 ± 0.622 
MP items in their digestive tracts, while planktivorous and 
detritivorous species had 1.31 ± 0.348 and 0.72 ± 0.780 MP 
items, respectively (Cáceres-Farias et al., 2023).

In addition, numerous experimental studies have 
investigated the effects of MPs on invertebrate growth, 
development, reproduction, mortality, and oxidative stress 
(D’Costa, 2022). However, these studies are not discussed 
here as they are beyond the scope of this review.

MPs can be found in different types and sizes in 
different parts of tissues (Gündoğdu, 2023; Doshi et al., 
2024). MPs were studied in various parts of organisms, 
including soft tissues, stomachs, gills, gastrointestinal 
tracts (GITs), digestive glands, muscles, carapaces, guts, 
hepatopancreas, intestines, and eggs. PE, PP, and PET 
were recorded as the dominant plastic polymers in both 
crustaceans and mollusks. Various types and amounts 
of MPs were found in the tissues of living organisms, as 
presented in the following subsections.
3.1.1. Porifera
Sponges are filter-feeding, sessile benthic organisms. They 
can take up MPs and other microparticles by filtering 
seawater, through placoderms, or via the influence of the 

fauna living within them (Girard et al., 2021; Soares et 
al., 2022). Studies on the effects of MPs on members of 
the phylum Porifera are limited. In the literature review 
conducted within the scope of this study, three relevant 
publications were found (Appendix Table 1).

In the Laguna de Terminos Protected Area, the MP 
content in sponges was found to be much higher than 
that in water and sediment (Celis-Hernandez et al., 2021). 
Sponges may be exposed to more contamination than other 
organisms as a result of ingesting very small particles, such 
as MPs with a predominant size of 10–20 µm or less than 
2 µm (Fallon and Freeman, 2021; Krikech et al., 2023). In 
studies conducted in different regions, blue, red, and black 
microfibers were found in various sponge species, such as 
Haliclona implexiformis, Halichondria melanadocia, and 
Amorphinopsis atlantica in Mexico (Celis-Hernandez et 
al., 2021); PS was found in coral sponges Carteriospongia 
sp. and Ircinia sp. on Bangka Island, Indonesia (Girard 
et al., 2021); and PP was found in Cinachyrella alloclada 
in Brazil (Soares et al., 2022). In Antarctica, thermo 
fibers were detected in the sponges Dendrilla antarctica, 
Haliclona (Rhizoniera) scotti, Microxina sarai, and Mycale 
(Oxymycale) acerata, which provide the raw material for 
clothing worn by researchers, fishermen, and tourists in 
the region (Corti et al., 2023). In addition, sponges can 
be used as bioindicators to determine MP diversity in the 
environment due to their abilities of filtering large amounts 
of seawater daily and absorbing very small amounts of 
MPs present in the environment (Celis-Hernandez et al., 
2021; Corti et al., 2023; Krikech et al., 2023).
3.1.2. Cnidaria
Cnidarians are divided into three classes: Hydrozoa, 
Scyphozoa, and Anthozoa. They are widely distributed 
in different habitats, from seagrasses to coral reefs, from 
coastal areas to the deep sea, and from benthic to pelagic 
zones, and they are affected by MPs originating from 
various anthropogenic sources in many places with human 
impact. Hydrozoans and scyphozoans are commonly 
known as jellyfish, with both sessile polyp and free-living 
medusa forms. Although studies on the effects of MPs on 
the phylum Cnidaria are limited, it is possible to say that 
more studies have been carried out compared to Porifera. 
In our literature review, seven relevant studies were found 
(Appendix Table 1).

In the pelagic jellyfish Aurelia aureta in the North 
Sea, Pelagia noctiluca in the Canary Islands, Rhizostoma 
pulmo in the Adriatic Sea, benthic jellyfish Cassiopea 
xamachana in Florida, and sea anemone Actinia equina 
on the north coast of Spain, MPs were reported mostly 
in the form of fibers (Avio et al., 2020; Iliff et al., 2020; 
Devereux et al., 2021; Janssens and Garcia-Vazguez, 2021; 
Rapp et al., 2021). The anthropogenic contaminants PE, 
PP, PET, cotton, rayon/viscose fibers, acrylic, cellophane, 
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cellulose, and linen were detected (Devereux et al., 
2021; Rapp et al., 2021). In addition, jellyfish such as 
Aurelia aurita and Pelagia noctulica were found to be 
bioindicators for the determination of MPs in pelagic 
waters (Macali and Bergami, 2020; Rapp et al., 2021). 
Anthozoans, another class of Cnidaria, are a group of 
polyp-shaped corals and anemones, all of which are 
sessile. There are many experimental studies investigating 
the ingestion and adhesion of MPs by corals and species-
specific MP uptake; the effects of MPs on corals together 
with chemical contaminants such as PAE, PCBs, and 
heavy metals; pathogen-induced diseases caused by MPs 
and their effects; and the symbiotic relationship between 
corals and Symbiodiniaceae (Huang et al., 2021). However, 
nonexperimental studies are limited. On Liugiu Island, 
Taiwan, MPs were detected on the surface of (0.35 ± 
0.28 items/g) and inside (0.23 ± 0.17 items/g) Acropora 
spp., Galaxea astreata, and Pocillopora verrucosa corals. 
The MPs detected were over 90% fiber and included 
polymers such as rayon, PES/PET, nylon, PACA, PS, PP, 
and PE (Lim et al., 2022). Corals obtain nutrient and 
energy needs through symbiotic relationships with the 
photosynthetic family Symbiodiniaceae. This symbiotic 
relationship is critical for supporting healthy coral reefs. 
From Hainan Island, China, it was reported that MPs can 
induce apoptosis in the coral Pocillopora damicornis and 
that the symbiotic relationship between Symbiodiniaceae 
and coral may be damaged (Tang et al., 2021).
3.1.3. Mollusca
The members of the phylum Mollusca (gastropods, 
bivalves, and cephalopods) are economically important 
due to their consumption as food and the wide variety 
of species they encompass. In this review, we considered 
a total of 52 species from 36 articles. The concentration 
of MPs in these organisms was mostly observed in their 
soft tissues, with smaller amounts found in the stomach, 
gills, intestines, GIT, and digestive glands. In most studies, 
10% potassium hydroxide was used for tissue separation, 
and Fourier transform infrared (FTIR) and micro-
Fourier transform infrared (µFTIR) methods were used 
for polymer detection. The shapes of MPs were reported 
as fibers, fragments, films, pellets, microbeads, foam, and 
sheets, with fibers and fragments being predominant.
3.1.3.1. Gastropoda
Gastropods live on sediments, sandy bottoms, rocks, 
and the seabed and are exposed to direct and indirect 
MP pollution (Zaki et al., 2021). They can uptake MPs 
from the water column, sediment, and nutrients. MP 
contamination was observed especially in the outer 
shells, foot, pedal mucus, and feces of snails, indicating 
that they ingest and excrete MPs (Rodrigues et al., 2023). 
Gastropods are known for their diverse feeding habits, 
which include herbivory, detritivory, suspension feeding, 

scavenging, and carnivory (Srivastava and Singh, 2021). 
As detritivores, they feed on detritus and intake MPs from 
the sediment. They are also grazers on macroalgae and 
consume MPs in seagrasses while feeding (Curren et al., 
2024).

Gastropods move by crawling with the help of their 
pedal mucus and feet. In the Bohai Sea, crawling species 
such as Rapana venosa, Neverita didyma, Chlorostoma 
rustica, Buccinum koreana, Siphonalia subdilatata, 
Volutharpa perryi, Natica janthostomoides, and Natica 
maculosa were found to have higher MP contents than 
bivalve species that burrow in the sediment or attach to 
rocks (e.g., Solen gouldi and Mytilus galloprovincialis) 
(Zhao et al., 2024). The researchers noted that the high MP 
ratio in crawling shells may be related to MP uptake from 
both sediment and water during crawling.

A study conducted in the Klang River estuary in 
Malaysia found that the carnivorous snails Chicoreus 
cingulata and Thais mutabilis contained more MPs than 
the herbivorous snails Nerita articulata and Nerita polita. 
This difference in MP concentration was attributed to the 
feeding habits of these snails; herbivorous snails consume 
algae containing MPs, while carnivorous snails consume 
both the MPs in the environment and in their prey (Zaki 
et al., 2021). This study highlighted that MPs can be 
transferred from one organism to another through trophic 
pathways, raising concerns about the potential risks posed 
to humans by aquatic foods that may contain MPs.

We examined the abundance of MPs in 23 gastropod 
species across 13 studies (Appendix Table 1). The presence 
of MPs in soft tissues has been studied most in the 
literature. The most commonly used digestion method 
was 10% KOH. For polymer analysis, the majority of 
studies utilized µFTIR and FTIR. The predominant shapes 
of MPs identified were fibers, followed by fragments. The 
most commonly detected polymers were PE and PET. The 
highest MP concentration was found in the mangrove 
snail Littoraria scabra in Jakarta Bay, Indonesia (mean: 
75.5 MPs/individual) (Patria et al., 2020). The minimum 
MP concentration (mean: 0.29 ± 0.54 MPs/individual) was 
recorded in the limpet Patella caerulea in İskenderun Bay 
and Mersin Bay, Türkiye (Yücel and Kılıç, 2023).
3.1.3.2. Bivalvia
Bivalves include filter-feeding oysters, mussels, and 
clams. These organisms have been used as bioindicators 
to determine aquatic pollution due to their sensitivity to 
biotic and abiotic changes. Therefore, the sensitivity of 
bivalves to MPs has also been of interest and extensively 
studied. Some studies argue that bivalves can be used as 
bioindicators in determining MP pollution (Wakkaf et al., 
2020; Patterson et al., 2021; Truchet et al., 2021; Wootton 
et al., 2022) and vice versa (Ward et al., 2019). They are also 
an economically important group with high consumption 
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as seafood worldwide. Given that bivalves are consumed 
whole without internal organs, directly transferring their 
accumulated substances (Shumway et al., 2023), studying 
the MP concentrations in bivalves is important.

The MP concentrations and types in oysters, mussels, 
and clams, which are widely used as food, have been 
investigated in many studies. In this review, data from 19 
bivalve species from 19 studies were analyzed. Researchers 
have primarily extracted MPs from the soft tissues of 
bivalves using 10% KOH. Fibers and fragments are the 
most common forms of these MPs. ATR-FTIR and µFTIR 
were predominantly used to determine polymer types. 
The most common polymer types were PE, PP, and PET. 
The Mediterranean mussel Mytilus galloprovincialis is the 
most studied species, with mean MP levels varying across 
different regions, from 0.5 MPs/individual on the shores 
of İstanbul (Galyon and Alçay, 2023) to 18.6 ± 23.0 MPs/
individual on the Catalan coast (Expósito et al., 2022). 
These researchers estimated that daily consumption of 
mussels could lead to an intake of 42.8 MPs/day for adults.

The minimum MP concentration was recorded in the 
mussel M. galloprovincialis as 0.5 MPs/individual on the 
shores of İstanbul, Türkiye (Galyon and Alçay, 2023). The 
maximum MP concentration (25.3 ± 32.6 MPs/individual) 
was found in the mussel Brachidontes pharaonis on the 
Red Sea coast of Egypt (Abd-Elkader et al., 2023).
3.1.3.3. Cephalopoda
The number of studies conducted on MP concentrations 
in cephalopods is lower compared to other classes. Ten 
species were investigated in nine articles (Appendix 
Table 1). Researchers examined MPs in the soft tissues, 
stomachs, gills, ink sacs, intestines, digestive glands, GITs, 
and outer bodies of squids, cuttlefishes, and octopuses. A 
majority of studies focused on the stomach. Most research 
used 10% KOH for tissue digestion, while FTIR was the 
predominant technique for polymer identification. The 
shapes of MPs were mostly fibers and fragments. The 
most commonly reported polymers were PET, PE, and PP. 
Studies have been conducted on mean MP ratios in several 
commercially important species in different regions, 
including Sepia officinalis on the Adriatic coast and in 
Portugal, Octopus vulgaris in the southern Tyrrhenian Sea 
and off Madeira Island, Loligo vulgaris in the northeast 
Atlantic, and Dosidicus gigas along western South America 
and in the eastern Pacific Ocean (Oliveira et al., 2020; 
Gong et al., 2021; Pedà et al., 2022; Armellini et al., 2023; 
Sambolino et al., 2023; Wang and Chen, 2023). The lowest 
rate of MPs per individual was reported as 0.13 ± 0.35 
MPs/individual in the squid Ommastrephes caroli off 
Madeira Island in the Northeast Atlantic (Sambolino et al., 
2023). The highest rate was 10.30 ± 16.66 MPs/individual 
in Octopus vulgaris in the southern Tyrrhenian Sea in the 
western Mediterranean Sea (Pedà et al., 2022).

Cephalopods need suitable shelters to protect themselves 
from predators due to their soft skin and to lay their eggs 
during the reproductive period. The literature has reported 
that they use marine debris as shelters. For example, the 
pygmy octopus Paroctopus cthulu was found to use a snorkel 
mask for spawning (Leite et al., 2021). Additionally, Freitas 
et al. (2022) reported that benthic octopuses used plastic 
marine debris as shelters for nesting and hiding.
3.1.4. Arthropoda
The aquatic group of arthropods includes Crustacea and 
Merostomata. Crustaceans, which comprise economically 
important species such as crabs, shrimps, lobsters, and 
barnacles, play vital roles in ecosystems. They are widely 
distributed from aquatic areas to brackish waters, estuaries, 
freshwaters, rivers, and terrestrial areas and are used as 
human food. However, their true significance lies in their 
role as food sources for many creatures such as fish, sharks, 
birds, and mammals. The larval stages of crustaceans, often 
found within zooplankton groups like Ostracoda, Isopoda, 
and Copepoda, are pelagic and constitute food for many 
creatures. Crustaceans exhibit diverse diets, including 
filter feeding, detritivory, carnivory, and omnivory.

The uptake of MPs and their effects have been studied 
in many groups of crustaceans, such as Decapoda, 
Stomatopoda, Cirripedia, Cladocera, and Amphipoda. 
This review examined the effects of MPs on arthropods 
based on the findings of 65 studies (Appendix Table 1).

The highest number of studies on MP concentrations 
in Crustaceans have been carried out in the GIT, 
including many studies of the gills, stomach, intestine, gut, 
hepatopancreas, digestive tracts, muscles, and soft tissues, 
with rare studies on the carapace and only one study 
on eggs (Appendix Table 1). The most frequently used 
method for digesting tissues was 10% KOH, followed by 
30% hydrogen peroxide. µFTIR, followed by FTIR, was the 
most commonly used method for polymer analysis. MPs 
were mainly obtained as fibers, followed by fragments. PE, 
PET, and PP were the most commonly identified polymers. 
Most studies have been carried out on decapods and the 
blue crab Callinectes sapidus (Appendix Table 1).

The lowest MP rate was reported in the krill Euphasia, 
a zooplankton (0.019 MPs/individual) in the Bohai Sea, 
China (Zheng et al., 2020). The highest MP rate was 
reported as 327.56 MPs/individual in the mangrove crab 
Metopograpsus quadridentata in Jakarta Bay, Indonesia 
(Patria et al., 2020). The size of M. quadridentata was large, 
and a positive correlation between the weight of the crabs 
and MP abundance was revealed. Additionally, there were 
no data indicating that contamination conditions were 
minimized in the study, so contamination may be another 
important reason for the high concentration of MPs.

Barnacles are sessile benthic filter-feeding organisms. 
In the Capo Milazzo Marine Protected Area, the pelagic 



GÜNDOĞDU et al. / Turk J Zool

254

barnacle Lepas (Lepas) anatifera was found to contain an 
average of 1.74 ± 0.80 MPs and natural fibers in its GIT, as 
reported by Scotti et al. (2023). This concentration is higher 
than that reported in two other studies on barnacles (Xu 
et al., 2020b; Zhang et al., 2022). MPs have been detected 
even in Antarctica, where human density is limited (Sfriso 
et al., 2020; Primpke et al., 2024). In the South Shetland 
Islands and the South Orkney Islands, MP concentrations 
in the Antarctic krill Euphausia superba have been studied. 
The average MP rate in Antarctic krill was found to be 
0.29–0.33 MPs/individual, with sizes ranging from 20 to 
195 µm (Zhu et al., 2023a). The primary polymers within 
the compositions of MPs found in Antarctic krill are PE, 
PP, and PS, which are also the main constituents of MPs in 
subsurface seawater surrounding the Antarctic Peninsula 
(Zhang et al., 2022). PE and PP are commonly used in 
household materials and have emerged as the predominant 
types of plastic polymers manufactured globally (Liao et 
al., 2021).

A total of four species of the class Merostomata 
have been found along the coasts of North and Central 
America and in the Indo-Pacific. Horseshoe crabs are prey 
for many birds, fish, and sea turtles. They also provide a 
habitat for many species of mollusks and crustaceans, 
leading to symbiotic relationships. In Asia, they are 
economically important due to their biomedical use. In 
a study conducted in the Beibu Gulf of China, which has 
the world’s highest horseshoe crab population, researchers 
investigated the contamination of juvenile three-spined 
horseshoe crab Tachypleus tridentatus by MPs. The average 
MP content in the GIT was found to be 21.1 ± 13.4 MPs 
per individual, which was significantly higher than the 
MP content in other mollusks and crustaceans in the same 
region of China. That study also revealed that 99% of the 
MPs were fibers, with cellophane being the most abundant 
polymer (Wang et al., 2022).
3.1.5. Echinodermata
The presence and effects of MPs have been studied in 
several species of benthic starfish, sea urchins, and sea 
cucumbers. MPs were investigated in Haizhou Bay, 
China, in the starfish Asterias rollestoni, the sea urchin 
Hemicentrotus pulcherrimus, and the sea cucumber 
Acaudina molpadioides; in the Canary Islands in the sea 
urchin Diadema africanum; in the Adriatic Sea in the sea 
urchin Paracentrotus lividus; and off the island of Ibiza, 
Spain, in the sea cucumber Holothuria tubulosa. These 
MPs were mostly in the form of fibers, and the most 
commonly detected polymers were PE, PP, and PET (Avio 
et al., 2020; Lombardo et al., 2022; Xie et al., 2024a). MPs 
in the sea urchins Echinometra mathaei and Diadema 
setosum of the islands of Pari and Harapan, Indonesia, were 
predominantly reported as fragments (75%). PES and PP 
were reported to have the highest rates (Rahmawati et al., 

2023). In Jiaozhou Bay, China, echinoderms were reported 
as the taxon with the highest MP occurrence after fish 
(93%) and the highest MP uptake after crustaceans (20.9 
± 17.4 MPs/g) (Zhang et al., 2023). In a study conducted 
by Barros et al. (2020), it was observed that the sea urchin 
Lytechinus variegatus in Todos os Santos Bay, Brazil, 
exhibited a preference for marine debris, with plastic 
accounting for 68% of the debris, over natural materials 
such as shells and rocks for shelter.
3.2. Microplastics in aquatic vertebrates
The ubiquitous existence of MPs in aquatic environments 
has raised apprehension about their effects on aquatic 
vertebrates. From deep depths to the surface layers of 
fresh and marine water environments, MPs are found 
everywhere and affect various aquatic organisms. MP 
existence causes disturbances in hematological parameters 
of the Korean bullhead fish Pseudobagrus fulvidraco 
(Lee et al., 2023), induces retardation in the antipredator 
behavioral responses of frog tadpole (Scribano et al., 
2023), and causes excessive accumulation in the bodies of 
aquatic mammals (Nabi et al., 2022). Understanding the 
existence and impact of MPs on aquatic vertebrates is thus 
of extreme importance, as these variations can have far-
reaching costs across the whole ecosystem.
3.2.1. Fishes
Recently, the ingestion of MPs by fish in aquatic 
environments has garnered significant attention due to 
concerns about MP contamination in seafood (Srisiri 
et al., 2024). Monitoring MP ingestion by fish is crucial 
for assessing the risks of consuming MP-contaminated 
fish for human health (Motivarash et al., 2024). Piskuła 
and Astel (2024) recently investigated MP uptake in 
globally consumed fish species such as rainbow trout and 
perch. Their results indicated that, on average, each fish 
contained 1 to 12 MP items, with 56% being fibers and 
46% particle-shaped MPs. In another study, 68% of MPs, 
predominantly LDPE, were found in the edible tissues 
of 400 individual fish from the coastal area of Gujarat, 
India (Motivarash et al., 2024). De Azevedo et al. (2024) 
also examined the presence of MPs in two fish species, 
Hoplosternum littorale and Pterygoplichthys pardalis, 
which are often consumed by humans, becoming a direct 
source of MP contamination. These fish were found to 
contain 683 MP particles, ranging from 1 to 43 MPs per 
individual. Blue-colored and fiber-shaped MPs were 
the most abundant in both species. Similarly, Srisiri et 
al. (2024) found that fibrous-type and blue-colored 
MPs (PE and PES) were also prevalent in edible marine 
fishes, with an average concentration of 1.6 ± 0.5 pieces 
per individual. Fish can consume MPs either directly by 
mistaking them for natural prey items or indirectly by 
consuming other organisms that have ingested MPs (da 
Costa et al., 2023).
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The occurrence of MPs in various fish species, including 
their concentration, shape, size, polymer type, color, and 
location, has been extensively documented in both marine 
and freshwater species as presented in Table 1. 

Most information on the occurrence of MPs in fishes 
comes from analyses of items found in the GIT (Arafat 
et al., 2023; Rasta et al., 2023; Khan et al., 2024). MPs are 
primarily accumulated in the digestive tract, especially the 
stomach (Rivas-Mena et al., 2024), and the gut–gills axis 
(Zheng and Wang, 2023). The presence of MPs may lead to 
structural and functional alterations in the GIT, potentially 
impairing fish growth and nutrition (Lai et al., 2021; Hao 
et al., 2023). Fishes from a wide range of species and 
habitats are reported to be contaminated with MPs, which 
often vary in terms of polymer type, color, and shape. Fish 
digestive tracts frequently contain HDPE, PE, PP, PES, and 
PS, the most commonly produced polymers worldwide 
(Hollerova et al., 2023; Yedier et al., 2023; Gorule et al., 
2024). The most commonly found forms of MPs in fish are 
fibers and fragments, with fish showing a preference for 
consuming black- and blue-colored plastic polymers over 
white fragments. Very small plastic particles can traverse 
living cells and enter the lymphatic or circulatory systems, 
potentially dispersing throughout the body. Unfortunately, 
there is still a lack of information about MPs in fish tissues 
outside of their digestive systems.
3.2.2. Sea turtles
Sea turtles lead complex lives, facing numerous 
anthropogenic threats including climate change, coastal 
development, fishing, direct exploitation, and pollution. 
These pressures not only affect their survival rates but can 
also lead to significant reductions in their populations. 
Given their crucial ecological roles, from contributing to 
the health and maintenance of coral reefs and seagrass 
beds to acting as biological carriers that transport marine 
nutrients and energy to coastal ecosystems, the impact of 
pollution on sea turtles demands careful consideration.

The aquatic environment, a critical accumulation 
point for MPs, affects numerous species, particularly 
sea turtles. Sea turtles, as large marine vertebrates, are 
especially susceptible to MP pollution due to their feeding 
behaviors and habitat preferences. Sea turtles, akin to 
humans, experience exposure to MPs through inhalation, 
ingestion, and dermal contact. This similarity provides 
valuable insights into the trophic transfer of MPs within 
aquatic ecosystems. Consequently, assessing the exposure 
of sea turtles to MPs is crucial for understanding broader 
ecological impacts.

Since MPs are one of the most problematic pollutants for 
sea turtles, among other pollutants, they are experiencing 
higher individual impacts and concentrations of MPs 
compared to fish, marine mammals, and seabirds (Curl et 
al., 2024). Although our understanding of plastic ingestion 

by sea turtles has greatly improved over the last decade, 
quantified data on the amount of ingested debris are 
still missing from risk assessments and review articles; 
these studies tend to focus solely on the frequency of 
occurrence. The pervasive and persistent nature of MPs in 
the environment poses a considerable risk to sea turtles, 
many species of which are already threatened, vulnerable, 
or critically endangered (IUCN, 2023). The primary 
threat to sea turtles is entanglement in marine litter, such 
as ghost nets and ropes. Their lifecycle, which includes 
using sandy beaches for nesting and nearshore habitats 
for hatchling foraging before migrating to the open sea, 
significantly exposes them to plastic pollution. Compared 
to other aquatic species, sea turtles are more prone to 
ingesting plastic debris due to their visual feeding strategy, 
which often leads them to mistake soft floating plastics 
for jellyfish, especially during their young pelagic phase; 
additionally, their backward-facing esophageal papillae 
prevent regurgitation, facilitating particle buildup in the 
gut.

Various injuries via both mechanical and chemical 
actions have been documented in the digestive tracts of 
all sea turtle species reported to have ingested plastic items 
(Himpson et al., 2023). Global studies on the occurrence 
and entanglement of plastics in sea turtles include research 
from the Eastern Mediterranean by Duncan et al. (2024), 
from the Mexican Caribbean by Aranda et al. (2024), and 
from the Gulf of Oman by Yaghmour et al. (2022), as 
well as a hazard assessment from the Northwest Atlantic 
Ocean by Blais and Wells (2022). Table 2 highlights the 
fact that turtles are severely affected by MPs, with a high 
percentage of individuals contaminated and a significant 
average number of MPs found per turtle. The green sea 
turtle (Chelonia mydas) and the leatherback sea turtle 
(Caretta caretta) are particularly vulnerable to MPs due to 
their herbivorous and gelatinous diets, respectively.

Turtles’ extensive geographic range and migratory habits 
mean that they often spend stages of their lives in areas heavily 
contaminated with MPs, leading to significant environmental 
accumulation of these particles. The types and amounts 
of plastic waste ingested by sea turtles vary by species, life 
stage, and diet (Choi et al., 2021; Palmer et al., 2021). The 
frequency at which wild turtles encounter or ingest plastic 
is still poorly understood. Due to ethical concerns about the 
lethal sampling of these critically endangered species, most 
studies on turtle plastic ingestion are anecdotal, based on 
one-time observations, or predominantly involving dead or 
dying turtles. Moreover, the first of only five international 
review articles on turtles ingesting plastic was published 
39 years ago (Balazs, 1985). Further research is needed to 
determine if ingesting plastic poses a greater risk to sea 
turtles compared to nonmarine species. With increasing 
plastic pollution, the urgency for such studies escalates.
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3.2.3. Mammals
Small plastics disperse more rapidly in the aquatic 
environment than larger ones, increasing the likelihood 
of ingestion by a wide range of mammals. Research has 
shown that MPs are prevalent in marine mammals at 
high trophic levels (Dool and Bosker, 2022; Kangas et al., 
2023). Often, the majority of MPs found in whales and 
dolphins are believed to result from trophic transfer rather 
than direct ingestion (Dool and Bosker, 2022; Moore et 
al., 2022). Aquatic mammals ingest significant amounts 
of MP particles, likely through direct consumption from 
sediment or seawater, as well as through trophic transfer, 
i.e. via prey species that have consumed plastic. MPs have 
been discovered in the feces and stomachs of pinnipeds 
and cetaceans, as well as throughout their digestive tracts 
(Merrill et al., 2023). Direct accidental ingestion of MPs by 
aquatic mammals can lead to blockages in the GIT (Trani 
et al., 2023). The survival of aquatic fauna, particularly top 
predators like aquatic mammals, is seriously threatened 
by MPs, which pose significant health risks (Nabi et 
al., 2022). Many aquatic mammals are of conservation 
concern due to various anthropogenic stressors, and 
they serve as indicators of the aquatic ecosystem’s health, 
especially concerning pollution. Similar to sea turtles and 
humans, aquatic mammals have long lifespans and feed at 
high trophic levels, exposing them to chemical pollutants 
in food. They may therefore serve as useful sentinels to 
detect effects that could eventually impact humans. The 
European Marine Strategy Framework Directive has 
proposed large aquatic mammals as indicators for the 
occurrence, consumption, and monitoring of MPs. As can 
be seen in Table 3, the occurrence and ingestion of MPs in 
mammals confirm that these aquatic mammals commonly 
ingest MPs due to their feeding activities.

According to Wan et al. (2023) and Werth et al. (2024), 
cetaceans may consume tens of thousands of pieces of MPs 
daily during feeding. The most frequently consumed MPs, 
including PE of both high and low density, PP, PET, and 
PS, come in various sizes, from tiny fragments to large 
sheets, and have been found in mammalian stomachs and 
intestines. The abundance of MPs is randomly dispersed, 
irrespective of the animal’s body length or sexual maturity. 
In cetaceans, maturity did not significantly correlate with 
MP counts, as observed in harbor porpoises (Philipp et 
al., 2021). Similarly, there was no significant correlation 
between MP abundance and body length. Zhang et 
al. (2021) noted a similar trend as the body length of 
humpback dolphins showed an insignificant relationship 
with the abundance of MPs. The sex of the individual did 
not significantly impact the number of MPs in different 
cetaceans (Xie et al., 2024b). Moreover, MPs have been 
discovered in the GITs of almost all aquatic mammals 
(Battaglia et al., 2020; Yang et al., 2023; Wulf, 2023). The 

presence of MPs in GITs sometimes leads to wear and tear 
of the digestive tract and impairment in the intestinal tract 
of mammals such as baleen and beluga whales (Yang et 
al., 2023; Werth et al., 2024). MPs were found throughout 
the GITs, and a sizable amount of what was consumed 
was frequently expelled in feces (Harlacher, 2020; Yong 
et al., 2021). MPs can disperse into the body during 
their transition from the stomach, which stores food, to 
the intestine, which absorbs nutrients (Ma et al., 2021). 
Absorption and excretion of MPs by large aquatic animals 
require further investigation. Researching large aquatic 
animals poses challenges due to factors such as difficulty 
in obtaining samples and their protected status, potentially 
leading to an underestimation of the MP issue. During 
necropsies, obtaining viable samples from large cetaceans 
can be challenging. It is advised that global assessments of 
the dangers associated with cetaceans consuming MPs and 
the presence of MPs in their environments be carried out. 
More research in various regions will be required to gather 
more details regarding MP ingestion/occurrence in large 
aquatic mammals.

4. Effects of MPs on aquatic organisms
Oceans today are increasingly impacted by human-induced 
factors, such as MP pollution. MPs pose a significant 
threat to aquatic ecosystems, and the extent of their impact 
on the genetics of aquatic life is an active area of research. 
Understanding the genetic effects of MP pollution is 
crucial for the conservation and sustainability of aquatic 
ecosystems. Aquatic organisms become contaminated 
with MPs primarily through ingestion, either from 
contaminated prey or through direct uptake of particles 
from the water, exposing them to numerous potential 
health risks (Baalkhuyur et al., 2020). Studies have shown 
that MPs can negatively affect the reproductive capabilities 
of aquatic organisms (Junaid et al., 2024). For example, 
exposure to MPs can impair egg development and larval 
growth in fish and disrupt the reproductive cycles of 
aquatic shellfish. The genetic impacts of MPs on aquatic 
organisms are mediated through several mechanisms, 
including DNA damage, changes in gene expression, 
genetic mutations, and epigenetic effects.
4.1. DNA damage
MPs can cause DNA damage in aquatic organisms due 
to various chemicals they absorb and toxic substances 
secreted by other biological organisms onto their surfaces. 
This damage can directly cause fractures or mutations in 
DNA chains. Chemicals such as phthalates and bisphenol 
A, commonly found in some plastics, can adversely affect 
the reproduction and development of aquatic organisms. 
For example, Gonçalves et al. (2022) investigated the 
effects of PS nanoplastics on the marine mussel Mytilus 
galloprovincialis. They used a multiple-biomarker 
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approach, including genotoxicity assessments with a comet 
assay on mussel hemocytes, and evaluated antioxidant 
enzymes (superoxide dismutase (SOD), catalase (CAT), 
and glutathione peroxidase (GPx)), a biotransformation 
enzyme (glutathione-S-transferase (GST)), and oxidative 
damage (lipid peroxidation (LPO)) in the gills and 
digestive glands. Their findings indicated that exposure 
to nanoplastics suppressed antioxidant enzymes, leading 
to oxidative damage in tissues, and that mussel tissues 
struggled to cope with this emerging stressor.

Similarly, Jaouani et al. (2023) explored the effects 
of aging PE MPs in Mytilus edulis, widely used as 
a bioindicator of aquatic ecosystems, at varying 
concentrations in marine waters both in vitro and in vivo. 
They assessed changes in gene expression levels related 
to detoxification, the immune system, the cytoskeleton, 
and cell-cycle control through quantitative RT-qPCR. The 
results showed variable expression levels dependent on the 
state of plastic degradation (aged vs. unaged) and exposure 
mode (in vitro vs. in vivo).

Recent studies on the biological effects of MPs have 
increased exponentially, but knowledge of their impact 
on freshwater fish and the mechanisms of these biological 
effects remains limited. PP MPs, for example, persist in 
freshwater ecosystems and biota, presenting ongoing 
threats. Continuous ingestion of these MPs disrupts 
fish homeostasis; elevates levels of reactive oxygen 
species (ROS); alters antioxidant parameters such as 
SOD, CAT, GST, and GPx; and increases lipid oxidation 
and the denaturation of the neurotransmitter enzyme 
acetylcholinesterase (AChE). Moreover, higher rates 
of apoptosis, DNA damage, and histological changes 
have been observed in liver tissues of Oreochromis 
mossambicus, Danio rerio, and Perca fluviatilis exposed 
to MPs (Kaloyianni et al., 2021; Umamaheswari et al., 
2021; Jeyavani et al., 2023). Another study revealed that 
including PP MPs in the diets of D. rerio and P. fluviatilis 
inhibited cellular functions in the gills and hepatic cells due 
to lipid peroxidation, DNA damage, protein proliferation, 
apoptosis, autophagy, and metabolic changes (Bobori et 
al., 2022).

In Nile tilapia (Oreochromis niloticus), SOD, CAT, total 
peroxides, and oxidative stress index activities, as well as 
lipid peroxidation and DNA fragmentation, increased in 
a dose-dependent manner in groups exposed to MPs at 
the early juvenile stage. MPs caused an overproduction 
of ROS, leading to oxidative stress and DNA damage by 
altering antioxidant parameters (Hamed et al., 2020). In 
rainbow trout (Oncorhynchus mykiss), inhibition of GSH 
levels and antioxidant enzyme activities was detected 
in all tissues targeted for the monitoring of oxidative 
stress. Exposure to different PE MP-supplemented 
feeds significantly upregulated DNA damage, apoptosis 

profiles, and ROS-mediated apoptotic responses in a dose-
dependent manner (Atamanalp et al., 2023).
4.2. Changes in gene expression
MP pollution can alter gene expression in aquatic 
organisms, potentially leading to changes in biological 
processes. Barboza et al. (2018) demonstrated that 
exposure to binary mixtures of MPs and mercury in 
juvenile European sea bass (Dicentrarchus labrax) for 96 
h resulted in neurotoxicity, as evidenced by inhibition of 
AChE, increased LPO in the brain and muscles, and altered 
activities of energy-related enzymes lactate dehydrogenase 
(LDH) and isocitrate dehydrogenase (IDH). Specifically, 
this study indicated that MPs and mercury, both alone and 
in combination, caused neurotoxicity, oxidative stress, and 
changes in energy-related enzyme activities in offspring.

Biofilm layers formed on the surfaces of MPs can 
also impact the genetic structure of aquatic organisms 
by modifying gene expression. This could negatively 
affect reproduction, growth, immune function, and 
other biological processes. Arias-Andres et al. (2018) 
compared biofilm-forming bacterial communities on 
MPs and discovered that aquatic bacteria can transfer a 
model antibiotic resistance plasmid. They used exogenous 
and red fluorescently labeled Escherichia coli as a donor 
strain and green fluorescently labeled pKJK5, which has 
trimethoprim resistance, as a plasmid. Their findings 
indicated a higher frequency of plasmid transfer in 
bacteria associated with MPs compared to free-living or 
naturally aggregated bacteria, suggesting that horizontal 
gene transfer may significantly influence the ecology of 
aquatic microbial communities globally. Furthermore, 
they noted that the spread of antibiotic resistance through 
MPs could have profound implications for the evolution of 
aquatic bacteria.

Plastic degradation results in nanoplastics that enter 
terrestrial and aquatic ecosystems, including oceans, rivers, 
and lakes. Martin-Folgar et al. (2023) explored changes 
in gene expression in zebrafish embryos at 120 h after 
fertilization following exposure to different concentrations 
of PS nanoplastics (30 nm). They observed that the gene 
encoding heat shock protein (hsp70) was downregulated 
in a dose-dependent manner, while genes encoding 
superoxide dismutase (SOD1 and SOD2), apoptotic genes 
(cas1 and cas8), and interleukin 1-β (il1β) were activated at 
a PS nanoplastic concentration of 3 ppm. Conversely, the 
antiapoptotic gene Bcl2α was inhibited at both 0.5 and 3 
ppm. Most changes in gene expression related to oxidative 
stress, apoptosis, and inflammation occurred at the highest 
nanoplastic concentration. In another study, Qiang et al. 
(2020) examined potential transgenerational effects in 
zebrafish offspring after parental exposure to PS MPs. qRT-
PCR analysis revealed an increase in mRNA expression 
of the hmgcra, hmgcrb, and hsd3b2 genes associated with 
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fish gonads in response to MPs of 1 µm at 1000 µg/L. They 
also reported significant MP accumulation in zebrafish 
intestines and notable changes in steroidogenic mRNA 
expression in gonads at concentrations above 100 µg/L.

MPs, and particularly PP, cause various changes in gene 
expression. Corinaldesi et al. (2021) studied the nutritional 
activity of red coral (Corallium rubrum) exposed to MPs, 
assessing defense mechanisms, tissue damage due to 
physical contact, and molecular responses such as gene 
expression and DNA damage. They found significant 
changes in malnutrition responses, mucus production, 
and gene expression levels of cytb, mtMutS, hsp70, and EF1 
in corals exposed to medium and high concentrations of 
MP particles.

In a study of fish immune systems, Liu et al. (2019) 
evaluated the effect of MPs on enzyme activity and gene 
expression in Chinese mitten crab Eriocheir sinensis 
juveniles over 7, 14, and 21 days. Their findings indicated 
that MPs impacted immune enzyme activities (hemocyanin 
(Hc), alkaline phosphatase (AKP), phenoloxidase (PO), 
lysozyme (LSZ), and acid phosphatase (ACP)) and 
immune-related gene expression, altering the diversity 
and composition of the gut microflora in E. sinensis.
4.3. Genetic mutations
MPs can cause genetic mutations by interfering with 
DNA replication and repair processes. These mutations 
may reduce the genetic diversity of aquatic organisms 
and contribute to genetic differences between individuals. 
Gao et al. (2021) noted that with the rise of nanomaterials, 
the detrimental effects of MPs in aquatic environments 
have increased, presenting health risks. In their research, 
they evaluated the toxic effects of PS MPs of different 
sizes on zebrafish, both with and without the presence 
of copper nanoparticles. They found that MPs affected 
chromosome structure and significantly disrupted the cell 
cycle by altering palmitoyl hydrolase activity. Additionally, 
MPs were shown to inhibit DNA replication, delay the 
progression of the S phase and G2/M phase of the cell 
cycle, and predominantly impact the cell-cycle pathway.

MPs also enter the organs of vertebrates, altering their 
behavior and triggering mutagenic and cytotoxic processes, 
which can lead to significant ecological consequences 
in freshwater ecosystems. For example, da Costa Araújo 
et al. (2022) studied the effects of PE MPs through an 
experimental food chain involving two fish species from 
different taxonomic groups, Poecilia reticulata and D. rerio. 
They observed that animals exposed to MPs exhibited 
higher rates of nuclear abnormalities and changes in the 
size and shape of erythrocytes and nuclei, suggesting 
mutagenic and cytotoxic effects. In the same study, da 
Costa Araújo et al. (2022) examined the effects of MPs 
mixed with other pollutants (organic and inorganic) on 
freshwater fish. Their findings indicated that MPs, whether 

alone or in combination with other pollutants, displayed 
genotoxic and mutagenic effects in freshwater fish but did 
not exhibit antagonistic, synergistic, or additive effects 
when mixed with the other pollutants.
4.4. Epigenetic effects
MP pollution can induce epigenetic changes in aquatic 
organisms. Epigenetics reflect the ways in which 
environmental conditions can modify the genome. These 
modifications typically include changes to histone proteins, 
structural alterations of chromatin, DNA methylation, and 
interference by small RNAs (Schrey et al., 2013). DNA 
methylation is particularly well studied among epigenetic 
mechanisms. Such genomic modifications can alter gene 
regulation without changing the DNA sequence itself, 
affecting gene expression and leading to variations in 
morphology and phenotype (Russo et al., 1996).

MPs are ingested by microscopic aquatic organisms, 
such as zooplankton, and can bioaccumulate up the trophic 
levels. The accumulation of MPs in the gut of organisms 
can lead to several consequences, including starvation 
due to blockages in the digestive tract, leakage of plastic-
associated chemicals into cells, and genomic modifications. 
Methylation, which often correlates with decreased gene 
activity, is one such modification. Wilkinson (2020) 
explored how methylation accumulates in the genomes 
of cells in MP-exposed bluegill (Lepomis macrochirus) 
using methylation-sensitive amplified fragment length 
polymorphisms (MS-AFLPs). His findings indicated that 
most loci in the bluegill EBF-2 cell line were sensitive to 
methylation and thus susceptible to epigenetic changes. 
This study suggested that the duration of exposure might 
not be a critical factor for the increase in methylation 
observed in experimental cultures, implying that the mere 
presence of MPs is sufficient to cause cellular damage.

5. Conclusions, knowledge gaps, and future 
recommendations
This review has comprehensively examined the pervasive 
presence and ecological impacts of MPs in aquatic 
environments, drawing from a wide range of studies and 
highlighting significant findings. MPs originate from 
various sources, including terrestrial and aquatic activities. 
Terrestrial sources include wastewater treatment plants, 
landfills, illegal dumping, and agricultural practices, 
while aquatic sources encompass maritime activities 
such as shipping, fishing, and aquaculture. These MPs 
are distributed through surface runoff, wind, and riverine 
systems, ultimately reaching aquatic environments. MPs 
pose serious risks to aquatic organisms. They affect the 
feeding, growth, and reproductive health of aquatic species 
and act as vectors for harmful contaminants like persistent 
organic pollutants and heavy metals, exacerbating their 
toxicity.
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MPs have become widespread pollutants, now detected 
in almost all studied organisms. Their impact varies across 
different trophic levels and feeding types. Considering 
the seasonal increases in pollutants due to currents, input 
amounts, and the rising production of plastics, future 
studies should extend beyond one-time assessments to 
long-term investigations that take into account complex 
food-web relationships and regional accumulation 
characteristics.

Invertebrates possess rich species diversity with 
different developmental stages, reproductive types, feeding 
strategies, and trophic levels, making their interactions 
with MPs diverse and complex. Detailed research is 
needed to study the uptake, excretion, and accumulation 
of MPs in invertebrates of the same species at different 
developmental stages, age groups, and sexes. Long-term 
and periodic (seasonal or monthly) studies in the same 
regions are recommended to examine the impact of MPs 
on species life-history traits such as growth, mortality, 
and reproduction. It is particularly crucial to study the 
effects of MPs on the molting process, which is critical 
for crustaceans at various life stages (e.g., zoea, megalopa, 
juvenile, and adult) in natural environments.

Various methods have been used for MP analysis in 
invertebrates, with MPs measured in tissues in different 
units (e.g., grams, liters, or individuals). There is a need for 
standardization of methodology and units within the same 
taxonomic groups. Due to their adhesive properties, MPs 
carry different pollutants and microorganisms. Examining 
these pollutants and pathogens in natural samples alongside 
the effects of MPs on aquatic organisms will provide 
more comprehensive results. Additionally, studying the 
community-level effects of MPs and nanoplastics on the 
food chain will contribute to the understanding of their 
impact on aquatic ecosystems.

Although ingestion is considered the primary exposure 
route for all vertebrates, inhalation and dermal exposure 
are also crucial for organism health. These exposure 
routes are largely unknown in fish, sea turtles, and other 
aquatic mammals, indicating significant knowledge gaps. 
Therefore, long-term studies should also consider nonoral 
exposure pathways.

Various organisms, from the smallest microalgae to 
the largest whales in aquatic systems, have been limitedly 
studied for the trophic transfer and biomagnification 

of MPs. This aspect requires further investigation. More 
research using nondestructive sampling methods is needed 
to understand the extent of MP impact on endangered 
species, such as whale sharks and humpback dolphins, and 
other threatened species.

Most studies rely on necropsies to understand the 
presence of MPs in organisms. There is a need for 
methodological advances to identify secondary markers 
for MP presence, enabling more sustainable research with 
less harm to natural ecosystems and organisms. While 
researching the effects of MPs on aquatic organisms, it 
is evident that most studies use pollutant concentrations 
that represent best-case and worst-case scenarios. 
Conducting studies that consider environmentally 
realistic concentrations is crucial for obtaining accurate 
results. Toxicity studies conducted with standard test 
materials are insufficient to understand the effects of 
real-environment plastics, which consist of various 
combinations. Considering that plastic production uses 
approximately 16,000 chemicals, studies conducted with 
raw plastics make it impossible to understand the actual 
toxicological impact.

Furthermore, given the potential of plastics to 
absorb and interact with other pollutants, different 
pollutant combinations should be investigated with 
realistic environmental concentrations and different 
scenarios. There is still insufficient information about 
which organisms are most affected by plastic pollution. 
Comprehensive and long-term studies are needed to 
identify the most sensitive, most resilient, most affected, 
and least affected organism groups.

Evaluating the impact of MPs in conjunction with 
climate change will contribute to a more accurate 
understanding of these effects. Negotiations for the 
plastics treaty initiated by the UN/UNEP in 2022 are 
expected to be concluded by 2025. This treaty must be 
legally binding, enforce production restrictions, and limit 
chemical use in plastic production. Local governments 
and central authorities should regulate the use of plastic 
objects, especially in areas adjacent to the feeding grounds 
of endangered mega-, macro-, meso-, and microfauna, 
imposing restrictions on plastic use.

Future research should include the genetic effects 
of MPs on organisms across a broader range of aquatic 
environments, including deep-sea and polar regions.
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  Species Tot
al 
indi
vid
uals  

Tissue Digestion 
method 

Anaysi
s 

Microplastic 
shape 

Polymer type MP Size 
range 

Average 
concentration 

Location  
Referen
ce 

Porif
era 

Aplysina 
cauliformis 3   

6% 
NaOCl 

Fluores
cence 
micros
copy     

10–3000 
μm  

113 ± 23 
MPs/g dry w 

Saigon Bay, 
Panama 

Fallon 
and 
Freeman 
(2021) 

 

Amphimed
on 
compressa 3           

10–3000 
μm  

14 ± 2 MPs/g 
dry w     

 
Callyspongi
a vaginalis 3           

10–5000 
μm  

169 ± 71 
MPs/g dry w     

 
Ircinia 
campana 3           

10–5000 
μm  

71 ± 20 MPs/g 
dry w     

 
Mycale 
laevis 3           

10–5000 
μm  

6 ± 4 MPs/g 
dry w     

 
Niphates 
erecta 3           

10–5000 
μm  

75 ± 38 MPs/g 
dry w     

 
Ircinia 
variabilis    

SEM/E
DX   <10 μm  

7.99 × 10⁵ ± 
1.6 per/g 

Mediterranean 
coast of 
Morocco, 

Krikech 
et al. 
(2023) 

 
Petrosia 
ficiformis       <10 μm  

7.83 × 10⁵ ± 
1.5 per/g   

 
Chondrosia 
reniformis       <10 μm  

6.40 × 10⁵ ± 
0.6 per/g   

 
Sarcotragus 
spinosulus       <10 μm  

4.62 × 10⁵ ± 
1.6 per/g   

  
Cinachyrell
a alloclada 10     

Raman 
spectra   PP 

(mean) 
1.31 ± 
2.32 mm 

1.37 ± 0.94 g 
of sponge 

Pituba Beach, 
Brazil 

Soares et 
al. 
(2022) 

Cnid
aria 

Cosmetira 
pilosella 4     FTIR Fibers (93%) PET, Cascamite 14 powdered resin   

0.014 MPs 
mL–¹ North Sea 

Devereu
x et al. 
(2021) 

 
Cyanea 
capillata     Fibers (88%) PE, PP, PAA, PAN, PVC, PC  

0.150 MPs 
mL–¹ – 0.219 
MPs  mL–¹    

 
Cyanea 
lamarckii 36    Fibers (84%)       

https://orcid.org/0000-0002-4415-2837
https://orcid.org/0000-0002-0618-1258
https://orcid.org/0000-0003-0711-680x
https://orcid.org/0000-0003-0549-0662
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Aurelia 
aurita     Fibers (97%)  PE, PAA, PET     

 
Pelagia 
noctiluca 30 

Tentacle, 
umbrella 

10% 
KOH  µ-FTIR 

Fibers (91%), 
fragments 
(6%), lines 
(3%) 

Cotton, VI/viscose fibers. Acrylic, CP, 
cellulose, linen, PP, PE N/A 

2.47 ± 2.01 
MPs/individu
al (tentacle) 

Canary Island, 
North Atlantic 

Rapp et 
al. 
(2021) 

                 

1.17 ± 1.70 
MPs/individu
al (umbrella)     

 
Cassiopea 
xamachana 115  HNO3 µ-FTIR 

Fibers (94%), 
fragments VI, nitrocellulose, PU   Florida, USA 

Iliff et al. 
(2020) 

 
Rhizostoma 
pulmo 14 Soft tissue 

15% 
H2O2 μ-FTIR 

Fibers, 
fragments, 
lines, films, 
pellets     

2 ± 1.15 
MPs/individu
al Adriatic Sea 

Avio et 
al. 
(2020) 

 
Actinia 
equina 50  

30% 
H202 FTIR 

Fibers (88%), 
fragments 
(12%) 

VI, PE , PES, PET, PP, PA, PS, PVB, 
and acrylic fibers  N/A 

North coast of 
Spain 

Janssens 
and 
Garcia-
Vazguez 
(2021) 

 
Galaxea 
astreata 2 

surface and 
inside 

H2O2 
37%HCl μ-FTIR fibers (100%)   VI, PES/PET, PA,PP, PACA 0.5-5 mm 

0.95 ± 0.66 
MPs/g 

Liuqiu Island, 
southwestern 
Taiwan 

Lim et 
al. 
(2022) 

 
Acropora 
spp 5       fibers (100%)  VI, PES/PET, PA, PE 0.5-5 mm 

0.77 ± 0.47 
MPs/g     

 
Pocillopora 
verrucosa 8       fibers (100%)  VI, PES/PET, PA, PACA, PS, PP 0.1-5 mm 

0.36 ± 0.16 
MPs/g      

 
Pocillopora 
damicornis   

10% 
KOH μ-FTIR 

fiber (93%), 
fragment, film    CP > PET > PS> PE 

500-3500 
µ 

3.68 ± 3.94 
MPs/cm–² 

Eastern coast 
of Hainan 
Island, China 
Sea 

Tang et 
al. 
(2021) 

  
Galaxea 
fascicularis               

5.89 ± 5.15 
MPs/cm–²     

Moll
usca            
Gastr
opod
a 

Littoraria 
scabra 10 Soft tissue 

65% 
HNO3    

Fiber (67%), 
film (32%), 
fragment (1)     75.5 MPs/ind 

Jacarta Bay, 
Indonesia 

Patria et 
al. 
(2020) 

 
Batillaria 
multiformis 10 

Whole 
body 

10% 
KOH μ-FTIR 

Fiber (93%), 
pellet (7%) 

CP (44%), PET (20%), PA (17%), PP 
(8.45%), PE (7%), PAN (4%)  

5.37 ± 1.24 
MPs g–1 ww 

South China 
Sea 

Xu et al. 
(2020a) 

Appendix Table 1. (Continued.)

 

Nerita 
chamaeleo
n         

1.50 ± 0.20 
MPs g–1 ww   

 
Phorcus 
lineatus 50   

30% 
H202 FTIR 

Fiber (88%), 
fragment 
(12%) 

VI, PE, PES, PET, PP, PA, PS, PVB, 
and acrylic fibers   

0.56–148.28 
MPs/g 

North coast of 
Spain 

Janssens 
and 
Garcia-
Vazguez 
(2021) 

 

Steromphal
a 
umbilicaris                     

 
Neverita 
didyma 33 Soft body 

10% 
KOH μ-FTIR 

Fiber > film > 
fragment > 
pellet 

 PE, PET, ABS, PAA, PVAL, 
PAN/PAA, PAN, PS, PF, PAN/PVC, 
PS/PAE, PS/PAN, PVA/PVEC  

786 ± 634 
µm 

1.18 ± 1.40 
MPs/individu
al 

Liaohe Estuary, 
China 

Wang et 
al. 
(2021) 

 
Rapana 
venosa 33    

Fiber > film > 
fragment > 
pellet 

 PE, PET, PP, PVAL, PAN/PAA, 
PP/PE, PP/PE/PDI, PE/PVA/PVC, 
ABS, PSI, PAN, PD, PMA, PVC  

938 ± 758 
µm 

1.97 ± 1.53 
MPs/individu
al   

 
Nerita 
articulata 67   

69% 
HNO3 + 
30% 
H2O2 FTIR 

Fiber (91 %), 
fragment (9 
%) PE-PDM, PES, PU 

30–1850 
μm 

 0.25 to 0.88 
MPs/individu
al 

Klang River 
estuary, 
Malaysia 

Zaki et 
al. 
(2021) 

 
Nerita 
polita 14             

0.50 to 1.75 
MPs/g      

 
Chicoreus 
capucinus 14                   

 
Bolinus 
brandaris 123 Soft tissue KOH 

ATR-
FTIR, 
μ-FTIR 

Fibers, 
fragments, 
film   

PE, PES, synthetic cellulose, PVDF, 
PP, PAN, PA, PC, PS 

20-5 000 
μm 

0.94 ± 0.62 
MPs/g ww Catalan Coast 

Expósito 
et al. 
(2022) 

 
Tectus 
dentatus 10   

10% 
KOH   

Fragments > 
fibers    PTFE, PA, PEVA <1500 μm 

14.8 ± 13.5 
MPs/individu
al  

Red Sea coast 
of Egypt 

Abd-
Elkader 
et al. 
(2023) 

 
Strombus 
tricornis 10       

Fragments > 
fibers     PEVA <5000 μm 

9.6 ± 8.4 
MPs/individu
al     

 
Conus 
vexillum 10       

Fibers > 
fragments   PA, PEVA <2000 μm 

10.2 ± 8.2 
MPs/individu
al     

 

Telescopiu
m 
telescopium 60  

10% 
KOH FTIR 

Filament, 
fragment PE, PP, PU 

21–435 
μm 

4-23 
MPs/individu
al 

Mangroves in 
Mumbai, India 

Jaffer et 
al. 
(2023) 
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Patella 
caerulea 40   H202 FTIR 

Fibers (80%), 
fragments 
(20%) 

PE (38%), PP (32%), PET (15%), 
HDPE (15%) 

0.13–4.3 
mm 

0.29 ± 0.54 
MPs/individu
al 

İskenderun 
and Mersin 
Bay, 
southeastern 
coast of 
Türkiye 

Yücel 
and 
Kılıç 
(2023) 

 
Babylonia 
areolata 435 Soft tissue 

69% 
HNO3  μ-FTIR 

Fiber (95%), 
film (4%), 
fragment 
(1%) 

PET (25%), PES (16.7 %), PE (8%), PP 
(8%), PTFE (8%) 

 <1 mm, 
1–5 mm 

2.77 ± 0.94 
MPs/g ww  

Eastern coast 
of Thailand 

Hongsa
wat et al. 
(2024) 

 
Neverita 
didyma 120 Soft tissue 

10% 
KOH 
+30% 
H202 μ-FTIR 

Fiber (98%), 
fragment 
(1%), film 
(1%)   

87–5000 
μm 

3.99 ± 2.45 
MPs/individu
al Bohai Sea 

Zhao et 
al. 
(2024) 

 
Chlorostom
a rustica 40       

Fiber (98%), 
fragment 
(1%), film 
(1%)     

3.08 ± 1.92 
MPs/individu
al     

 
Buccinum 
koreana 20       

Fiber (98%), 
fragment 
(1%), film 
(1%)     

5.15 ± 2.46 
MPs/individu
al     

 
Siphonalia 
subdilatata 20       

Fiber (98%), 
fragment 
(1%), film 
(1%)     

6.10 ± 2.53 
MPs/individu
al     

 
Volutharpa 
perryi 20       

Fiber (98%), 
fragment (1 
%), film (1%)     

2.25 ± 1.37 
MPs/individu
al     

 
Rapana 
venosa 169       

Fiber (98%), 
fragment 
(1%), film 
(1%)     

4.28 ± 2.94 
MPs/individu
al     

 

Natica 
janthostom
oides 40       

Fiber (98%), 
fragment 
(1%), film 
(1%)     

2.13 ± 1.39 
MPs/individu
al     

 
Natica 
maculosa 10       

Fiber (98%), 
fragment 
(1%), film 
(1%)     

4.30 ± 2.87 
MPs/individu
al     

 
Rapana 
venosa 8 

Whole 
body 

10% 
KOH μ-FTIR 

Fiber (88%), 
fragment, 
film, 
microbead  

CP, PET, PE, PP, PA, PP-PE, VI, PVC, 
PAN <1000 µm 

17.63 ± 15.40 
MPs/individu
al 

Haizhou Bay, 
China 

Xie et al. 
(2024) 

 
Neverita 
didyma 11    

Fiber (88%), 
fragment, 
film, 
microbead   

CP, PET, PE, PP, PA, PP-PE, VI, PVC, 
PAN <1000 µm 

9.82 ± 3.52 
MPs/individu
al   

 
Eatoniella 
sp.     

1% 
NaOH  μ-FTIR   

PA, PE, PTFE, POM, PF, PP, PS, XT 
Polymer 

33 to 1000 
μm 

0.01–3.29 MPs 
mg−1 

Terra Nova 
Bay, Antartica 

Sfriso et 
al. 
(2020) 

 

Ruditapes 
philippinar
um                     

Bival
via 

Mytilus 
galloprovin
cialis 48 Soft tissue 

15% 
H2O2 μ-FTIR 

Fiber, 
fragment, 
line, film, 
pellet 

PE, PP, PS, PVC, PET, PA, EVA, PI, 
PEST, PU, epoxy resin, PBT, 
polyterpene rubber, PVOH, silicone, 
polyacrylate, copoly(EVA/PA), 
copoly(PVC/PVOH/PE) N/A 

1.2 ± 0.45–1.5 
± 0.58 
MPs/individu
al  Adriatic Sea 

Avio et 
al. 
(2020) 

 

Mytilus 
galloprovin
cialis 342 Soft tissue 

30% 
H2O2 FTIR 

Fragments 
(67%), fibers 
(28%), films 
(4%) 

PET, EVA, PA, PAC, PC, PE, PAN, 
PS, PP, PVC, PVF, CA 

1.66 ±1.45 
mm 

0.69 MPs/ 
individual  

Turkish Coast 
(Black Sea, 
Marmara, 
Aegean Sea) 

Gedik 
and 
Eryaşar 
(2020), 

 

Mytilus 
galloprovin
cialis 317 

Whole 
body 

30% 
KOH: 
NaClO 

μ-
Raman 

Fiber (63%), 
fragment 
(37%)  PE, PP, CE, PA 6, PET, E, UI 

1.7 ± 0.1 
mm 

0.6 ± 0.1 
MPs/individu
al Türkiye 

Gündoğ
du et al., 
(2020) 

 

Mytilus 
galloprovin
cialis 232 Soft tissue 

10% 
KOH 

ATR-
FTIR 

Fibers, 
fragments, 
films  PE, PP, CE   

7.7 ± 3.8 
MPs/individu
al 

Bizerte lagoon, 
Northern 
Tunisia, 
southern 
Mediterranean 

Wakkaf 
et al. 
(2020) 

 

Mytilus 
galloprovin
cialis  

Digestive 
systems 

10% 
KOH 

ATR 
μ-FTIR 

Fiber (45%), 
fragment 
(23%), film 
(28%)  PVC, VI, CP, PES, CPE, PET, PVDF 

7–5000 
μm 

0.8–2.1 
MPs/individu
al 

Jiaozhou Bay, 
Yellow Sea, 
China 

Ding et 
al. 
(2021) 

 
Chlamys 
farreri         

0.5–2.9 
MPs/individu
al   

 
Crassostrea 
gigas         

1.2–3.3 MPs/ 
individual   
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Ruditapes 
philippinar
um        

4.3–57.2 
MPs/individu
al   

 

Mytilus 
galloprovin
cialis 60 Soft tissue 

30% 
H2O2+ 
HNO3 

No 
polyme
r 
analysi
s 

Fiber (87%), 
film (7%), 
fragment 
(5%)   

0.015–1 
mm, >1 
mm 

8.72 ± 5.30 
MPs/individu
al, 3.90 MPs/g 

İzmir Bay, 
Aegean Sea  

Yozukm
az 
(2021) 

 
Ruditapes 
decussatus 60             4.14 MPs/g     

 

Mytilus 
galloprovin
cialis 30  

10% 
KOH 

ATR-
FTIR 

Films (43%), 
fiber (35%), 
fragments 
(22%) 

PA (38%), LDPE (17%), PET (17), PP 
(7%), PVA (7%), UPVC (5%), ABS 
(3%), HDPE (3%), PS (2%), PVC (2%) 

200–5000 
µm 

0.5 
MPs/individu
al 

İstanbul 
shores, Türkiye 

Galyon 
and 
Alçay 
(2023) 

 

Mytilus 
galloprovin
cialis 412 Soft tissue 

30% 
H202 FTIR 

Fiber (81%), 
fragment, film PET (66%), PE (15%), PP (8%) 

0.1–4.99 
mm 

0.30–7.53 
MPs/individu
al (2.06 
MPs/individu
al) 

Marmara 
coastline of 
Türkiye 

Gedik et 
al. 
(2022) 

 

Mytilus 
galloprovin
cialis 283 

Gastric 
gland 

10% 
KOH 

ATR-
FTIR 

Fibers, 
fragments, 
films, pellets, 
styrofoam PET (42%), PE (30%), PS (28%) <1 mm 

1.28 
MPs/individu
al 

Salento coastal 
seas, southern 
Adriatic Sea, 
northern 
Ionian Sea,  

Trani et 
al. 
(2023) 

 

Mytilus 
galloprovin
cialis 180 Soft tissue 

10% 
KOH 

ATR-
FTIR 

Fiber, 
fragment, 
line, film EPDM, EPR, PA 6, PET, PMP, PS 0.1–5 mm 

2.08 ± 1.43 – 
9.45 ± 3.20 
MPs/individu
al 

Sea of 
Marmara 

Tunçelli 
and 
Erkan 
(2024) 

 

Mytilus 
galloprovin
cialis 373 Soft tissue KOH 

ATR-
FTIR 
and μ-
FTIR 

Fibers, 
fragments, 
film  

PE, PES, synthetic cellulose, PVDF, 
PP, PAN, PA, PC, PU,PS 

20–5000 
µm 

6.47 ± 7.95 
MPs/ g ww  Catalan Coast 

Expósito 
et al. 
(2022) 

 
Donax 
trunculus  

163
2       

1.92 ± 0.85 
MPs/g ww    

 
Ensis 
siliqua  59       

2.45 ± 2.59 
MPs/g ww   

 
Tapes 
decussatus  74       

4.97 ± 4.78 
MPs/g ww   

 
Crassostrea 
gigas 47       

2.09 ± 1.12 
MPs/g ww    

 
Mytilus 
edulis 300 Soft tissue 

10% 
KOH  µ-FTIR  

Fragment 
(69%), fiber 
(31%)  

30% PP, 25% PES/PET, 7% PE, 6% PS, 
5% polyacrylate, 4% PA, 2% PEVA, 
2% polystyrene-butadiene <300 μm 

0.37 ± 0.29 
MPs/g, 1.67 ± 
1.50 
MPs/individu
al Coast of Korea 

Cho et 
al. 
(2021) 

 

Ruditapes 
philippinar
um 300       

Fragment 
(72%), fiber 
(28%)  

40% PP, 20% PE, 20% PES/PET, 6% 
polyacrylate, 4% PA, 2% PS, 2% 
PEVA, 2% PVC <300 μm 

0.43 ± 0.32 
MPs/g and 
2.19 ± 1.20 
MPs/individu
al      

 
Crassostrea 
gigas 300       

Fragment 
(69%), fiber 
(31%)   <300 μm 

0.15 ± 0.08 
MPs/g, 1.00 ± 
0.72 
MPs/individu
al     

 

Crassostrea 
and 
Saccostrea 
genera 660  

30% 
H2O2 

μ-
Raman 

Fragments 
(66%), fibers 
(28%), flakes 
(2%), spheres 
(3%) 

 PET (70%), PP (9%), PVC (6%), 
HDPE (5%), PS (4%), PA (3%), PE 
(2%) 

91.73 ± 
5.95 μm 
to 482.68 
± 37.49 
μm 

3.24 ± 1.02 
MPs/g ww 

Coastal areas of 
Taiwan 

Liao et 
al. 
(2021) 

 

Crassostrea 
gigas and 
Saccostrea 
glomerata 245 Soft tissue 

10% 
KOH μ-FTIR 

Fibers (62%), 
fragments 
(38%) PES, PE, PS, PP, PVA >1 mm 

0.83 ± 0.08 
MPs/individu
al 

Southern 
Australia 

Wootto
n et al. 
(2022) 

 

Crassostrea 
madrasensi
s 30 Soft tissue 

10% 
KOH 

Raman 
spectra 

Fiber (70%), 
fragment 
(25%), film 
(4%), pellets 
(0.15) 

PE (28%), PP (18%), PA (16%), PES 
(14%)  

20.57 ± 9.24 
MPs/individu
al 

Southwest 
coast of India 

Abisha 
et al. 
(2024) 

 
Perna 
perna 30    

Fiber (70%), 
fragment 
(25%), film 
(5%) 

PE (28%), PP (18%), PA (16%), PES 
(14%)  

3.02 ± 1.29 
MPs/g   

 
Perna 
perna 180   

10% 
KOH + 
30% 
H202 

ATR-
FTIR 

Fiber (77%), 
fragment 
(16%), films 
(4%), foams 
(3%) PE, PP, PA, PS, PET, PEST 

500 μm–3 
mm 

0.87 ± 0.55 to 
10.02 ± 4.15 
MPs/individu
al 

Coast of Tamil 
Nadu and 
Kerala 

Patterso
n et al. 
(2021) 

 
Perna 
viridis 360             

0.1 ± 0.03 to 
2.05 ± 0.33 
MPs/g     
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Perna 
viridis  Soft tissue 

69% 
HNO3  μ-FTIR 

Fiber (93%), 
fragment 
(3%), film 
(3%), pellet 
(1%) PE (28%), PP (12%), PET (4%) 

 <1 mm, 
1–5 mm 

2.41 ± 0.66 
MPs/g ww  

Eastern coast 
of Thailand 

Hongsa
wat et al. 
(2024) 

 

Amarillade
sma 
mactroides 160 Soft tissue 

10% 
KOH μ-ATR 

Fiber (76%), 
fragment 
(22%), pellet 
(2%) 

PA (27%), PE (18%), PET (9%), PVC 
(7%), PI (7%), cellulose (7%), PP (6%), 
PLA, POM, PU,  

<10,000 
μm 

2.3 ± 5.4 
MPs/g ww 

Coastal region 
of southern 
Brazil 

Jankaus
kas et al. 
( 2024) 

 

Amarillade
sma 
mactroides 30  

10% 
KOH µ-ATR 100% fiber  Cellulose, PA, others 0.5–5 mm 

0.3–0.5 MPs/g 
ww 

Coast of 
Argentina 

Truchet 
et al. 
(2021) 

 

Brachidont
es 
rodriguezii 90    100% fiber  <0.5 mm 

0.15–0.25 
MPs/g ww   

 
Tridacna 
maxima 10   

10% 
KOH   

Fibers > 
fragments     PA, PP, LDPE, PEVA <1500 μm 

14.2 ± 13.8 
MPs/individu
al 

Red Sea coast 
of Egypt 

Abd-
Elkader 
et al. 
(2023) 

 
Pinctada 
radiata 10       

Fragments > 
fibers   PA, PP, HDPE, PEVA <5000 μm 

16.2 ± 20.7 
MPs/individu
al     

 

Brachidont
es 
pharaonis 10       

Fragments > 
fibers      LDPE <2000 μm 

25.3 ± 32.6 
MPs/individu
al     

 
Tegillarca 
granosa  Soft tissue 

69% 
HNO3  μ-FTIR 

Fiber (96%), 
fragment 
(2%), film 
(2%) PS (48%), PE (30%), PES (9%) 

 <1 mm, 
1–5 mm 

2.84 ± 0.66 
MPs/g ww  

Eastern coast 
of Thailand 

Hongsa
wat et al. 
(2024) 

 

Mactra 
veneriformi
s 33 Soft body 

10% 
KOH μ-FTIR 

Fiber > 
fragment > 
film 

PET, PVAL, PAN/PAA, PE, PAS, PF, 
PVP, PS/PMMA, PE/PVA/PVC, 
PVA/PVEC  952 ± 743 

1.58 ± 1.70 
(0–6)  

Liaohe Estuary, 
China 

Wang et 
al., 
(2021) 

 

Sinonovacu
la 
constricta 30 Soft body 

10% 
KOH μ-FTIR 

Fiber > film > 
fragment 

PET, PVAL, PAN/PAA, PP/PE, PP, 
EP, PE/PVC, PVC/PVA  931 ± 705 

0.83 ± 0.99 
(0–3)      

 
Scapharca 
subcrenata 15 

Whole 
body 

10% 
KOH μ-FTIR 

Fiber (79%), 
microbead, 
fragment, film    PET, PE, PP <1000 µm 

3.20 ± 2.85 
MPs/individu
al 

Haizhou Bay, 
China 

Xie et al. 
(2024) 

 

Mactra 
veneriformi
s 10    

Fiber (79%), 
microbead, 
fragment, film    PET, PE, PP <1000 µm 

6.60 ± 3.89 
MPs/individu
al   

 

Ruditapes 
philippinar
um  10    

Fiber (79%), 
microbead, 
fragment, film   PET, PE, PP <1000 µm 

5.00 ± 2.35 
MPs/individu
al   

Ceph
alopo
da 

Dosidicus 
gigas   

Stomach, 
gill, 
intestine 

10% 
KOH FTIR 

Fiber (93%), 
fragments 
(7%) CP, PAA, PET, PP 

80 to 4632 
µm 

0.20 to 0.74 
MPs/g ww 

Northern 
Humboldt 
Current, 
western South 
America, Peru 

Gong et 
al. 
(2021) 

 
Dosidicus 
gigas 50 Stomach 

10% 
KOH FTIR 

Fragment 
(54%), fiber 
(43%), film 
(13%) 

PET (32%), CP (18%), PS (11%), EP, 
PA, PP, PVC, PAN, AC, SBR, PDMS 

58–2944 
μm 

0.88 ± 1.12 
MPs/individu
al 

Eastern Pacific 
Ocean 

Wang 
and 
Chen 
(2023) 

 
Uroteuthis 
duvaucelli   

Soft tissue 
(without 
gut and 
viscera) 

10% 
KOH FTIR 

Fibers, 
fragments 
and sheet PP (40%), PE (27%), PS (20%) 

100–200 
µm and 
200–300 
µm 

0.18 ± 0.48 
MPs/individu
al 

Coast of 
Kerala, India 

Daniel 
et al. 
(2021) 

 
Loligo 
vulgaris  

Stomach, 
gills, ink 
sac 

10% 
KOH 

No 
polyme
r 
analysi
s Fibers  

<0.5 mm, 
0.5–1 mm 

0.25 ± 0.71 
MPs/individu
al 

Madeira Island, 
northeast 
Atlantic 

Samboli
no et al. 
(2023) 

 
Ommastrep
hes caroli      Fibers  <0.5 mm 

0.13 ± 0.35 
MPs/individu
al   

 
Sthenoteut
his pteropu     

Fibers and 
films  

<0.5 mm, 
0.5–1 
mm, 1–
2.5 mm, 
2.5–5 mm 

8.75 ± 12.34 
MPs/individu
al   

 

Vampyrote
uthis 
infernalis      NaOH LDIR 

Fibers, 
fragments, 
films and 
foam PE, PET, PVC, PA, SBR, CPI, PU <5 mm 

9.58 ± 8.25 
MPS/individu
al 

Southwestern 
Atlantic 

Ferreira 
et al. 
(2022) 

 
Abralia 
veranyi         

Fibers (37%) 
and 
fragments 
(63%)   <5 mm 

2.37 ± 2.13 
MPs/individu
al     

 
Octopus 
vulgaris 6 

Gastrointes
tinal track 

10% 
KOH FTIR 

Fibers (50%), 
fragments 
(38%), 
filaments 

PET/PES (68%), PE (13%), PVC 
(11%), SR (5%),  PA (3%) 

1.56 ± 
2.26 mm 

10.30 ± 16.66 
MPs/individu
al 

Southern 
Tyrrhenian 
Sea, western 

Pedà et 
al. 
(2022) 
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(8%), films 
(4%). 

Mediterranean 
Sea 

 
Sepia 
pharaonis 16 

Outer 
body, gills, 
intestines 

70% 
HNO3 

no 
polyme
r 
analysi
s 

Fibers, 
fragments, 
films   

< 0.25 to 
2.0 mm   

North Jakarta, 
Indonesia 

Prasetyo 
and 
Putri 
(2021) 

 
Sepia 
officinalis 122 

Gastrointes
tinal track 

10% 
KOH 

no 
polyme
r 
analysi
s 

Fragments, 
fibers, and 
spheres   

6.82 ± 5.52 
MPs/individu
al Adriatic coast 

Armelli
ni et al. 
(2023) 

  
Sepia 
officinalis   

Digestive 
gland, 
stomach, 
caecum/int
estine 

Enzymati
c 
digestion FTIR 

Fibers (87%), 
fragments 
(8.4%), 
microfilm 
pieces (4.6%) N/A   

1.85 fibers/g 
(digestive 
gland) Portugal 

Oliveira 
et al. 
(2020) 

Arth
ropo
da            

Crus
tacea 

Brachyura 
larvae  

Whole 
body 

10% 
KOH μ-FTIR 

Fiber (100%) 
and fiber 
(86%), 
fragment 
(14%)  

49–10,331 
μm 

0.061 
MPs/individu
al, 0.033 
MPs/individu
al 

Bohai sea, 
China 

Zheng et 
al. 
(2020) 

 

Mantis 
shrimp 
larvae     

Fiber (60%), 
Fragment 
(40%)    

CP (53%), PET (18 %), Polymerized, 
oxidized organic material (14%) 

49–10,331 
μm 

0.040 
MPs/individu
al   

 
Amphipod
a     Fiber (100%)    

CP (68%), PET (20%), PMA (4%), 
PVC (4%), DEA (4%) 

77–4346 
μm 

0.036 
MPs/individu
al   

 Copepoda     
Fiber, 
fragment  

49–10,331 
μm 

0.03 
MPs/individu
al, 0.025 
MPs/individu
al   

 Euphasia     Fiber (100%)  
49–10,331 
μm 

0.019 
MPs/individu
al, 0.022 
MPs/individu
al   

Appendix Table 1. (Continued.)

Euph
ausia
cea  

Euphausia 
superba 355   

15% 
KOH FTIR 

Fiber (77%), 
fragment 
(17%), sheet     PE (33%), PP (24%), PES (21%) 80 μm 

0.29 ± 0.14 
MPs/individu
al  

South Shetland 
Islands, 
Antartica 

Zhu et 
al. 
(2023) 

   82       

Fiber (87%), 
fragment, 
sheet       PE, PES, PA, PP 43 μm 

0.20 ± 0.083 
MPs/individu
al  

South Orkney 
Islands, 
Antartica   

 
Euphausia 
superba 40 Stomach 

10% 
KOH + 
30% 
H2O2  μ-FTIR    

0.4 ± 0.5 
MPs/individu
al 

Antarctica 
Peninsula 

Primpke 
et al. 
(2024) 

Cirri
pedia 

Amphibala
nus 
amphitrite 50   

10% 
KOH FTIR 

Fiber (96%), 
fragment (3), 
pellet (1%)  

CP (58%), PET (11%), PP (10%), PE 
(8%), PA(6%)   0–8.63 MPs/g 

Coast of Hong 
Kong, China 

Xu et al. 
(2020b) 

 
Capitulum 
mitella 50             

0–1.90 
MPs/individu
al     

 

Tetraclita 
japonica 
japonica 50                   

 

Fistulobala
nus 
albicostatus 50                   

 
Balanus 
albicostatus   

10% 
KOH  

Fiber > 
fragment 

CP (28.17%), PP (25.35%), PE 
(23.94%) 

69–3743 
μm 
(without 
tube) 

0.52 ± 0.38 
MPs/individu
al (without 
tube) 

The Yellow 
Sea, China 

Zhang et 
al. 
(2022) 

        

194–2885 
μm (with 
tube) 

0.08 ± 0.08 
MPs/individu
al (with tube)   

 
Lepas 
anatifera 120 

Gastrointes
tinal tract 

10% 
KOH FTIR 

Fibers (86%) 
and 
fragments 
(14%) PA, PVC, PE 1–2 mm 

1.74 ± 0.80 
MPs/individu
al 

Capo Milazzo 
Marine 
Protected Area, 
Sicily, 
Tyrrhenian Sea 

Scotti et 
al. 
(2023) 

Stom
atopo
da 

 
Oratosquill
a oratoria 30 

Gastrointes
tinal tract 

10% 
KOH μ-FTIR 

Fragment > 
fiber 

PE, PDMS, PP, PF, PVAL, PP/PE, 
PE/PVA/PVC, PET, EP, PAN, PC, 
POA, PEI, PAN/PAA, PP/PE/PDI, 
PMVA, PS/PMMA/PAN, PAA 

910 ± 700 
µm 

1.33 ± 1.39 
(0–7) 

Liaohe Estuary, 
China 

Wang et 
al. 
(2021) 

 
Squilla 
mantis   Soft tissue 

15% 
H2O2 μ-FTIR 

Fragment, 
line, film, 
pellet 

PE, PP, PS, PVC, PET, PA, EVA, PI, 
PEST, PU, epoxy resin, PBT, 
polyterpene rubber, PVOH, silicone, N/A 

1.25 ± 0.5 – 2 
± 1.4  Adriatic Sea 

Avio et 
al. 
(2020) 
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polyacrylate, copoly(EVA/PA), 
copoly(PVC/PVOH/PE) 

MPs/individu
al 

 
Oratosquill
a oratoria 11 Soft tissue 

10% 
KOH μ-FTIR 

Fiber (88%), 
fragment, 
film, 
microbead 

CP (30%), PET (25%), PE (17%), PP, 
PA, PP-PE, VI, PVC, PAN <1000 µm 

7.36 ± 4.57 
MPs/individu
al 

Haizhou Bay, 
China 

Xie et al. 
(2024) 

Amp
hipo
da 

Talorchesti
a 
nipponensis
,      

30% 
H2O2  FTIR Fiber  PE, PP, PS, PET 

59 ± 8.6 
μm 

5.5–76.3 
MPs/individu
al 

Japanese 
coastal 
enviroment 

Katte et 
al. 
(2023) 

 
Ampithoe 
valida,                      

 
Trinorchest
ia trinitatis                     

 
Themisto 
spp.   

20% 
KOH FTIR Fiber PES, acrylic, PA, PP, PBT   

Sub-Antarctic 
Scotia Sea, 
Western 
Antarctic 
Peninsula 

Jones-
William
s et al. 
(2020) 

Deca
poda 

Paratya 
australiensi
s   

Whole 
body  

2N 
NaOH  μ-FTIR Fibers  VI and PES  

<1 to 2 
mm  24 ± 31 MPs/g 

Streams and 
wetlands in 
Northern 
central 
Victoria, 
Australia 

Nan et 
al. 
(2020) 

 

Macrobrac
hium 
rosenbergii  

Gastrointes
tinal track 

10% 
KOH 

Raman 
spectra Fibers  Cellulose, PP, PE 

<0.5–5 
mm 

5–12 
MPs/individu
al 

Pearl River 
Estuary, South 
China (farmed) 

Li et al. 
(2021) 

 

Fenneropen
aeus 
indicus   

Whole 
body 10% 

KOH  FTIR 

Fibers, 
fragments, 
and films  

PE, PP, PA 157–2785 
μm 

0.04 ± 0.07 
MPs/g Kochi, India 

Daniel 
et al. 
(2020) 

 
Aristeus 
antennatus  

Gastrointes
tinal track 

Stomach 
contents  Fibers  Cellulosic, PET, acrylic 

0.16–37.9 
mm 

Fiber load 
from <1 mm 
to >1000 
mm/individua
l 

Catalan coast, 
Spain 

Carreras
-Colom 
et al. 
(2020) 

 
Pleoticus 
muelleri   

Abdominal 
muscle 
with GI 

10% 
KOH+ 
30% 
H2O2 

µ- 
Raman 
spectra Fibers  PE, PP, cellulose 0.5–5 mm 1.31 fibers/g 

Bahia Blanca 
Estuary, 
Atlantic Ocean, 
Argentina 

Fernánd
ez 
Severini 
et al. 
(2020) 

 

Parapenaeo
psis 
hardwickii  Flesh 

10% 
KOH+ 
30% 
H2O2 μ-FTIR Fibers  Cellulose and PP 

74–2000 
µm 

0.95 ± 0.28 
MPs/individu
al 

Xiangshan Bay, 
China (farmed) 

Wu et 
al. 
(2020) 

 

Metapenae
us 
monoceros,    

Gastrointes
tinal track 

69% 
HNO3 

Raman 
spectra 

Fibers, 
fragments, 
beads, pellets 
and films  PE, PP, PET, PES, and PA 100–250 µ 

7.23 ± 2.63 
MPs/individu
al 

North-eastern 
Arabian Sea 

Gurjar 
et al., 
(2021) 

 
Parapeneop
sis stylifera               

5.36 ± 2.81 
MPs/individu
al     

 
Penaeus 
indicus               

7.40 ± 2.60 
MPs/ind     

 
Penaeus 
kerathurus  Soft tissue 

15% 
H2O2 μ-FTIR 

Fragment, 
line, film, 
pellet   

1 ± 0 
MPs/individu
al  Adriatic Sea 

Avio et 
al. 
(2020) 

 
Palaemon 
sp. 21    

Fiber, 
fragment, 
line, film, 
pellet   

1.21 ± 
0.44MPs/indiv
idual   

 

Metapenae
us 
monoceros,    

Gastrointes
tinal track 

30% 
H2O2  μ-FTIR 

Fibers, 
particles and 
fragments  PA 6, VI 

<250 μm–
5mm 

3.40 ± 1.23 
MPs/g 

Northern Bay 
of Bengal, 
Bangladesh 

Hossain 
et al. 
(2020) 

 
Penaeus 
monodon                     

 
Metapenae
us affinis  

Gastrointes
tinal track 

10% 
KOH 

Confoc
al 
Raman 
spectra Fibers, films   PET, PP, PS 

Between 
<100 and 
>1000 µm 1.02 MPs/g Musa Bay, Iran 

Keshava
rzifard 
et al. 
(2021) 

 
Litopenaeu
s vannamei   Intestine 

10% 
KOH µ-FTIR  Fibers   <0.5 mm 

14.08 ± 5.70 
MPs/g 

Zhuhai City, 
Guangdong 
Province, 
China (farmed) 

Yan et 
al. 
(2021) 

 
Litopenaeu
s vannamei  

GIT, gills, 
exoskeleto
n 

65 % 
HNO3 + 
68 % 
HClO4 N/A 

Fiber, 
fragment, 
films, granule   

114.7 ± 33.2 
MPs/g, 13.7 ± 
5.3 MPs/g, 3.0 
± 0.5 MPs/g 

Gulf of 
California 

Valencia
-
Castañe
da et al. 
(2022) 

 

Acantheph
yra 
curtirostris 16 Stomach 

Nitric 
70%+ 
perchlori FTIR Fragment  

Polyethyl acrylate acrylamide 
copolymer, PE–PP copolymer >270 μm 

0.88 
MPs/individu
al Gulf of Mexico 

Bos et 
al. 
(2023) 
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c acid 
70% 

 
A. 
purpurea 43       Fiber Alkyd resin   

0.30 
MPs/individu
al     

 

Bentheogen
emma 
intermedia 15       Fragment  Alkyd resin   

0.73 
MPs/individu
al     

 
Gennadas 
capensis 15       Fiber CP    

0.87 
MPs/individu
al     

 G. valens 21       
Fiber, 
fragment CP, PE, alkyd resin, PU   

0.62 
MPs/individu
al     

 
Notostomu
s gibbosus 15       Fiber CP    

0.53 
MPs/individu
al      

 
Plesionika 
richardi 46       Fragment  PP   

0.32 
MPs/individu
al     

 
Systellaspis 
debilis 46       Fragment  PE, PP copolymer, CP   

0.26 
MPs/individu
al     

 
Penaeus 
monodon  

Gastrointes
tinal tract 
(GIT) and 
muscle 

30% 
H2O2  FTIR 

Fibers (30%) 
and 
fragments 
(29%) LDPE, HDPE, PP, PMMA, PVC, EVA <100 µm 

9.22 MPs/g 
GIT, 1.81 
MPs/g muscle Bay of Bengal 

Mercy 
and 
Alam 
(2024) 

 
Caridina 
cantonensis        

25.32 MPs/g 
GIT, 6.32 
MPs/g muscle   

 
Penaeus 
indicus        

15.54 MPs/g 
GIT, 1.43 
MPs/g muscle   

 
Metapenae
us dobsoni        

10.01 MPs/g 
GIT, 4.50 
MPs/g muscle   

 
Penaeus 
merguiensis        

23.63 MPs/g 
GIT, 3.31 
MPs/g muscle   

Appendix Table 1. (Continued.)

 

Metapenae
us 
monoceros         

21.51 MPs/g 
GIT, 2.73 
MPs/g muscle   

 
Palaemon 
styliferus        

21.96 MPs/g 
GIT, 9.76 
MPs/g muscle   

 
Nephrops 
norvegicus   Soft tissue 

15% 
H2O2 μ-FTIR 

Fragment, 
line, film, 
pellet 

PE, PP, PS, PVC, PET, PA, EVA, PI, 
PEST, PU, EP, PBT   

1 ± 0 
MPs/individu
al  Adriatic Sea 

Avio et 
al. 
(2020) 

 
Nephrops 
norvegicus  

Stomach 
and 
intestine 

stomach 
contents µ-FTIR 

Fragments 
and films  PE, PP, PS 0.2–1 mm 

2.1 ± 0.6 MPs 
to 3.9 ± 0.5 
MPs/individu
al 

Coast of 
Sardinia Island, 
Mediterranean 
Sea 

Cau et 
al. 
(2020) 

 
Nephrops 
norvegicus   

Gastrointes
tinal tract 

10% KOH + Tween 
20, 69% HNO3 Fibers  PS, PP, PES, PC and PE 2.81 mm 

1.75 ± 2.01 
MPs/individu
al  

West and 
northeast coast 
of Ireland 

Hara et 
al.  
(2020) 

 
Nephrops 
norvegicus  

Gut, 
hepatopan
creas and 
tail 

Tween 
20, 
protease 
digestion
+30% 
H2O2 µ-FTIR 

Fragments 
and fibers   PES, PA 6, PVC and PE 

50–100 
µm 

17 
MPs/individu
al Adriatic Sea 

Martinel
li et al. 
(2021) 

 
Palinurus 
elephas 60 

Stomach 
and gill 

20% 
H202 µ-FTIR 

Fragments 
(99%), fiber 
(2%) PC, PVC, PPS, HDPE, 

0.02–0.22 
mm 
(majority 
size) 

76.6 ± 51.5 
MPs/individu
al (in 
stomach) 

Northwest 
Aegean Sea, 
Greece 

Kampou
ris et al. 
(2020) 

       
PET, PP, polyisoprene chlorinate, 
aramid 

0.02–0.12 
mm 
(majority 
size) 

82.9 ± 58.6 
MPs/individu
al (in gill)   

 
Neohelice 
granulata  

Gill, 
gastrointes
tinal tract 

30% 
H2O2  

Micros
copy 

Fibers and 
fragments  

<500–
1500 µm 
fibers, 
<200 µm 
fragments 

Between <5 
and >18 
MPs/g 

Bahia Blanca 
Estuary, 
Argentina 

Villagra
n et al. 
(2020) 

 
Chiromant
es dehaani         Fibers  PET, PP 

2700 ± 
410 µm 

1–2 
MPs/individu
al 

Osaka Bay, 
Japan 

Nakao et 
al. 
(2020) 

 

 
Metopogra
psus 9  

65% 
HNO3   

Fiber (68%), 
film (29%), N/A N/A 

327.56 
MPs/individu
al 

Pramuka 
Island, 
Indonesia 

Patria et 
al. 
(2020) 
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quadrident
atus 

fragment (1), 
granula (1%) 

 
Carcinus 
maenas   

Gill, 
gastrointes
tinal tract 

10% 
KOH µ-FTIR  

Fibers, films 
and 
fragments  PP, PES 

52 µm to 
34 mm 

1–10.3 
MPs/individu
al 

Thames 
Estuary, UK 

McGora
n et al. 
(2020) 

 
Eriocheir 
sinensis                     

 
Tubuca 
dussumieri  

Whole 
tissue 

10% 
KOH 

Micros
copy Fibers  

0.45–4.2 
mm 

0.13–1.24 
MPs/g Kenyan Coast 

Awuor 
et al. 
(2020) 

 
Cranuca 
inversa        

0.33–0.52 
MPs/g   

 
Gelasimus 
vocans        0.79 MPs/g   

 

Pachygraps
us 
transversus   Stomach     Fibers  PA >2 mm 

1 
MPs/individu
al Brazil 

de 
Barros 
et al. 
(2020) 

 
Parasesarm
a bidens  

Stomach, 
gill 

35% 
H2O2 FTIR 

Fibers, 
fragments, 
particles  PE, PET, VI  

91.53 
MPs/individu
al 

Mangroves of 
Hong Kong 

Not et 
al. 
(2020) 

 

Parapleptu
ca 
splendida        

25.61 
MPs/individu
al   

 

Metopogra
psus 
frontalis        

69.21 
MPs/individu
al   

 
Thalamita 
crenata        

41.57 
MPs/individu
al   

 

Parasesarm
a biden, 
Ocypode 
ceratophtal
mus 

tota
l 71 

Whole 
body 

10% 
KOH µ-FTIR  

Fibers, 
fragments  CP, PET, PA, PP, PE   

<1 to 2.84 ± 
0.44 MPs/g 

South China 
Sea 

Xu et al. 
(2020a) 

 

Uca 
arcuata, 
Pyrhila 
pisum, 
Gelasimus 
borealis                     

 

Metopogra
psus 
frontalis,Pa
rasesarma 
plicatum                     

 

Hemigraps
us 
penicillatus
, Austruca 
lactea                     

 

Macromed
aeus 
distinguend
us, Gaetice 
depressus                     

 

Macrophtal
mus 
convexus                     

 
Chiromant
es dehaani  

Gill and 
gastrointes
tinal tract 

30% 
H2O2  

µ-
Raman 
spectra Fibers  PE, PET 

1–20 µm, 
20–5000 
µm 

0.39–2.83 
MPs/individu
al, 0.74–4.96 
MPs/individu
al 

Beibu Gulf 
mangrove 
wetland, China 

Zhang et 
al. 
(2021b) 

 

Portunus 
tritubercul
atus, 
Matuta 
planipes  

Gastrointes
tinal track, 
muscle and 
gills 

10% 
KOH µ-FTIR  

Fibers, 
fragments, 
films and 
spheres   CP, PES, PE, PP, PA 

19.97– 
4976.22 
µm 

5.17 ± 4.43 
MPs/individu
al 

Yellow sea and 
east China sea, 
China 

Zhang et 
al. 
(2021a) 

 

Charybdis 
japonicus, 
Dorippe 
japonica           

 
Chionoecet
es opilio   

Whole soft 
tissue 

10% 
KOH µ-FTIR  

Fragments, 
fibers  PVAL, PES, PA, PE 

0.87 ± 
0.14 mm 

0.0–0.6 
MPs/individu
al 

Chukchi Sea, 
Arctic Ocean 

Fang et 
al. 
(2021) 

 

Portunus 
tritubercul
atus 30 

Gastrointes
tinal tract 

10% 
KOH µ-FTIR  

Fiber > film > 
pellet > 
fragment PET, PE, PVAL, PS, PP, PP/PE, PF, PC 

1005 ± 
789 µm 

1.33 ± 1.24 
MPs/individu
al 

Liaohe Estuary, 
China 

Wang et 
al. 
(2021) 

 
Portunus 
pelagicus   

Soft tissue 
without 

10% 
KOH FTIR Fragments PP, PE, PS 

100–300 
mm 

0.14 ± 0.44 
MPs/individu
al 

Coast of 
Kerala, India 

Daniel 
et al. 
(2021) 
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gut and 
viscera 

 
Portunus 
pelagicus   

Gastrointes
tinal tract 

10% 
KOH 

ATR-
FTIR 

Fiber > film > 
fragment PE, PP 0.5–2 mm 0.10 ± 0.05  

Thoothukudi 
coast, India 

Keerthik
a et al. 
(2023) 

 
Callinectes 
sapidus         

Fibers, 
fragments  PE, PET, PA,VI, PES,CP >100  

2.5 ± 1.6 
MPs/individu
al out of 
which 20% are 
microplastics 

Lesina lagoon, 
İtaly 

Renzi et 
al. 
(2020) 

 
Callinectes 
sapidus  Stomach   

Fibers, 
fragments, 
pellets and 
beads  

Cellulose/Viscose, PES, PAN, PS, PET, 
PC, phenoxy resin  

10–400 
µm 

0.87 
MPs/individu
al 

Gulf Coast, 
Corpus Christi 
Bay 

Waddell 
et al. 
(2020) 

 
 Callinectes 
sapidus  90 Gut 

10% 
KOH  

ATR-
FTIR 

Fibers, pellets, 
microbeads, 
and 
fragments HDPE, PP, PE, LDPE 0.1–5 mm 

43 to 50 
MPs/individu
al Albania  

Aliko et 
al. 
(2022) 

 
 Callinectes 
sapidus   Gills 

30% 
H2O2 

ATR-
FTIR 

Fragment > 
fiber SI (53.1%), PE (12.5%), PL 

Mean 2.4 
± 1.4 mm 

37.9 
g/individual Gulf of Mexico 

Cappare
lli et al. 
(2022) 

   Digestive tract    
Mean 3.8 
± 1.2 mm 

8.62 
MPs/individu
al    

   Muscle     
 Mean 2 ± 
0.5 mm 6.89 MPs/g   

 
Callinectes 
sapidus 120 Stomach 

10% 
KOH 

µ-
ATR-
FTIR 

Fiber (72%), 
fragment 
(26%), film 
and granule LDPE (39%), PP (18%), HDPE, 26%   2.1 ± 1.5  

Balearic Island, 
Spain 

Compa 
et al. 
(2023) 

 

Callinectes 
sapidus(juv
eniles) 77 

Gastrointes
tinal tracts, 
stomach 
and gill 

35% 
H2O2 

Raman 
spectra  PA, PE  

0.28 
MPs/individu
al 

Antinioti 
lagoon, Greece 

Simantir
is et al. 
(2024) 

 
Leptuca 
festae   

Gills, 
hepatopan
creas and 
gastrointes
tinal tract 

30% 
H2O2  

Observ
ation 
using 
micros
copy 

Fibers, 
fragments     

7.58 ± 3.96 to 
29.81 ± 18.13 
MPs/g tissue 

Isla Santay, 
Ecuador 

Villegas 
et al., 
(2021) 

 

Minuca 
ecuadorien
sis               

0.50 ± 0.87 to 
22.93 ± 10.77 
MPs/g tissue     

 

Leptuca 
uruguayens
is  Carapace 

10% 
KOH 

ATR 
μ-FTIR 

Fiber, 
fragment, 
paint sheet Cotton PA, CE  

1.5 ± 1.7 
MPs/g ww 

 Bahía Blanca 
estuary, 
Buenos Aires, 
Argentina 

Truchet 
et al. 
(2022) 

   Gills      1 ± 1 MPs/g    

   Gut      
0.36 ± 0.25 
MPs/g   

   Carapace, gills, gut     
0.70 ± 0.6 
MPs/g   

 

Cyrtograps
us 
angulatus  Carapace 

10% 
KOH 

ATR 
μ-FTIR 

Fiber, 
fragment, 
paint sheet Cotton PA, CE  

0.67 ± 0.52 
MPs/g 

 Buenos Aires, 
Argentina 

Truchet 
et al. 
(2022) 

   Gills      
0.11 ± 0.07 
MPs/g   

   Gut      
0.19 ± 0.11 
MPs/g   

   Carapace, gills, gut     
0.25 ± 0.3 
MPs/g   

 
Neohelice 
granulata  Carapace 

10% 
KOH 

ATR 
μ-FTIR 

Fiber, 
fragment, 
paint sheet Cotton PA, CE  

0.11 ± 0.07 
MPs/g 

 Buenos Aires, 
Argentina 

Truchet 
et al. 
(2022) 

   Gills      
0.17 ± 0.14 
MPs/g   

   Gut      
0.06 ± 0.07 
MPs/g   

   Eggs      4 ± 2 MPs/g   

   

Carapace, 
gills, gut, 
eggs      

1.08 ± 1 
MPs/g   

 
Emerita 
analoga 480 

Digestive 
tract 

10% 
KOH   

Fiber (88%), 
film (7%), 
fragment 
(3%)   <1000 µm 

0.02 ± 0.13 – 
1.82 ± 6.31 
MPs/individu
al 

Beaches of 
Lima 

García 
et al. 
(2023) 

 
Charybdis 
japonica 10 Soft tissue 

10% 
KOH μ-FTIR 

Fiber (88%), 
fragment, 
film, 
microbead   

CP, PET, PE, PP, PA, PP-PE, VI, PVC, 
PAN <1000 µm 

5.50 ± 4.01 
MPs/individu
al 

Haizhou Bay, 
China 

Xie et al. 
(2024) 
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Portunus 
tritubercul
atus 11 Soft tissue   

Fiber (88%), 
fragment, 
film, 
microbead   

CP, PET, PE, PP, PA, PP-PE, VI, PVC, 
PAN <1000 µm 

4.55 ± 3.08 
MPs/individu
al   

 
Charybdis 
variegata 8 Soft tissue   

Fiber (88%), 
fragment, 
film, 
microbead   

CP, PET, PE, PP, PA, PP-PE, VI, PVC, 
PAN <1000 µm 

5.50 ± 7.45 
MPs/individu
al   

 
Dorippe 
japonica 7 Soft tissue   

Fiber (88%), 
fragment, 
film, 
microbead   

CP, PET, PE, PP, PA, PP-PE, VI, PVC, 
PAN <1000 µm 

9.71 ± 5.94 
MPs/individu
al    

 
Eucrate 
crenata 10 Soft tissue   

Fiber (88%), 
fragment, 
film, 
microbead   

CP, PET, PE, PP, PA, PP-PE, VI, PVC, 
PAN <1000 µm 

13.80 ± 8.73 
MPs/individu
al   

 

Eriocheir 
leptognath
us 9 Soft tissue   

Fiber (88%), 
fragment, 
film, 
microbead   

CP, PET, PE, PP, PA, PP-PE, VI, PVC, 
PAN <1000 µm 

15.00 ± 4.72 
MPs/individu
al   

Ano
mura 
(her
mit 
crab) 

Pagurus 
pubescens   Stomach 

stomach 
contents   

Fibers and 
fragments       

Pechora Sea, 
North-West 
Russia 

Gebruk 
et al. 
(2021) 

Mero
stom
ata 

Juvenile 
Tachypleus 
tridentatus   

Gastrointes
tinal tract 

10% 
KOH μ-FTIR 

Fiber (99%), 
flake (1%) CP), SR, PP, PE, PAN, PA, PVC, PVA <5 mm 

21.1 ± 13.4 
MPs/individu
al 

Northern 
Beibu Gulf, 
China 

Wang et 
al. 
(2022) 

Echinodermata           

Aster
oidea 

Asterias 
rollestoni 
Bell 7 

Whole 
body 

10% 
KOH μ-FTIR 

Fiber (88%), 
fragment, 
film, 
microbead   

CP, PET, PE, PP, PA, PP-PE, VI, PVC, 
PAN <1000 µm 

35.71 ± 18.54 
MPs/individu
al 

Haizhou Bay, 
China 

Xie et al. 
(2024) 

Echin
oidea 

Paracentrot
us lividus 21 Soft tissue 

15% 
H2O2 μ-FTIR 

Fiber, 
fragment, 
line, film, 
pellet 

PE, PP, PS, PVC, PET, PA, EVA, PI, 
PEST, PU  

1 – 1.66 ± 0.58 
MPs/individu
al  Adriatic Sea 

Avio et 
al. 
(2020) 

 
Diadema 
africanum 33 

Digestive 
tract and 
gonads 

33% 
H2O2 

µ-
Raman 

Fibers (97%), 
fragments 
(2%), films 
(1%) 

Cellulosic (46.0%), PP (24.3%), PET 
(24.3%),  

83–11,638 
μm 

9.7 ± 3.9 
MPs/individu
al 

Canary Island, 
Spain 

Sevillan
o-
Gonzále

z et al. 
(2022) 

 
Echinometr
a mathaei 5 

Digestive 
tract 

30% 
H2O2 FTIR 

Fragment 
(75%), fiber 
(25%)     

PES (31%), PE (21%), PP (21%), PVC 
(10%), EP (10 %),  

200–2070 
µm 

0.27 ± 0.28 
MPs/g dry w 

Pari and 
Harapan 
Islands, 
Indonesia 

Rahmaw
ati et al. 
(2023) 

 
Diadema 
setosum 16    

Fragment 
(75%), fiber 
(25%)   PP (67%), PES (33%)  

140–2690 
µm 

3.93 ± 2.25 
MPs/g dry w   

 

Hemicentro
tus 
pulcherrim
us 10 

Whole 
body 

10% 
KOH μ-FTIR 

Fiber (88%), 
fragment, 
film, 
microbead   

CP, PET, PE, PP, PA, PP-PE, VI, PVC, 
PAN <1000 µm 

5.50 ± 2.46 
MPs/individu
al 

Haizhou Bay, 
China 

Xie et al. 
(2024) 

 

Echinoidea 
and 
Ophiuroide
a 7 

Whole 
body 

10% 
KOH 

ATR 
μ-FTIR 

Fiber (94%), 
fragment 
(6%) PE (81%), PET (6.3%), PA (12.5%) 

<500 µ, 
500–5000 
µ 

20.9 ± 17.4 
MPs/g 

Jiaozhou Bay, 
China 

Zhang et 
al. 
(2023) 

Holot
huroi
dea 

Holothuria 
tubulosa   

Digestive  
tract 

 

N/A FTIR 

Fibers (84%), 
fragments 
(16%) PP (27%), PE (17%), and PS (16%)   

3.5 ± 0.7 
MPs/individu
al 

Eivissa Island 
(Spain), 
Western 
Mediterranean 

Lombar
do et al. 
(2022) 

  

Acaudina 
molpadioid
es 21 

Whole 
body 

10% 
KOH μ-FTIR 

Fiber (97%), 
film (3%)   CP, PE, PVC, PET <1000 µm 

7.05 ± 5.13 
MPs/individu
al 

Haizhou Bay, 
China 

Xie et al. 
(2024) 
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