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Abstract: Microplastics (MPs) are pervasive pollutants that pose significant threats to marine ecosystems. This review examines the
impact of MPs on marine organisms, highlighting key areas of concern and knowledge gaps. The aim of the study is to synthesize recent
findings on the occurrence and biological impacts of MPs in marine environments. For this purpose, a total of 171 studies conducted in
different geographical regions were examined in order to ascertain the interactions of numerous vertebrate and invertebrate taxonomic
groups with MPs. Based on this analysis, the pathways through which MPs enter marine ecosystems and their interactions with
marine organisms were reviewed. Additionally, this study addresses the potential genetic, physiological, and ecological effects of MP
exposure. Understanding these impacts is crucial for developing effective mitigation strategies. The findings indicate that MPs are
ingested by a wide range of marine organisms, causing physical damage and physiological stress. MPs have been shown to interfere
with feeding, growth, and reproduction, leading to adverse effects on marine populations. This review also highlights the role of MPs in
bioaccumulation and biomagnification within food webs. Moreover, MPs can carry toxic substances and pathogens, exacerbating their
harmful effects on marine life. Overall, MPs represent a significant environmental threat with far-reaching consequences for marine
ecosystems. Mitigating MP pollution requires global cooperation and stringent regulatory measures to protect marine biodiversity and

ensure sustainable aquatic environments.
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1. Introduction

Since it was first invented, plastic has gradually permeated
every aspect of our daily lives, becoming an almost
inseparable part of modern life. This is mainly due to the
physical properties of plastics. Accordingly, plastics have
found applications in virtually all sectors of life, including
chemicals, energy, automotives, defense, aviation, logistics,
transportation, real estate, tourism, packaging, and
agriculture (Aydin et al, 2023; Baztan et al, 2024). The
widespread consumption of plastics has led to an increase in
global annual plastic production from 1.5 million tons in the
1950s to over 450 million tons in 2023 (Baztan et al., 2024).
Approximately half of these produced plastics, due to their
unalterable nature, end up in all layers of the ecosystem,
from water and soil to the air, affecting the environment
(Geyer, 2020; Aydin et al., 2023).

Thus, plastic pollution has become a widespread form
of pollution today, contributing significantly to major
environmental problems. The extensive production and
multiple uses of these materials, combined with limited
environmentally sound disposal options, result in pollution
that goes beyond mere aesthetic issues and threatens all
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forms of life. Plastic pollution has become a transboundary
issue, affecting both ecosystems and human health (Prata et
al., 2019). Once plastics become pollutants, several factors
contribute to their degradation. In addition, the methods
used to dispose of plastics after use, such as landfills, recycling,
or incineration, further contribute to their fragmentation
into smaller sizes that leach into the ecosystem (Silva et al.,
2021; Brown et al., 2023; Jin et al., 2024). This necessitates the
categorization of plastic pollutants, as different sizes of plastics
have different impacts and affect a wide range of organisms.
According to widely accepted classifications, plastic
pollutants are categorized according to their sizes as
megaplastics (greater than 100 cm), macroplastics (25 mm
to 100 cm), mesoplastics (5 mm to 25 mm), microplastics (1
pm to 5 mm), and nanoplastics (less than 1 pm) (Kershaw
et al, 2015). The most ubiquitous plastic pollutants are
microplastics (MPs). To date, the Web of Science (WoS)
database has catalogued approximately 20,000 studies that
include the term “microplastic” in their titles (Figure). When
we consider publications not indexed by Wo§, the number
of relevant studies is significantly higher. This demonstrates
that the issue of MPs is receiving considerable attention.

This work is licensed under a Creative Commons Attribution 4.0 International License.
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Figure. Number of publications with the term “microplastic” in their titles indexed in the Web of
Science database between 2016 and 2024 (data accessed via Web of Science on 11 May 2024).

MPs, as small plastic particles formed by the breakdown
of larger plastic waste, enter the marine environment
through various pathways and are found throughout it,
from the water’s surface to the deep-sea floor. Marine
organisms can ingest MPs through inhalation, ingestion,
or contact, indicating extensive interactions between
these plastics and marine life, which may result in genetic
consequences. Considering the role of marine organisms
as both vital ecosystem components and significant
protein sources for humans, the presence of MPs within
them and the resultant toxicological effects can adversely
impact both aquatic resources and human health (Naz et
al., 2024). To ensure a sustainable environment and secure
food sources, it is crucial to mitigate MP pollution in
marine ecosystems. Current evidence suggests that due to
the persistent and cumulative nature of plastic pollution
(Junaid et al., 2023a), merely improving plastic removal
and recycling technologies may not adequately address
the global crisis (Bergmann et al., 2022; Baztan et al,
2024). Notably, even with a 1% to 3% annual reduction
in plastic production, global plastic pollution is projected
to rise, with cumulative production expected to reach at
least 2 billion tons by 2040 (Assefa-Aragaw et al., 2024).
Consequently, there is a pressing need for binding global
treaty instruments, such as the plastics treaty that the
UN began negotiating in 2022. Effective mitigation of
plastic and MP pollution will require these instruments
to incorporate both production reductions and decreases
in the use of hazardous chemicals (Bergmann et al., 2022;
Dey et al., 2022; Baztan et al., 2024).

Although extensive research has been conducted
on the ingestion of MPs and its consequences, detailed
review publications on this topic have been scarce until
recently. The predominance of bibliometric analyses over
comprehensive evaluations has limited our understanding

of the scientific research outcomes. This review, therefore,
explores various types and interactions of MPs with
different aquatic organisms in aquatic environments based
on 171 studies, drawing insights from environmental
science, ecology, toxicology, and genetics. It also examines
MPs in the oceans and related aquatic environments,
focusing on how plastic pollution levels influence
ecological dynamics. Moreover, this review identifies
uncertainties and knowledge gaps in our understanding of
the fate, distribution, and detrimental mechanisms of MPs
on aquatic organisms.

2. Microplastic occurrence in marine environments

MP pollution spans an extensive geographical area, from
the Arctic to Antarctica and from deep oceans to high
mountains, affecting megacities, slums, towns, rural
communities, and remote settlements alike (Tekman
et al., 2016; Mihai et al., 2022; Giindogdu et al., 2023).
As a result, new studies are continually providing more
detailed information about the extent of this pollution,
emphasizing the need for further research to address
existing knowledge gaps (Mihai et al., 2022).

MPs in marine environments predominantly
originate from terrestrial sources (Aydmn et al., 2023).
These MPs enter marine ecosystems through various
pathways, including surface runoff, wind, and riverine
systems. Surface currents and wind waves influence the
distribution of MPs, which may remain near shorelines or
be transported to the seabed over time. Additionally, MPs
can directly enter marine ecosystems through maritime
activities such as shipping, fishing, and aquaculture.
Terrestrial sources of MPs include wastewater treatment
plants (Akarsu et al., 2020), landfills, illegal dumping, the
plastic production process (particularly nurdles), the use of
plastics in agriculture (e.g., single-use greenhouse covers,
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drip irrigation system pipes, or mulching), polymer-based
paints, textiles, and tire wear (Glindogdu, 2022). One
of the primary pathways for MPs entering the marine
environment is via rivers (Giindogdu et al., 2023). When
MPs infiltrate river systems, they are distributed along
various sections of the river. MPs can be found floating
on the surface, accumulating on riverbanks, in floodplains
and in coastal vegetation, suspended in the water column,
and deposited on and within sediments.

MP pollution in water bodies directly impacts UN
Sustainable Development Goal (SDG) 6, “Clean Water and
Sanitation,” and SDG 14, “Life Below Water” Therefore,
there is a global call to transition from a linear economy
to sustainable alternatives to mitigate plastic pollution
in aquatic environments, a shift that is encapsulated in
the ongoing negotiations for the UN’s plastics treaty
(Bergmann et al., 2022).

Plastics are notably durable, allowing them to persist
in the marine environment for decades before degrading.
Borrelle et al. (2020) reported that between 19 and 23
million metric tons, or 11% of the global plastic waste
generated in 2016, entered marine ecosystems. They
projected that 20-53 million tons of plastic would annually
enter marine ecosystems by 2030. Such estimates rely
on data collected using 333-pm mesh Manta or Neuston
nets, which means that MPs smaller than 333 pum are not
captured in such datasets. Consequently, the actual volume
of MPs in marine ecosystems could be significantly higher
than estimated. Studies on the concentrations of MPs in
marine waters suggest that they reflect only 1% of the
estimated global marine plastic budget (Mihai et al., 2022).

Depending on their origins, MPs in marine
environments can be classified into primary and
secondary categories. Primary MPs generally come from
sources such as textiles, cosmetics, and traffic-related
activities. Secondary MPs, on the other hand, are derived
from the breakdown of larger plastic items due to various
environmental factors. In terms of chemical composition
and density, the most commonly found MPs in marine
environments are low-density polyethylene (LDPE),
high-density polyethylene (HDPE), polypropylene (PP),
polyvinyl chloride (PVC), polyethylene terephthalate
(PET), polyester (PES), and polystyrene (PS) (Giindogdu,
2022). All other types of MPs, such as nylon and acrylic,
are categorized as “others”

3. Occurrence of microplastics in aquatic organisms

High amounts of MPs in aquatic environments have
become a well-recognized and growing global issue,
posing a threat to aquatic life (Junaid et al, 2023b).
However, it is crucial to recognize that not just MPs but

all forms of plastic litter impact aquatic ecosystems (Aydin
et al,, 2023). It is estimated that 4076 marine species are
currently threatened by marine litter, predominantly
comprising plastics.! According to the LITTERBASE
database’, the organisms most affected by marine litter
include fish (23.7%), seabirds (14.3%), crustaceans and
arthropods (11.2%), and mollusks (7.9%). Reports indicate
that the impacts of litter on marine organisms mainly
involve ingestion (40.4%), colonization (34.3%), and
entanglement (17.4%)."' Moreover, numerous studies have
shown that aquatic organisms such as fulmars, oysters,
mussels, and fish are adversely affected by MPs.! Due to
their size, even small organisms like zooplankton and fish
larvae can directly ingest MPs during feeding (Lusher,
2015).

3.1. Microplastics in aquatic invertebrates

The impact of MPs found in every layer of aquatic
ecosystems has been the subject of many scientific
studies, especially in the last decade. In this review, we
focus on MPs in aquatic organisms from studies of wild
organisms and aquaculture research conducted between
2020 and 2024. Our literature review determined that the
effects of MPs on 136 species belonging to the taxonomic
groups Porifera, Cnidaria, Mollusca, Arthropoda, and
Echinodermata were examined in 89 research articles.
These studies evaluated relationships between the habitats
and diets of aquatic organisms and MP uptake as well
as the type, size, and trophic level transfer of MPs into
different tissues.

MPs are often mistaken for food by many organisms
upon their entry into the water. The acquisition of MPs
by aquatic organisms can occur either directly from
nature or indirectly through trophic pathways from
their prey (Walkinshaw et al., 2020). The extent of MP
uptake by aquatic organisms is influenced by various
factors, including the species’ diet and the prevailing
environmental conditions (Xu et al., 2020a). Filter feeders,
for instance, take up MPs from the water column, while
MPs that settle in the sediment over time are ingested by
grazers or deposit feeders that feed on algae in the benthic
zone. Seagrass sediments have been found to contain
higher levels of MPs than sandy sediments (Huang et al.,
2020; Jones et al., 2020), making aquatic organisms grazing
on seagrass more susceptible to MP ingestion (Jones et al.,
2020; Curren et al., 2024).

The feeding mode of organisms is a key factor
influencing the concentration of MPs in their bodies.
Deposit feeders or grazers were found to have higher
concentrations of MPs than filter feeders and predators (Xu
et al., 2020a). In a study conducted on the Red Sea coast
of Egypt, the MP concentration (items/g) in the tissues of

"Tekman MB, Gutow L, Bergmann M, Peter C (2024). LITTERBASE. Online Portal for Marine Litter [online]. Website: https:/litterbase.awi.de

[accessed 30 May 2024].
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filter-feeding bivalves was found to be higher than that in
benthic-feeding gastropods or grazing echinoids (Abd-
Elkader et al., 2023). Walkinshaw et al. (2020) studied 11
species of fish, crustaceans, and bivalves with different
feeding strategies. The MP ratios of filter-feeding mussels
Mpytilus spp. and cupped oysters Crassostrea spp. were 0.2—
5.36 MPs/g and 0.18-3.34 MPs/g, respectively, while those
of planktivorous-herbivorous brown shrimp Crangon
crangon were 0.13-1.23 MPs/g and that of piscivorous
yellowfin tuna Thunnus albacares was 0.00059 MPs/g.

The habitat of an organism is critically important for
MP ingestion, as is the type of diet. It has been found that
organisms living in different habitats with the same diet
type ingest different MPs (Cho etal., 2021). Xu et al. (2020a)
found that the abundance of MPs varied significantly in
different habitats along the coastline of Hong Kong.

There are different results on the transfer of MPs
between organisms in the food chain. Evidence suggests
that MPs are most concentrated in the food chain at the
level of primary consumers (Sfriso et al., 2020), but there is
also evidence of bioaccumulation in the food chain (Wang
etal., 2021a). Walkinshaw et al. (2020) indicated that there
is a decrease in the concentration of MPs in organisms
as the trophic level increases. Similarly, in Antarctica,
filter feeders and grazers were found to have higher MP
concentrations than omnivores and predators (Sfriso et al.,
2020). A study conducted on Ecuador’s Pacific coastline
examined the abundance of MPs in aquatic organisms
such as fish, mollusks, and crustaceans. That study
considered the feeding habits of these species and found
that carnivorous species had an abundance of 2.04 + 0.622
MP items in their digestive tracts, while planktivorous and
detritivorous species had 1.31 + 0.348 and 0.72 + 0.780 MP
items, respectively (Caceres-Farias et al., 2023).

In addition, numerous experimental studies have
investigated the effects of MPs on invertebrate growth,
development, reproduction, mortality, and oxidative stress
(D’Costa, 2022). However, these studies are not discussed
here as they are beyond the scope of this review.

MPs can be found in different types and sizes in
different parts of tissues (Giindogdu, 2023; Doshi et al.,
2024). MPs were studied in various parts of organisms,
including soft tissues, stomachs, gills, gastrointestinal
tracts (GITs), digestive glands, muscles, carapaces, guts,
hepatopancreas, intestines, and eggs. PE, PP, and PET
were recorded as the dominant plastic polymers in both
crustaceans and mollusks. Various types and amounts
of MPs were found in the tissues of living organisms, as
presented in the following subsections.

3.1.1. Porifera

Sponges are filter-feeding, sessile benthic organisms. They
can take up MPs and other microparticles by filtering
seawater, through placoderms, or via the influence of the

fauna living within them (Girard et al., 2021; Soares et
al., 2022). Studies on the effects of MPs on members of
the phylum Porifera are limited. In the literature review
conducted within the scope of this study, three relevant
publications were found (Appendix Table 1).

In the Laguna de Terminos Protected Area, the MP
content in sponges was found to be much higher than
that in water and sediment (Celis-Hernandez et al., 2021).
Sponges may be exposed to more contamination than other
organisms as a result of ingesting very small particles, such
as MPs with a predominant size of 10-20 pum or less than
2 um (Fallon and Freeman, 2021; Krikech et al., 2023). In
studies conducted in different regions, blue, red, and black
microfibers were found in various sponge species, such as
Haliclona implexiformis, Halichondria melanadocia, and
Amorphinopsis atlantica in Mexico (Celis-Hernandez et
al., 2021); PS was found in coral sponges Carteriospongia
sp. and Ircinia sp. on Bangka Island, Indonesia (Girard
et al,, 2021); and PP was found in Cinachyrella alloclada
in Brazil (Soares et al., 2022). In Antarctica, thermo
fibers were detected in the sponges Dendrilla antarctica,
Haliclona (Rhizoniera) scotti, Microxina sarai, and Mycale
(Oxymycale) acerata, which provide the raw material for
clothing worn by researchers, fishermen, and tourists in
the region (Corti et al., 2023). In addition, sponges can
be used as bioindicators to determine MP diversity in the
environment due to their abilities of filtering large amounts
of seawater daily and absorbing very small amounts of
MPs present in the environment (Celis-Hernandez et al.,
2021; Corti et al., 2023; Krikech et al., 2023).

3.1.2. Cnidaria

Cnidarians are divided into three classes: Hydrozoa,
Scyphozoa, and Anthozoa. They are widely distributed
in different habitats, from seagrasses to coral reefs, from
coastal areas to the deep sea, and from benthic to pelagic
zones, and they are affected by MPs originating from
various anthropogenic sources in many places with human
impact. Hydrozoans and scyphozoans are commonly
known as jellyfish, with both sessile polyp and free-living
medusa forms. Although studies on the effects of MPs on
the phylum Cnidaria are limited, it is possible to say that
more studies have been carried out compared to Porifera.
In our literature review, seven relevant studies were found
(Appendix Table 1).

In the pelagic jellyfish Aurelia aureta in the North
Sea, Pelagia noctiluca in the Canary Islands, Rhizostoma
pulmo in the Adriatic Sea, benthic jellyfish Cassiopea
xamachana in Florida, and sea anemone Actinia equina
on the north coast of Spain, MPs were reported mostly
in the form of fibers (Avio et al., 2020; Iliff et al., 2020;
Devereux et al., 2021; Janssens and Garcia-Vazguez, 2021;
Rapp et al., 2021). The anthropogenic contaminants PE,
PP, PET, cotton, rayon/viscose fibers, acrylic, cellophane,
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cellulose, and linen were detected (Devereux et al.,
2021; Rapp et al,, 2021). In addition, jellyfish such as
Aurelia aurita and Pelagia noctulica were found to be
bioindicators for the determination of MPs in pelagic
waters (Macali and Bergami, 2020; Rapp et al., 2021).
Anthozoans, another class of Cnidaria, are a group of
polyp-shaped corals and anemones, all of which are
sessile. There are many experimental studies investigating
the ingestion and adhesion of MPs by corals and species-
specific MP uptake; the effects of MPs on corals together
with chemical contaminants such as PAE, PCBs, and
heavy metals; pathogen-induced diseases caused by MPs
and their effects; and the symbiotic relationship between
corals and Symbiodiniaceae (Huang et al., 2021). However,
nonexperimental studies are limited. On Liugiu Island,
Taiwan, MPs were detected on the surface of (0.35 +
0.28 items/g) and inside (0.23 + 0.17 items/g) Acropora
spp., Galaxea astreata, and Pocillopora verrucosa corals.
The MPs detected were over 90% fiber and included
polymers such as rayon, PES/PET, nylon, PACA, PS, PP,
and PE (Lim et al,, 2022). Corals obtain nutrient and
energy needs through symbiotic relationships with the
photosynthetic family Symbiodiniaceae. This symbiotic
relationship is critical for supporting healthy coral reefs.
From Hainan Island, China, it was reported that MPs can
induce apoptosis in the coral Pocillopora damicornis and
that the symbiotic relationship between Symbiodiniaceae
and coral may be damaged (Tang et al., 2021).

3.1.3. Mollusca

The members of the phylum Mollusca (gastropods,
bivalves, and cephalopods) are economically important
due to their consumption as food and the wide variety
of species they encompass. In this review, we considered
a total of 52 species from 36 articles. The concentration
of MPs in these organisms was mostly observed in their
soft tissues, with smaller amounts found in the stomach,
gills, intestines, GIT, and digestive glands. In most studies,
10% potassium hydroxide was used for tissue separation,
and Fourier transform infrared (FTIR) and micro-
Fourier transform infrared (UFTIR) methods were used
for polymer detection. The shapes of MPs were reported
as fibers, fragments, films, pellets, microbeads, foam, and
sheets, with fibers and fragments being predominant.

3.1.3.1. Gastropoda

Gastropods live on sediments, sandy bottoms, rocks,
and the seabed and are exposed to direct and indirect
MP pollution (Zaki et al.,, 2021). They can uptake MPs
from the water column, sediment, and nutrients. MP
contamination was observed especially in the outer
shells, foot, pedal mucus, and feces of snails, indicating
that they ingest and excrete MPs (Rodrigues et al., 2023).
Gastropods are known for their diverse feeding habits,
which include herbivory, detritivory, suspension feeding,
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scavenging, and carnivory (Srivastava and Singh, 2021).
As detritivores, they feed on detritus and intake MPs from
the sediment. They are also grazers on macroalgae and
consume MPs in seagrasses while feeding (Curren et al.,
2024).

Gastropods move by crawling with the help of their
pedal mucus and feet. In the Bohai Sea, crawling species
such as Rapana venosa, Neverita didyma, Chlorostoma
rustica, Buccinum koreana, Siphonalia subdilatata,
Volutharpa perryi, Natica janthostomoides, and Natica
maculosa were found to have higher MP contents than
bivalve species that burrow in the sediment or attach to
rocks (e.g., Solen gouldi and Mytilus galloprovincialis)
(Zhao et al., 2024). The researchers noted that the high MP
ratio in crawling shells may be related to MP uptake from
both sediment and water during crawling.

A study conducted in the Klang River estuary in
Malaysia found that the carnivorous snails Chicoreus
cingulata and Thais mutabilis contained more MPs than
the herbivorous snails Nerita articulata and Nerita polita.
This difference in MP concentration was attributed to the
feeding habits of these snails; herbivorous snails consume
algae containing MPs, while carnivorous snails consume
both the MPs in the environment and in their prey (Zaki
et al, 2021). This study highlighted that MPs can be
transferred from one organism to another through trophic
pathways, raising concerns about the potential risks posed
to humans by aquatic foods that may contain MPs.

We examined the abundance of MPs in 23 gastropod
species across 13 studies (Appendix Table 1). The presence
of MPs in soft tissues has been studied most in the
literature. The most commonly used digestion method
was 10% KOH. For polymer analysis, the majority of
studies utilized pFTIR and FTIR. The predominant shapes
of MPs identified were fibers, followed by fragments. The
most commonly detected polymers were PE and PET. The
highest MP concentration was found in the mangrove
snail Littoraria scabra in Jakarta Bay, Indonesia (mean:
75.5 MPs/individual) (Patria et al., 2020). The minimum
MP concentration (mean: 0.29 + 0.54 MPs/individual) was
recorded in the limpet Patella caerulea in Iskenderun Bay
and Mersin Bay, Tiirkiye (Yiicel and Kilig, 2023).

3.1.3.2. Bivalvia

Bivalves include filter-feeding oysters, mussels, and
clams. These organisms have been used as bioindicators
to determine aquatic pollution due to their sensitivity to
biotic and abiotic changes. Therefore, the sensitivity of
bivalves to MPs has also been of interest and extensively
studied. Some studies argue that bivalves can be used as
bioindicators in determining MP pollution (Wakkaf et al.,
2020; Patterson et al., 2021; Truchet et al., 2021; Wootton
etal., 2022) and vice versa (Ward et al., 2019). They are also
an economically important group with high consumption
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as seafood worldwide. Given that bivalves are consumed
whole without internal organs, directly transferring their
accumulated substances (Shumway et al., 2023), studying
the MP concentrations in bivalves is important.

The MP concentrations and types in oysters, mussels,
and clams, which are widely used as food, have been
investigated in many studies. In this review, data from 19
bivalve species from 19 studies were analyzed. Researchers
have primarily extracted MPs from the soft tissues of
bivalves using 10% KOH. Fibers and fragments are the
most common forms of these MPs. ATR-FTIR and pFTIR
were predominantly used to determine polymer types.
The most common polymer types were PE, PP, and PET.
The Mediterranean mussel Mytilus galloprovincialis is the
most studied species, with mean MP levels varying across
different regions, from 0.5 MPs/individual on the shores
of Istanbul (Galyon and Algay, 2023) to 18.6 + 23.0 MPs/
individual on the Catalan coast (Exposito et al., 2022).
These researchers estimated that daily consumption of
mussels could lead to an intake of 42.8 MPs/day for adults.

The minimum MP concentration was recorded in the
mussel M. galloprovincialis as 0.5 MPs/individual on the
shores of Istanbul, Tiirkiye (Galyon and Algay, 2023). The
maximum MP concentration (25.3 + 32.6 MPs/individual)
was found in the mussel Brachidontes pharaonis on the
Red Sea coast of Egypt (Abd-Elkader et al., 2023).

3.1.3.3. Cephalopoda

The number of studies conducted on MP concentrations
in cephalopods is lower compared to other classes. Ten
species were investigated in nine articles (Appendix
Table 1). Researchers examined MPs in the soft tissues,
stomachs, gills, ink sacs, intestines, digestive glands, GITs,
and outer bodies of squids, cuttlefishes, and octopuses. A
majority of studies focused on the stomach. Most research
used 10% KOH for tissue digestion, while FTIR was the
predominant technique for polymer identification. The
shapes of MPs were mostly fibers and fragments. The
most commonly reported polymers were PET, PE, and PP.
Studies have been conducted on mean MP ratios in several
commercially important species in different regions,
including Sepia officinalis on the Adriatic coast and in
Portugal, Octopus vulgaris in the southern Tyrrhenian Sea
and off Madeira Island, Loligo vulgaris in the northeast
Atlantic, and Dosidicus gigas along western South America
and in the eastern Pacific Ocean (Oliveira et al., 2020;
Gong et al., 2021; Peda et al., 2022; Armellini et al., 2023;
Sambolino et al., 2023; Wang and Chen, 2023). The lowest
rate of MPs per individual was reported as 0.13 + 0.35
MPs/individual in the squid Ommastrephes caroli oft
Madeira Island in the Northeast Atlantic (Sambolino et al.,
2023). The highest rate was 10.30 + 16.66 MPs/individual
in Octopus vulgaris in the southern Tyrrhenian Sea in the
western Mediterranean Sea (Peda et al., 2022).

Cephalopods need suitable shelters to protect themselves
from predators due to their soft skin and to lay their eggs
during the reproductive period. The literature has reported
that they use marine debris as shelters. For example, the
pygmy octopus Paroctopus cthulu was found to use a snorkel
mask for spawning (Leite et al., 2021). Additionally, Freitas
et al. (2022) reported that benthic octopuses used plastic
marine debris as shelters for nesting and hiding.

3.1.4. Arthropoda

The aquatic group of arthropods includes Crustacea and
Merostomata. Crustaceans, which comprise economically
important species such as crabs, shrimps, lobsters, and
barnacles, play vital roles in ecosystems. They are widely
distributed from aquatic areas to brackish waters, estuaries,
freshwaters, rivers, and terrestrial areas and are used as
human food. However, their true significance lies in their
role as food sources for many creatures such as fish, sharks,
birds, and mammals. The larval stages of crustaceans, often
found within zooplankton groups like Ostracoda, Isopoda,
and Copepoda, are pelagic and constitute food for many
creatures. Crustaceans exhibit diverse diets, including
filter feeding, detritivory, carnivory, and omnivory.

The uptake of MPs and their effects have been studied
in many groups of crustaceans, such as Decapoda,
Stomatopoda, Cirripedia, Cladocera, and Amphipoda.
This review examined the effects of MPs on arthropods
based on the findings of 65 studies (Appendix Table 1).

The highest number of studies on MP concentrations
in Crustaceans have been carried out in the GIT,
including many studies of the gills, stomach, intestine, gut,
hepatopancreas, digestive tracts, muscles, and soft tissues,
with rare studies on the carapace and only one study
on eggs (Appendix Table 1). The most frequently used
method for digesting tissues was 10% KOH, followed by
30% hydrogen peroxide. uFTIR, followed by FTIR, was the
most commonly used method for polymer analysis. MPs
were mainly obtained as fibers, followed by fragments. PE,
PET, and PP were the most commonly identified polymers.
Most studies have been carried out on decapods and the
blue crab Callinectes sapidus (Appendix Table 1).

The lowest MP rate was reported in the krill Euphasia,
a zooplankton (0.019 MPs/individual) in the Bohai Sea,
China (Zheng et al, 2020). The highest MP rate was
reported as 327.56 MPs/individual in the mangrove crab
Metopograpsus quadridentata in Jakarta Bay, Indonesia
(Patria et al., 2020). The size of M. quadridentata was large,
and a positive correlation between the weight of the crabs
and MP abundance was revealed. Additionally, there were
no data indicating that contamination conditions were
minimized in the study, so contamination may be another
important reason for the high concentration of MPs.

Barnacles are sessile benthic filter-feeding organisms.
In the Capo Milazzo Marine Protected Area, the pelagic
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barnacle Lepas (Lepas) anatifera was found to contain an
average of 1.74 + 0.80 MPs and natural fibers in its GIT, as
reported by Scotti et al. (2023). This concentration is higher
than that reported in two other studies on barnacles (Xu
et al., 2020b; Zhang et al., 2022). MPs have been detected
even in Antarctica, where human density is limited (Sfriso
et al., 2020; Primpke et al., 2024). In the South Shetland
Islands and the South Orkney Islands, MP concentrations
in the Antarctic krill Euphausia superba have been studied.
The average MP rate in Antarctic krill was found to be
0.29-0.33 MPs/individual, with sizes ranging from 20 to
195 um (Zhu et al., 2023a). The primary polymers within
the compositions of MPs found in Antarctic krill are PE,
PP, and PS, which are also the main constituents of MPs in
subsurface seawater surrounding the Antarctic Peninsula
(Zhang et al., 2022). PE and PP are commonly used in
household materials and have emerged as the predominant
types of plastic polymers manufactured globally (Liao et
al.,, 2021).

A total of four species of the class Merostomata
have been found along the coasts of North and Central
America and in the Indo-Pacific. Horseshoe crabs are prey
for many birds, fish, and sea turtles. They also provide a
habitat for many species of mollusks and crustaceans,
leading to symbiotic relationships. In Asia, they are
economically important due to their biomedical use. In
a study conducted in the Beibu Gulf of China, which has
the world’s highest horseshoe crab population, researchers
investigated the contamination of juvenile three-spined
horseshoe crab Tachypleus tridentatus by MPs. The average
MP content in the GIT was found to be 21.1 + 13.4 MPs
per individual, which was significantly higher than the
MP content in other mollusks and crustaceans in the same
region of China. That study also revealed that 99% of the
MPs were fibers, with cellophane being the most abundant
polymer (Wang et al., 2022).

3.1.5. Echinodermata

The presence and effects of MPs have been studied in
several species of benthic starfish, sea urchins, and sea
cucumbers. MPs were investigated in Haizhou Bay,
China, in the starfish Asterias rollestoni, the sea urchin
Hemicentrotus pulcherrimus, and the sea cucumber
Acaudina molpadioides; in the Canary Islands in the sea
urchin Diadema africanum; in the Adriatic Sea in the sea
urchin Paracentrotus lividus; and off the island of Ibiza,
Spain, in the sea cucumber Holothuria tubulosa. These
MPs were mostly in the form of fibers, and the most
commonly detected polymers were PE, PP, and PET (Avio
et al., 2020; Lombardo et al., 2022; Xie et al., 2024a). MPs
in the sea urchins Echinometra mathaei and Diadema
setosum of the islands of Pari and Harapan, Indonesia, were
predominantly reported as fragments (75%). PES and PP
were reported to have the highest rates (Rahmawati et al.,
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2023). In Jiaozhou Bay, China, echinoderms were reported
as the taxon with the highest MP occurrence after fish
(93%) and the highest MP uptake after crustaceans (20.9
+ 17.4 MPs/g) (Zhang et al., 2023). In a study conducted
by Barros et al. (2020), it was observed that the sea urchin
Lytechinus variegatus in Todos os Santos Bay, Brazil,
exhibited a preference for marine debris, with plastic
accounting for 68% of the debris, over natural materials
such as shells and rocks for shelter.

3.2. Microplastics in aquatic vertebrates

The ubiquitous existence of MPs in aquatic environments
has raised apprehension about their effects on aquatic
vertebrates. From deep depths to the surface layers of
fresh and marine water environments, MPs are found
everywhere and affect various aquatic organisms. MP
existence causes disturbances in hematological parameters
of the Korean bullhead fish Pseudobagrus fulvidraco
(Lee et al., 2023), induces retardation in the antipredator
behavioral responses of frog tadpole (Scribano et al,
2023), and causes excessive accumulation in the bodies of
aquatic mammals (Nabi et al., 2022). Understanding the
existence and impact of MPs on aquatic vertebrates is thus
of extreme importance, as these variations can have far-
reaching costs across the whole ecosystem.

3.2.1. Fishes

Recently, the ingestion of MPs by fish in aquatic
environments has garnered significant attention due to
concerns about MP contamination in seafood (Srisiri
et al., 2024). Monitoring MP ingestion by fish is crucial
for assessing the risks of consuming MP-contaminated
fish for human health (Motivarash et al., 2024). Piskuta
and Astel (2024) recently investigated MP uptake in
globally consumed fish species such as rainbow trout and
perch. Their results indicated that, on average, each fish
contained 1 to 12 MP items, with 56% being fibers and
46% particle-shaped MPs. In another study, 68% of MPs,
predominantly LDPE, were found in the edible tissues
of 400 individual fish from the coastal area of Gujarat,
India (Motivarash et al., 2024). De Azevedo et al. (2024)
also examined the presence of MPs in two fish species,
Hoplosternum littorale and Pterygoplichthys pardalis,
which are often consumed by humans, becoming a direct
source of MP contamination. These fish were found to
contain 683 MP particles, ranging from 1 to 43 MPs per
individual. Blue-colored and fiber-shaped MPs were
the most abundant in both species. Similarly, Srisiri et
al. (2024) found that fibrous-type and blue-colored
MPs (PE and PES) were also prevalent in edible marine
fishes, with an average concentration of 1.6 + 0.5 pieces
per individual. Fish can consume MPs either directly by
mistaking them for natural prey items or indirectly by
consuming other organisms that have ingested MPs (da
Costa et al., 2023).
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The occurrence of MPs in various fish species, including
their concentration, shape, size, polymer type, color, and
location, has been extensively documented in both marine
and freshwater species as presented in Table 1.

Most information on the occurrence of MPs in fishes
comes from analyses of items found in the GIT (Arafat
et al., 2023; Rasta et al., 2023; Khan et al., 2024). MPs are
primarily accumulated in the digestive tract, especially the
stomach (Rivas-Mena et al., 2024), and the gut-gills axis
(Zheng and Wang, 2023). The presence of MPs may lead to
structural and functional alterations in the GIT, potentially
impairing fish growth and nutrition (Lai et al., 2021; Hao
et al,, 2023). Fishes from a wide range of species and
habitats are reported to be contaminated with MPs, which
often vary in terms of polymer type, color, and shape. Fish
digestive tracts frequently contain HDPE, PE, PP, PES, and
PS, the most commonly produced polymers worldwide
(Hollerova et al., 2023; Yedier et al., 2023; Gorule et al.,
2024). The most commonly found forms of MPs in fish are
fibers and fragments, with fish showing a preference for
consuming black- and blue-colored plastic polymers over
white fragments. Very small plastic particles can traverse
living cells and enter the lymphatic or circulatory systems,
potentially dispersing throughout the body. Unfortunately,
there is still a lack of information about MPs in fish tissues
outside of their digestive systems.

3.2.2. Sea turtles

Sea turtles lead complex lives, facing numerous
anthropogenic threats including climate change, coastal
development, fishing, direct exploitation, and pollution.
These pressures not only affect their survival rates but can
also lead to significant reductions in their populations.
Given their crucial ecological roles, from contributing to
the health and maintenance of coral reefs and seagrass
beds to acting as biological carriers that transport marine
nutrients and energy to coastal ecosystems, the impact of
pollution on sea turtles demands careful consideration.

The aquatic environment, a critical accumulation
point for MPs, affects numerous species, particularly
sea turtles. Sea turtles, as large marine vertebrates, are
especially susceptible to MP pollution due to their feeding
behaviors and habitat preferences. Sea turtles, akin to
humans, experience exposure to MPs through inhalation,
ingestion, and dermal contact. This similarity provides
valuable insights into the trophic transfer of MPs within
aquatic ecosystems. Consequently, assessing the exposure
of sea turtles to MPs is crucial for understanding broader
ecological impacts.

Since MPs are one of the most problematic pollutants for
sea turtles, among other pollutants, they are experiencing
higher individual impacts and concentrations of MPs
compared to fish, marine mammals, and seabirds (Curl et
al., 2024). Although our understanding of plastic ingestion

by sea turtles has greatly improved over the last decade,
quantified data on the amount of ingested debris are
still missing from risk assessments and review articles;
these studies tend to focus solely on the frequency of
occurrence. The pervasive and persistent nature of MPs in
the environment poses a considerable risk to sea turtles,
many species of which are already threatened, vulnerable,
or critically endangered (IUCN, 2023). The primary
threat to sea turtles is entanglement in marine litter, such
as ghost nets and ropes. Their lifecycle, which includes
using sandy beaches for nesting and nearshore habitats
for hatchling foraging before migrating to the open sea,
significantly exposes them to plastic pollution. Compared
to other aquatic species, sea turtles are more prone to
ingesting plastic debris due to their visual feeding strategy,
which often leads them to mistake soft floating plastics
for jellyfish, especially during their young pelagic phase;
additionally, their backward-facing esophageal papillae
prevent regurgitation, facilitating particle buildup in the
gut.

Various injuries via both mechanical and chemical
actions have been documented in the digestive tracts of
all sea turtle species reported to have ingested plastic items
(Himpson et al., 2023). Global studies on the occurrence
and entanglement of plastics in sea turtles include research
from the Eastern Mediterranean by Duncan et al. (2024),
from the Mexican Caribbean by Aranda et al. (2024), and
from the Gulf of Oman by Yaghmour et al. (2022), as
well as a hazard assessment from the Northwest Atlantic
Ocean by Blais and Wells (2022). Table 2 highlights the
fact that turtles are severely affected by MPs, with a high
percentage of individuals contaminated and a significant
average number of MPs found per turtle. The green sea
turtle (Chelonia mydas) and the leatherback sea turtle
(Caretta caretta) are particularly vulnerable to MPs due to
their herbivorous and gelatinous diets, respectively.

Turtles extensive geographic range and migratory habits
mean that they often spend stages of their lives in areas heavily
contaminated with MPs, leading to significant environmental
accumulation of these particles. The types and amounts
of plastic waste ingested by sea turtles vary by species, life
stage, and diet (Choi et al., 2021; Palmer et al,, 2021). The
frequency at which wild turtles encounter or ingest plastic
is still poorly understood. Due to ethical concerns about the
lethal sampling of these critically endangered species, most
studies on turtle plastic ingestion are anecdotal, based on
one-time observations, or predominantly involving dead or
dying turtles. Moreover, the first of only five international
review articles on turtles ingesting plastic was published
39 years ago (Balazs, 1985). Further research is needed to
determine if ingesting plastic poses a greater risk to sea
turtles compared to nonmarine species. With increasing
plastic pollution, the urgency for such studies escalates.
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3.2.3. Mammals

Small plastics disperse more rapidly in the aquatic
environment than larger ones, increasing the likelihood
of ingestion by a wide range of mammals. Research has
shown that MPs are prevalent in marine mammals at
high trophic levels (Dool and Bosker, 2022; Kangas et al.,
2023). Often, the majority of MPs found in whales and
dolphins are believed to result from trophic transfer rather
than direct ingestion (Dool and Bosker, 2022; Moore et
al., 2022). Aquatic mammals ingest significant amounts
of MP particles, likely through direct consumption from
sediment or seawater, as well as through trophic transfer,
i.e. via prey species that have consumed plastic. MPs have
been discovered in the feces and stomachs of pinnipeds
and cetaceans, as well as throughout their digestive tracts
(Merrill et al., 2023). Direct accidental ingestion of MPs by
aquatic mammals can lead to blockages in the GIT (Trani
etal., 2023). The survival of aquatic fauna, particularly top
predators like aquatic mammals, is seriously threatened
by MPs, which pose significant health risks (Nabi et
al., 2022). Many aquatic mammals are of conservation
concern due to various anthropogenic stressors, and
they serve as indicators of the aquatic ecosystem’s health,
especially concerning pollution. Similar to sea turtles and
humans, aquatic mammals have long lifespans and feed at
high trophic levels, exposing them to chemical pollutants
in food. They may therefore serve as useful sentinels to
detect effects that could eventually impact humans. The
European Marine Strategy Framework Directive has
proposed large aquatic mammals as indicators for the
occurrence, consumption, and monitoring of MPs. As can
be seen in Table 3, the occurrence and ingestion of MPs in
mammals confirm that these aquatic mammals commonly
ingest MPs due to their feeding activities.

According to Wan et al. (2023) and Werth et al. (2024),
cetaceans may consume tens of thousands of pieces of MPs
daily during feeding. The most frequently consumed MPs,
including PE of both high and low density, PP, PET, and
PS, come in various sizes, from tiny fragments to large
sheets, and have been found in mammalian stomachs and
intestines. The abundance of MPs is randomly dispersed,
irrespective of the animal’s body length or sexual maturity.
In cetaceans, maturity did not significantly correlate with
MP counts, as observed in harbor porpoises (Philipp et
al., 2021). Similarly, there was no significant correlation
between MP abundance and body length. Zhang et
al. (2021) noted a similar trend as the body length of
humpback dolphins showed an insignificant relationship
with the abundance of MPs. The sex of the individual did
not significantly impact the number of MPs in different
cetaceans (Xie et al., 2024b). Moreover, MPs have been
discovered in the GITs of almost all aquatic mammals
(Battaglia et al., 2020; Yang et al., 2023; Wulf, 2023). The

presence of MPs in GITs sometimes leads to wear and tear
of the digestive tract and impairment in the intestinal tract
of mammals such as baleen and beluga whales (Yang et
al., 2023; Werth et al., 2024). MPs were found throughout
the GITs, and a sizable amount of what was consumed
was frequently expelled in feces (Harlacher, 2020; Yong
et al,, 2021). MPs can disperse into the body during
their transition from the stomach, which stores food, to
the intestine, which absorbs nutrients (Ma et al., 2021).
Absorption and excretion of MPs by large aquatic animals
require further investigation. Researching large aquatic
animals poses challenges due to factors such as difficulty
in obtaining samples and their protected status, potentially
leading to an underestimation of the MP issue. During
necropsies, obtaining viable samples from large cetaceans
can be challenging. It is advised that global assessments of
the dangers associated with cetaceans consuming MPs and
the presence of MPs in their environments be carried out.
More research in various regions will be required to gather
more details regarding MP ingestion/occurrence in large
aquatic mammals.

4. Effects of MPs on aquatic organisms

Oceans today are increasingly impacted by human-induced
factors, such as MP pollution. MPs pose a significant
threat to aquatic ecosystems, and the extent of their impact
on the genetics of aquatic life is an active area of research.
Understanding the genetic effects of MP pollution is
crucial for the conservation and sustainability of aquatic
ecosystems. Aquatic organisms become contaminated
with MPs primarily through ingestion, either from
contaminated prey or through direct uptake of particles
from the water, exposing them to numerous potential
health risks (Baalkhuyur et al., 2020). Studies have shown
that MPs can negatively affect the reproductive capabilities
of aquatic organisms (Junaid et al., 2024). For example,
exposure to MPs can impair egg development and larval
growth in fish and disrupt the reproductive cycles of
aquatic shellfish. The genetic impacts of MPs on aquatic
organisms are mediated through several mechanisms,
including DNA damage, changes in gene expression,
genetic mutations, and epigenetic effects.

4.1. DNA damage

MPs can cause DNA damage in aquatic organisms due
to various chemicals they absorb and toxic substances
secreted by other biological organisms onto their surfaces.
This damage can directly cause fractures or mutations in
DNA chains. Chemicals such as phthalates and bisphenol
A, commonly found in some plastics, can adversely affect
the reproduction and development of aquatic organisms.
For example, Gongalves et al. (2022) investigated the
effects of PS nanoplastics on the marine mussel Mytilus
galloprovincialis. They wused a multiple-biomarker
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approach, including genotoxicity assessments with a comet
assay on mussel hemocytes, and evaluated antioxidant
enzymes (superoxide dismutase (SOD), catalase (CAT),
and glutathione peroxidase (GPx)), a biotransformation
enzyme (glutathione-S-transferase (GST)), and oxidative
damage (lipid peroxidation (LPO)) in the gills and
digestive glands. Their findings indicated that exposure
to nanoplastics suppressed antioxidant enzymes, leading
to oxidative damage in tissues, and that mussel tissues
struggled to cope with this emerging stressor.

Similarly, Jaouani et al. (2023) explored the effects
of aging PE MPs in Mpytilus edulis, widely used as
a bioindicator of aquatic ecosystems, at varying
concentrations in marine waters both in vitro and in vivo.
They assessed changes in gene expression levels related
to detoxification, the immune system, the cytoskeleton,
and cell-cycle control through quantitative RT-qPCR. The
results showed variable expression levels dependent on the
state of plastic degradation (aged vs. unaged) and exposure
mode (in vitro vs. in vivo).

Recent studies on the biological effects of MPs have
increased exponentially, but knowledge of their impact
on freshwater fish and the mechanisms of these biological
effects remains limited. PP MPs, for example, persist in
freshwater ecosystems and biota, presenting ongoing
threats. Continuous ingestion of these MPs disrupts
fish homeostasis; elevates levels of reactive oxygen
species (ROS); alters antioxidant parameters such as
SOD, CAT, GST, and GPx; and increases lipid oxidation
and the denaturation of the neurotransmitter enzyme
acetylcholinesterase (AChE). Moreover, higher rates
of apoptosis, DNA damage, and histological changes
have been observed in liver tissues of Oreochromis
mossambicus, Danio rerio, and Perca fluviatilis exposed
to MPs (Kaloyianni et al, 2021; Umamaheswari et al.,
2021; Jeyavani et al., 2023). Another study revealed that
including PP MPs in the diets of D. rerio and P. fluviatilis
inhibited cellular functions in the gills and hepatic cells due
to lipid peroxidation, DNA damage, protein proliferation,
apoptosis, autophagy, and metabolic changes (Bobori et
al,, 2022).

In Nile tilapia (Oreochromis niloticus), SOD, CAT, total
peroxides, and oxidative stress index activities, as well as
lipid peroxidation and DNA fragmentation, increased in
a dose-dependent manner in groups exposed to MPs at
the early juvenile stage. MPs caused an overproduction
of ROS, leading to oxidative stress and DNA damage by
altering antioxidant parameters (Hamed et al., 2020). In
rainbow trout (Oncorhynchus mykiss), inhibition of GSH
levels and antioxidant enzyme activities was detected
in all tissues targeted for the monitoring of oxidative
stress. Exposure to different PE MP-supplemented
feeds significantly upregulated DNA damage, apoptosis

profiles, and ROS-mediated apoptotic responses in a dose-
dependent manner (Atamanalp et al., 2023).

4.2. Changes in gene expression

MP pollution can alter gene expression in aquatic
organisms, potentially leading to changes in biological
processes. Barboza et al. (2018) demonstrated that
exposure to binary mixtures of MPs and mercury in
juvenile European sea bass (Dicentrarchus labrax) for 96
h resulted in neurotoxicity, as evidenced by inhibition of
AChE, increased LPO in the brain and muscles, and altered
activities of energy-related enzymes lactate dehydrogenase
(LDH) and isocitrate dehydrogenase (IDH). Specifically,
this study indicated that MPs and mercury, both alone and
in combination, caused neurotoxicity, oxidative stress, and
changes in energy-related enzyme activities in offspring.

Biofilm layers formed on the surfaces of MPs can
also impact the genetic structure of aquatic organisms
by modifying gene expression. This could negatively
affect reproduction, growth, immune function, and
other biological processes. Arias-Andres et al. (2018)
compared biofilm-forming bacterial communities on
MPs and discovered that aquatic bacteria can transfer a
model antibiotic resistance plasmid. They used exogenous
and red fluorescently labeled Escherichia coli as a donor
strain and green fluorescently labeled pKJK5, which has
trimethoprim resistance, as a plasmid. Their findings
indicated a higher frequency of plasmid transfer in
bacteria associated with MPs compared to free-living or
naturally aggregated bacteria, suggesting that horizontal
gene transfer may significantly influence the ecology of
aquatic microbial communities globally. Furthermore,
they noted that the spread of antibiotic resistance through
MPs could have profound implications for the evolution of
aquatic bacteria.

Plastic degradation results in nanoplastics that enter
terrestrial and aquatic ecosystems, including oceans, rivers,
and lakes. Martin-Folgar et al. (2023) explored changes
in gene expression in zebrafish embryos at 120 h after
fertilization following exposure to different concentrations
of PS nanoplastics (30 nm). They observed that the gene
encoding heat shock protein (hsp70) was downregulated
in a dose-dependent manner, while genes encoding
superoxide dismutase (SODI and SOD2), apoptotic genes
(casI and cas8), and interleukin 1-f (il1f3) were activated at
a PS nanoplastic concentration of 3 ppm. Conversely, the
antiapoptotic gene Bcl2« was inhibited at both 0.5 and 3
ppm. Most changes in gene expression related to oxidative
stress, apoptosis, and inflammation occurred at the highest
nanoplastic concentration. In another study, Qiang et al.
(2020) examined potential transgenerational effects in
zebrafish offspring after parental exposure to PS MPs. qRT-
PCR analysis revealed an increase in mRNA expression
of the hmgcra, hmgcrb, and hsd3b2 genes associated with
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fish gonads in response to MPs of 1 um at 1000 pg/L. They
also reported significant MP accumulation in zebrafish
intestines and notable changes in steroidogenic mRNA
expression in gonads at concentrations above 100 ug/L.

MPs, and particularly PP, cause various changes in gene
expression. Corinaldesi et al. (2021) studied the nutritional
activity of red coral (Corallium rubrum) exposed to MPs,
assessing defense mechanisms, tissue damage due to
physical contact, and molecular responses such as gene
expression and DNA damage. They found significant
changes in malnutrition responses, mucus production,
and gene expression levels of cytb, mtMutS, hsp70, and EF1
in corals exposed to medium and high concentrations of
MP particles.

In a study of fish immune systems, Liu et al. (2019)
evaluated the effect of MPs on enzyme activity and gene
expression in Chinese mitten crab Eriocheir sinensis
juveniles over 7, 14, and 21 days. Their findings indicated
that MPsimpacted immune enzyme activities (hemocyanin
(Hc), alkaline phosphatase (AKP), phenoloxidase (PO),
lysozyme (LSZ), and acid phosphatase (ACP)) and
immune-related gene expression, altering the diversity
and composition of the gut microflora in E. sinensis.

4.3. Genetic mutations
MPs can cause genetic mutations by interfering with
DNA replication and repair processes. These mutations
may reduce the genetic diversity of aquatic organisms
and contribute to genetic differences between individuals.
Gao et al. (2021) noted that with the rise of nanomaterials,
the detrimental effects of MPs in aquatic environments
have increased, presenting health risks. In their research,
they evaluated the toxic effects of PS MPs of different
sizes on zebrafish, both with and without the presence
of copper nanoparticles. They found that MPs affected
chromosome structure and significantly disrupted the cell
cycle by altering palmitoyl hydrolase activity. Additionally,
MPs were shown to inhibit DNA replication, delay the
progression of the S phase and G2/M phase of the cell
cycle, and predominantly impact the cell-cycle pathway.
MPs also enter the organs of vertebrates, altering their
behavior and triggering mutagenic and cytotoxic processes,
which can lead to significant ecological consequences
in freshwater ecosystems. For example, da Costa Araujo
et al. (2022) studied the effects of PE MPs through an
experimental food chain involving two fish species from
different taxonomic groups, Poecilia reticulata and D. rerio.
They observed that animals exposed to MPs exhibited
higher rates of nuclear abnormalities and changes in the
size and shape of erythrocytes and nuclei, suggesting
mutagenic and cytotoxic effects. In the same study, da
Costa Aragjo et al. (2022) examined the effects of MPs
mixed with other pollutants (organic and inorganic) on
freshwater fish. Their findings indicated that MPs, whether
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alone or in combination with other pollutants, displayed
genotoxic and mutagenic effects in freshwater fish but did
not exhibit antagonistic, synergistic, or additive effects
when mixed with the other pollutants.

4.4. Epigenetic effects

MP pollution can induce epigenetic changes in aquatic
organisms. Epigenetics reflect the ways in which
environmental conditions can modify the genome. These
modifications typically include changes to histone proteins,
structural alterations of chromatin, DNA methylation, and
interference by small RNAs (Schrey et al., 2013). DNA
methylation is particularly well studied among epigenetic
mechanisms. Such genomic modifications can alter gene
regulation without changing the DNA sequence itself,
affecting gene expression and leading to variations in
morphology and phenotype (Russo et al., 1996).

MPs are ingested by microscopic aquatic organisms,
such as zooplankton, and can bioaccumulate up the trophic
levels. The accumulation of MPs in the gut of organisms
can lead to several consequences, including starvation
due to blockages in the digestive tract, leakage of plastic-
associated chemicals into cells, and genomic modifications.
Methylation, which often correlates with decreased gene
activity, is one such modification. Wilkinson (2020)
explored how methylation accumulates in the genomes
of cells in MP-exposed bluegill (Lepomis macrochirus)
using methylation-sensitive amplified fragment length
polymorphisms (MS-AFLPs). His findings indicated that
most loci in the bluegill EBF-2 cell line were sensitive to
methylation and thus susceptible to epigenetic changes.
This study suggested that the duration of exposure might
not be a critical factor for the increase in methylation
observed in experimental cultures, implying that the mere
presence of MPs is sufficient to cause cellular damage.

5. Conclusions, and future
recommendations

This review has comprehensively examined the pervasive
presence and ecological impacts of MPs in aquatic
environments, drawing from a wide range of studies and
highlighting significant findings. MPs originate from
various sources, including terrestrial and aquatic activities.
Terrestrial sources include wastewater treatment plants,
landfills, illegal dumping, and agricultural practices,
while aquatic sources encompass maritime activities
such as shipping, fishing, and aquaculture. These MPs
are distributed through surface runoff, wind, and riverine
systems, ultimately reaching aquatic environments. MPs
pose serious risks to aquatic organisms. They affect the
feeding, growth, and reproductive health of aquatic species
and act as vectors for harmful contaminants like persistent
organic pollutants and heavy metals, exacerbating their
toxicity.

knowledge gaps,
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MPs have become widespread pollutants, now detected
in almost all studied organisms. Their impact varies across
different trophic levels and feeding types. Considering
the seasonal increases in pollutants due to currents, input
amounts, and the rising production of plastics, future
studies should extend beyond one-time assessments to
long-term investigations that take into account complex
food-web relationships and regional accumulation
characteristics.

Invertebrates possess rich species diversity with
different developmental stages, reproductive types, feeding
strategies, and trophic levels, making their interactions
with MPs diverse and complex. Detailed research is
needed to study the uptake, excretion, and accumulation
of MPs in invertebrates of the same species at different
developmental stages, age groups, and sexes. Long-term
and periodic (seasonal or monthly) studies in the same
regions are recommended to examine the impact of MPs
on species life-history traits such as growth, mortality,
and reproduction. It is particularly crucial to study the
effects of MPs on the molting process, which is critical
for crustaceans at various life stages (e.g., zoea, megalopa,
juvenile, and adult) in natural environments.

Various methods have been used for MP analysis in
invertebrates, with MPs measured in tissues in different
units (e.g., grams, liters, or individuals). There is a need for
standardization of methodology and units within the same
taxonomic groups. Due to their adhesive properties, MPs
carry different pollutants and microorganisms. Examining
these pollutants and pathogens in natural samples alongside
the effects of MPs on aquatic organisms will provide
more comprehensive results. Additionally, studying the
community-level effects of MPs and nanoplastics on the
food chain will contribute to the understanding of their
impact on aquatic ecosystems.

Although ingestion is considered the primary exposure
route for all vertebrates, inhalation and dermal exposure
are also crucial for organism health. These exposure
routes are largely unknown in fish, sea turtles, and other
aquatic mammals, indicating significant knowledge gaps.
Therefore, long-term studies should also consider nonoral
exposure pathways.

Various organisms, from the smallest microalgae to
the largest whales in aquatic systems, have been limitedly
studied for the trophic transfer and biomagnification

of MPs. This aspect requires further investigation. More
research using nondestructive sampling methods is needed
to understand the extent of MP impact on endangered
species, such as whale sharks and humpback dolphins, and
other threatened species.

Most studies rely on necropsies to understand the
presence of MPs in organisms. There is a need for
methodological advances to identify secondary markers
for MP presence, enabling more sustainable research with
less harm to natural ecosystems and organisms. While
researching the effects of MPs on aquatic organisms, it
is evident that most studies use pollutant concentrations
that represent best-case and worst-case scenarios.
Conducting studies that consider environmentally
realistic concentrations is crucial for obtaining accurate
results. Toxicity studies conducted with standard test
materials are insufficient to understand the effects of
real-environment plastics, which consist of various
combinations. Considering that plastic production uses
approximately 16,000 chemicals, studies conducted with
raw plastics make it impossible to understand the actual
toxicological impact.

Furthermore, given the potential of plastics to
absorb and interact with other pollutants, different
pollutant combinations should be investigated with
realistic environmental concentrations and different
scenarios. There is still insufficient information about
which organisms are most affected by plastic pollution.
Comprehensive and long-term studies are needed to
identify the most sensitive, most resilient, most affected,
and least affected organism groups.

Evaluating the impact of MPs in conjunction with
climate change will contribute to a more accurate
understanding of these effects. Negotiations for the
plastics treaty initiated by the UN/UNEP in 2022 are
expected to be concluded by 2025. This treaty must be
legally binding, enforce production restrictions, and limit
chemical use in plastic production. Local governments
and central authorities should regulate the use of plastic
objects, especially in areas adjacent to the feeding grounds
of endangered mega-, macro-, meso-, and microfauna,
imposing restrictions on plastic use.

Future research should include the genetic effects
of MPs on organisms across a broader range of aquatic
environments, including deep-sea and polar regions.
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Appendix Table 1. Summary of recent studies on the occurrence of microplastic in aquatic invertebrates.

Species Tot  Tissue Digestion Anaysi Microplastic ~ Polymer type MP Size Average Location
al method s shape range concentration Referen
indi ce
vid
uals
Fluores Fallon
cence and
Porif  Aplysina 6% micros 10-3000 113 £23 Saigon Bay, Freeman
era cauliformis 3 NaOCl copy um MPs/g dry w Panama (2021)
Amphimed
on 10-3000 14 + 2 MPs/g
compressa 3 um dry w
Callyspongi 10-5000 169 + 71
avaginalis 3 um MPs/g dry w
Ircinia 10-5000 71+ 20 MPs/g
campana 3 pum dry w
Mycale 10-5000 6+ 4 MPs/g
laevis 3 um dry w
Niphates 10-5000 75 + 38 MPs/g
erecta 3 pum dry w
Mediterranean  Krikech
Ircinia SEM/E 7.99 x 10° + coast of etal.
variabilis DX <10 pm 1.6 per/g Morocco, (2023)
Petrosia 7.83 x 10° +
ficiformis <10 pm 1.5 per/g
Chondrosia 6.40 x 10° +
reniformis <10 ym 0.6 per/g
Sarcotragus 4.62x10° £
spinosulus <10 um 1.6 per/g
(mean) Soares et
Cinachyrell Raman 131+ 1.37+£094 g Pituba Beach, al.
aalloclada 10 spectra PP 2.32mm ___ of sponge Brazil (2022)
Devereu
Cnid  Cosmetira 0.014 MPs xetal.
aria pilosella 4 FTIR Fibers (93%) PET, Cascamite 14 powdered resin mL™* North Sea (2021)
0.150 MPs
Cyanea mL™" - 0.219
capillata Fibers (88%) PE, PP, PAA, PAN, PVC, PC MPs mL™!
Cyanea
lamarckii 36 Fibers (84%)
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Aurelia
aurita Fibers (97%) PE, PAA, PET
Fibers (91%),
fragments 2.47 £2.01 Rapp et
Pelagia Tentacle, 10% (6%), lines Cotton, VI/viscose fibers. Acrylic, CP, MPs/individu Canary Island, al.
noctiluca 30 umbrella KOH wFTIR  (3%) cellulose, linen, PP, PE N/A al (tentacle) North Atlantic ~ (2021)
1.17 £ 1.70
MPs/individu
al (umbrella)
Cassiopea Fibers (94%), Tliff et al.
xamachana 115 HNO3 w-FTIR  fragments VI, nitrocellulose, PU Florida, USA (2020)
Fibers,
fragments, 2+1.15 Avio et
Rhizostoma 15% lines, films, MPs/individu al.
pulmo 14 Soft tissue ~ H202 Ww-FTIR  pellets al Adriatic Sea (2020)
Janssens
and
Fibers (88%), Garcia-
Actinia 30% fragments VI, PE, PES, PET, PP, PA, PS, PVB, North coastof ~ Vazguez
equina 50 H202 FTIR (12%) and acrylic fibers N/A Spain (2021)
Liugiu Island, Lim et
Galaxea surfaceand H202 0.95 + 0.66 southwestern al.
astreata 2 inside 37%HCL w-FTIR  fibers (100%) VI, PES/PET, PA,PP, PACA 0.5-5mm  MPs/g Taiwan (2022)
Acropora 0.77 £ 0.47
spp 5 fibers (100%) VI, PES/PET, PA, PE 0.5-5mm  MPs/g
Pocillopora 0.36 +0.16
verrucosa 8 fibers (100%) VI, PES/PET, PA, PACA, PS, PP 0.1-5mm  MPs/g
Eastern coast
of Hainan Tang et
Pocillopora 10% fiber (93%), 500-3500 3.68 £3.94 Island, China al.
damicornis KOH wFTIR  fragment, film CP > PET > PS> PE n MPs/cm™ Sea (2021)
Galaxea 5.89 +5.15
fascicularis MPs/cm™>

Moll

usca

Gastr Fiber (67%), Patria et

opod Littoraria 65% film (32%), Jacarta Bay, al.

a scabra 10 Soft tissue HNO3 fragment (1) 75.5MPs/ind  Indonesia (2020)
Batillaria Whole 10% Fiber (93%), CP (44%), PET (20%), PA (17%), PP 537 +1.24 South China Xuetal.
multiformis 10 body KOH w-FTIR  pellet (7%) (8.45%), PE (7%), PAN (4%) MPs g ww Sea (2020a)
Nerita
chamaeleo 1.50 +0.20
n MPs g™ ww

Janssens
and
Fiber (88%), Garcia-
Phorcus 30% fragment VI, PE, PES, PET, PP, PA, PS, PVB, 0.56-148.28 North coast of ~ Vazguez
lineatus 50 H202 FTIR (12%) and acrylic fibers MPs/g Spain (2021)
Steromphal
a
umbilicaris
Fiber > film > PE, PET, ABS, PAA, PVAL, 1.18 £ 1.40 Wang et
Neverita 10% fragment > PAN/PAA, PAN, PS, PF, PAN/PVC, 786 + 634  MPs/individu  Liaohe Estuary, al.
didyma 33 Soft body KOH u-FTIR  pellet PS/PAE, PS/PAN, PVA/PVEC um al China (2021)
Fiber > film > PE, PET, PP, PVAL, PAN/PAA, 1.97 £1.53
Rapana fragment > PP/PE, PP/PE/PDI, PE/PVA/PVC, 938 £ 758  MPs/individu
venosa 33 pellet ABS, PSI, PAN, PD, PMA, PVC um al
69%
HNO3 + Fiber (91 %), 0.25 to 0.88 Klang River Zaki et
Nerita 30% fragment (9 30-1850 MPs/individu  estuary, al.
articulata 67 H202 FTIR %) PE-PDM, PES, PU um al Malaysia (2021)
Nerita 0.50 to 1.75
polita 14 MPs/g
Chicoreus
capucinus 14
ATR- Fibers, Exp6sito
Bolinus FTIR, fragments, PE, PES, synthetic cellulose, PVDF, 20-5 000 0.94 + 0.62 etal.
brandaris 123 Soft tissue KOH u-FTIR  film PP, PAN, PA, PC, PS um MPs/g ww Catalan Coast (2022)
Abd-
14.8 £13.5 Elkader
Tectus 10% Fragments > MPs/individu ~ Red Sea coast etal.
dentatus 10 KOH fibers PTEE, PA, PEVA <1500 ym  al of Egypt (2023)
9.6+8.4
Strombus Fragments > MPs/individu
tricornis 10 fibers PEVA <5000 um  al
10.2 £8.2
Conus Fibers > MPs/individu
vexillum 10 fragments PA, PEVA <2000 um  al
Telescopiu 4-23 Jaffer et
m 10% Filament, 21-435 MPs/individu ~ Mangroves in al.
telescopium 60 KOH FTIR fragment PE, PP, PU pum al Mumbai, India  (2023)
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Bival
via

Patella
caerulea

Babylonia
areolata

Neverita
didyma

Chlorostom
a rustica

Buccinum
koreana

Siphonalia
subdilatata

Volutharpa
perryi

Rapana
venosa

Natica
janthostom
oides

Natica
maculosa

Rapana
venosa

Neverita
didyma

Eatoniella
sp.
Ruditapes
Pphilippinar

um

Mytilus
galloprovin
cialis

Mytilus
galloprovin
cialis
Mytilus
galloprovin
cialis

Mytilus
galloprovin
cialis

Mytilus
galloprovin
cialis

Chlamys
farreri
Crassostrea

gigas

40

435 Soft tissue

120 Soft tissue

40

20

20

20

169

40

10

Whole
8 body

48 Soft tissue

342 Soft tissue

Whole
317  body

232 Soft tissue

Digestive
systems

H202

69%
HNO3
10%
KOH
+30%
H202

10%
KOH

1%
NaOH

15%
H202

30%
H202
30%
KOH:
NaClO

10%
KOH

10%
KOH

FTIR

p-FTIR

p-FTIR

p-FTIR

p-FTIR

p-FTIR

FTIR
=

Raman

ATR-
FTIR

ATR
p-FTIR
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Fibers (80%),
fragments
(20%)

Fiber (95%),
film (4%),
fragment
(1%)

Fiber (98%),
fragment
(1%), film
(1%)

Fiber (98%),
fragment
(1%), film
(1%)

Fiber (98%),
fragment
(1%), film
(1%)

Fiber (98%),
fragment
(1%), film
(1%)

Fiber (98%),
fragment (1
%), film (1%)
Fiber (98%),
fragment
(1%), film
(1%)

Fiber (98%),
fragment
(1%), film
(1%)

Fiber (98%),
fragment
(1%), film
(1%)

Fiber (88%),
fragment,
film,
microbead
Fiber (88%),
fragment,
film,
microbead

Fiber,
fragment,
line, film,
pellet
Fragments
(67%), fibers
(28%), films
(4%)

Fiber (63%),
fragment
(37%)

Fibers,
fragments,
films

Fiber (45%),
fragment
(23%), film
(28%)

PE (38%), PP (32%), PET (15%),
HDPE (15%)

PET (25%), PES (16.7 %), PE (8%), PP
(8%), PTEE (8%)

CP, PET, PE, PP, PA, PP-PE, VI, PVC,
PAN

CP, PET, PE, PP, PA, PP-PE, VI, PVC,
PAN

PA, PE, PTFE, POM, PF, PP, PS, XT
Polymer

PE, PP, PS, PVC, PET, PA, EVA, P,
PEST, PU, epoxy resin, PBT,
polyterpene rubber, PVOH, silicone,
polyacrylate, copoly(EVA/PA),
copoly(PVC/PVOH/PE)

PET, EVA, PA, PAC, PC, PE, PAN,
PS, PP, PVC, PVF, CA

PE, PP, CE, PA 6, PET, E, Ul

PE, PP, CE

PVC, VI, CP, PES, CPE, PET, PVDF

0.13-4.3
mm

<1 mm,
1-5 mm

87-5000
um

<1000 pm

<1000 pm

33 to 1000
pm

N/A
1.66 £1.45
mm

1.7+0.1
mm

7-5000
um

0.29 + 0.54
MPs/individu
al

2.77 £0.94
MPs/g ww

3.99 £2.45
MPs/individu
al

3.08 £1.92
MPs/individu
al

5.15+2.46
MPs/individu
al

6.10 +2.53
MPs/individu
al

2.25+1.37
MPs/individu
al

4.28 £2.94
MPs/individu
al

2.13+1.39
MPs/individu
al

4.30 +2.87
MPs/individu
al

17.63 £ 15.40
MPs/individu
al

9.82 +3.52
MPs/individu
al

0.01-3.29 MPs

mg™!

1.2 +£0.45-1.5
+0.58
MPs/individu
al

0.69 MPs/
individual
0.6+0.1
MPs/individu
al

7.7+3.8
MPs/individu
al

0.8-2.1
MPs/individu
al

0.5-2.9
MPs/individu
al

1.2-3.3 MPs/
individual

Iskenderun
and Mersin
Bay,
southeastern
coast of
Tiirkiye

Eastern coast
of Thailand

Bohai Sea

Haizhou Bay,
China

Terra Nova
Bay, Antartica

Adriatic Sea
Turkish Coast
(Black Sea,
Marmara,
Aegean Sea)

Tirkiye
Bizerte lagoon,
Northern
Tunisia,
southern
Mediterranean

Jiaozhou Bay,
Yellow Sea,
China

Yiicel
and
Kilig
(2023)

Hongsa
wat et al.
(2024)

Zhao et
al.
(2024)

Xie et al.
(2024)

Sfriso et
al.
(2020)

Avio et
al.
(2020)
Gedik
and
Eryasar
(2020),
Giindog
duetal,
(2020)

Wakkaf
etal
(2020)

Ding et
al.
(2021)
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Ruditapes
philippinar

um

Mytilus
galloprovin
cialis
Ruditapes
decussatus

Mytilus
galloprovin
cialis

Mytilus
galloprovin
cialis

Mytilus
galloprovin
cialis

Mytilus
galloprovin
cialis

Mytilus
galloprovin
cialis
Donax
trunculus
Ensis
siliqua
Tapes
decussatus
Crassostrea

gigas

Mytilus
edulis

Ruditapes
philippinar

um

Crassostrea
gigas

Crassostrea
and
Saccostrea
genera
Crassostrea
gigas and
Saccostrea
glomerata

Crassostrea
madrasensi
s

Perna
perna

Perna
perna

Perna
viridis

60 Soft tissue

60

30

412 Soft tissue

Gastric
283  gland

180  Soft tissue

373 Soft tissue

163

59
74

47

300  Soft tissue

300

300

660

245  Soft tissue

30 Soft tissue

30

180

360

30%
H202+
HNO3

10%
KOH

30%
H202

10%
KOH

10%
KOH

KOH

10%
KOH

30%
H202

10%
KOH

10%
KOH

10%
KOH +
30%
H202

No
polyme
r
analysi
s

ATR-
FTIR

FTIR

ATR-
FTIR

ATR-
FTIR
ATR-
FTIR
and p-
FTIR

p-FTIR

Raman

p-FTIR

Raman
spectra

ATR-
FTIR
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Fiber (87%),
film (7%),
fragment
(5%)

Films (43%),
fiber (35%),
fragments
(22%)

Fiber (81%),
fragment, film

Fibers,
fragments,
films, pellets,
styrofoam

Fiber,
fragment,
line, film

Fibers,
fragments,
film

Fragment
(69%), fiber
(31%)

Fragment
(72%), fiber
(28%)

Fragment
(69%), fiber
(31%)
Fragments
(66%), fibers
(28%), flakes
(2%), spheres
(3%)

Fibers (62%),
fragments
(38%)

Fiber (70%),
fragment
(25%), film
(4%), pellets
(0.15)

Fiber (70%),
fragment
(25%), film
(5%)

Fiber (77%),
fragment
(16%), films
(4%), foams
(3%)

PA (38%), LDPE (17%), PET (17), PP
(7%), PVA (7%), UPVC (5%), ABS
(3%), HDPE (3%), PS (2%), PVC (2%)

PET (66%), PE (15%), PP (8%)

PET (42%), PE (30%), PS (28%)

EPDM, EPR, PA 6, PET, PMP, PS

PE, PES, synthetic cellulose, PVDF,
PP, PAN, PA, PC, PU,PS

30% PP, 25% PES/PET, 7% PE, 6% PS,
5% polyacrylate, 4% PA, 2% PEVA,
2% polystyrene-butadiene

40% PP, 20% PE, 20% PES/PET, 6%
polyacrylate, 4% PA, 2% PS, 2%
PEVA, 2% PVC

PET (70%), PP (9%), PVC (6%),
HDPE (5%), PS (4%), PA (3%), PE
(2%)

PES, PE, PS, PP, PVA

PE (28%), PP (18%), PA (16%), PES

(14%)

PE (28%), PP (18%), PA (16%), PES
(14%)

PE, PP, PA, PS, PET, PEST

0.015-1
mm, >1
mm

200-5000
um

0.1-4.99
mm

<1 mm

0.1-5 mm

20-5000
pum

<300 um

<300 um

<300 um
91.73 +
5.95 um
to 482.68
+37.49

pum

>1 mm

500 um-3
mm

4.3-57.2
MPs/individu
al

8.72 £5.30
MPs/individu
al, 3.90 MPs/g

4.14 MPs/g

0.5
MPs/individu
al

0.30-7.53
MPs/individu
al (2.06
MPs/individu
al)

1.28
MPs/individu
al

2.08 £1.43 -
9.45 +3.20
MPs/individu
al

6.47 £7.95
MPs/ g ww
1.92 +£0.85
MPs/g ww
2.45 % 2.59
MPs/g ww
4.97 +4.78
MPs/g ww
2.09 £ 1.12
MPs/g ww
0.37 £0.29
MPs/g, 1.67
1.50
MPs/individu
al

0.43 £0.32
MPs/g and
2.19+1.20
MPs/individu
al

0.15 £ 0.08
MPs/g, 1.00
0.72
MPs/individu
al

3.24 £ 1.02
MPs/g ww

0.83 £0.08
MPs/individu
al

20.57 £9.24
MPs/individu
al

3.02+1.29
MPs/g

0.87 £0.55 to
10.02 £ 4.15
MPs/individu
al

0.1 +£0.03 to
2.05+0.33
MPs/g

[zmir Bay,
Aegean Sea

Istanbul
shores, Tirkiye

Marmara
coastline of
Tiirkiye
Salento coastal
seas, southern
Adriatic Sea,
northern
Ionian Sea,

Sea of
Marmara

Catalan Coast

Coast of Korea

Coastal areas of
Taiwan

Southern
Australia

Southwest
coast of India

Coast of Tamil
Nadu and
Kerala

Yozukm
az
(2021)

Galyon
and
Algay
(2023)

Gedik et
al.
(2022)

Trani et
al.
(2023)
Tungelli
and
Erkan
(2024)

Expdsito
etal.
(2022)

Cho et
al.
(2021)

Liao et
al.
(2021)

Wootto
netal
(2022)

Abisha
etal.
(2024)

Patterso
netal
(2021)
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Perna
viridis Soft tissue
Amarillade
sma
mactroides
Amarillade
sma
mactroides 30
Brachidont

es

rodriguezii 90

160  Soft tissue

Tridacna
maxima 10
Pinctada

radiata 10
Brachidont

es
pharaonis 10

Tegillarca
granosa Soft tissue
Mactra
veneriformi
s 33 Soft body
Sinonovacu
la
constricta 30 Soft body
Scapharca Whole
subcrenata 15 body
Mactra
veneriformi
s 10
Ruditapes
philippinar
um 10
Ceph Stomach,
alopo Dosidicus gill,
da gigas intestine
Dosidicus
gigas 50 Stomach
Soft tissue
(without
Uroteuthis gut and
duvaucelli viscera)
Stomach,
Loligo gills, ink
vulgaris sac
Ommastrep
hes caroli
Sthenoteut
his pteropu
Vampyrote
uthis
infernalis
Abralia
veranyi
Octopus Gastrointes

vulgaris 6 tinal track

69%
HNO3

10%

KOH

10%
KOH

10%
KOH

69%
HNO3

10%
KOH

10%
KOH

10%
KOH

10%
KOH

10%
KOH

10%
KOH

10%
KOH

NaOH

10%
KOH

p-FTIR

u-ATR

p-ATR

p-FTIR

p-FTIR

u-FTIR

p-FTIR

FTIR

FTIR

FTIR
No
polyme
r
analysi
s

LDIR

FTIR
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Fiber (93%),
fragment
(3%), film
(3%), pellet

(1%) PE (28%), PP (12%), PET (4%)

Fiber (76%),

fragment PA (27%), PE (18%), PET (9%), PVC
(22%), pellet (7%), P1 (7%), cellulose (7%), PP (6%),
(2%) PLA, POM, PU,

100% fiber Cellulose, PA, others

100% fiber

Fibers >

fragments PA, PP, LDPE, PEVA

Fragments >

fibers PA, PP, HDPE, PEVA

Fragments >

fibers LDPE

Fiber (96%),

fragment

(2%), film

(2%) PS (48%), PE (30%), PES (9%)

Fiber > PET, PVAL, PAN/PAA, PE, PAS, PF,
fragment > PVP, PS/PMMA, PE/PVA/PVC,
film PVA/PVEC

Fiber > film >
fragment
Fiber (79%),
microbead,
fragment, film
Fiber (79%),
microbead,
fragment, film
Fiber (79%),
microbead,
fragment, film

PET, PVAL, PAN/PAA, PP/PE, PP,
EP, PE/PVC, PVC/PVA

PET, PE, PP

PET, PE, PP

PET, PE, PP

Fiber (93%),
fragments
(7%)
Fragment
(54%), fiber
(43%), film
(13%)

CP, PAA, PET, PP

PET (32%), CP (18%), PS (11%), EP,
PA, PP, PVC, PAN, AC, SBR, PDMS

Fibers,
fragments

and sheet PP (40%), PE (27%), PS (20%)

Fibers

Fibers

Fibers and
films

Fibers,
fragments,
films and
foam

Fibers (37%)
and
fragments
(63%)

Fibers (50%),
fragments
(38%),
filaments

PE, PET, PVC, PA, SBR, CPI, PU

PET/PES (68%), PE (13%), PVC
(11%), SR (5%), PA (3%)

<1 mm,
1-5 mm

<10,000
um

0.5-5 mm

<0.5 mm

<1500 pm

<5000 pm

<2000 pm

<1 mm,
1-5 mm

952 + 743

931 £ 705

<1000 pm

<1000 pm

<1000 pm

80 to 4632
um

58-2944
pm
100-200
wum and
200-300
um

<0.5 mm,
0.5-1 mm

<0.5 mm
<0.5 mm,
0.5-1
mm, 1-
2.5 mm,
2.5-5 mm

<5 mm

<5mm

1.56 =
2.26 mm

2.41 £ 0.66
MPs/g ww

23+54
MPs/g ww

0.3-0.5 MPs/g
ww

0.15-0.25
MPs/g ww

14.2 £13.8
MPs/individu
al

16.2 £20.7
MPs/individu
al

253 +32.6
MPs/individu
al

2.84 +0.66
MPs/g ww

1.58 +1.70
(0-6)

0.83 £0.99
(0-3)
3.20+2.85
MPs/individu
al

6.60 + 3.89
MPs/individu
al

5.00 £2.35
MPs/individu
al

0.20 to 0.74
MPs/g ww

0.88 £1.12
MPs/individu
al

0.18 £0.48
MPs/individu
al

0.25+0.71
MPs/individu
al

0.13 £0.35
MPs/individu
al

8.75 +12.34
MPs/individu
al

9.58 £8.25
MPS/individu
al

237+213
MPs/individu
al

10.30 £ 16.66
MPs/individu
al

Eastern coast
of Thailand

Coastal region
of southern
Brazil

Coast of
Argentina

Red Sea coast
of Egypt

Eastern coast
of Thailand

Liaohe Estuary,
China

Haizhou Bay,
China

Northern
Humboldt
Current,
western South
America, Peru

Eastern Pacific
Ocean

Coast of
Kerala, India

Madeira Island,
northeast
Atlantic

Southwestern
Atlantic

Southern
Tyrrhenian
Sea, western

Hongsa
wat et al.
(2024)

Jankaus
kas et al.
(2024)
Truchet
etal.
(2021)

Abd-
Elkader
etal.
(2023)

Hongsa
wat et al.
(2024)
Wang et
al,
(2021)

Xie et al.
(2024)

Gong et
al.
(2021)
Wang
and
Chen
(2023)

Daniel
etal
(2021)

Samboli
no et al.
(2023)

Ferreira
etal.
(2022)

Peda et
al.
(2022)
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(8%), films Mediterranean
(4%). Sea
no
polyme Prasetyo
Outer r Fibers, and
Sepia body, gills,  70% analysi  fragments, <0.25to North Jakarta, Putri
pharaonis 16 intestines HNO3 s films 2.0 mm Indonesia (2021)
no
polyme
r Fragments, 6.82 +5.52 Armelli
Sepia Gastrointes  10% analysi fibers, and MPs/individu ni et al.
officinalis 122 tinaltrack KOH s spheres al Adriatic coast (2023)
Digestive Fibers (87%),
gland, fragments
stomach, Enzymati (8.4%), 1.85 fibers/g Oliveira
Sepia caecum/int ¢ microfilm (digestive etal.
officinalis estine digestion  FTIR pieces (4.6%) N/A gland) Portugal (2020)
Arth
ropo
da
Fiber (100%) 0.061
and fiber MPs/individu
(86%), al, 0.033 Zheng et
Crus  Brachyura Whole 10% fragment 49-10,331 MPs/individu  Bohai sea, al.
tacea larvae body KOH wFTIR  (14%) pm al China (2020)
Mantis Fiber (60%), 0.040
shrimp Fragment CP (53%), PET (18 %), Polymerized, 49-10,331  MPs/individu
larvae (40%) oxidized organic material (14%) um al
0.036
Amphipod CP (68%), PET (20%), PMA (4%), 77-4346  MPs/individu
a Fiber (100%) PVC (4%), DEA (4%) um al
0.03
MPs/individu
al, 0.025
Fiber, 49-10,331 MPs/individu
Copepoda fragment pum al
0.019
MPs/individu
al, 0.022
49-10,331  MPs/individu
Euphasia Fiber (100%) um al
Euph Fiber (77%), 0.29 +0.14 South Shetland ~ Zhu et
ausia  Euphausia 15% fragment MPs/individu  Islands, al.
cea superba 355 KOH FTIR (17%), sheet PE (33%), PP (24%), PES (21%) 80 um al Antartica (2023)
Fiber (87%), 0.20 £ 0.083 South Orkney
fragment, MPs/individu  Islands,
82 sheet PE, PES, PA, PP 43 um al Antartica
10%
KOH + 0.4+05 Primpke
Euphausia 30% MPs/individu  Antarctica etal.
superba 40 Stomach H202 w-FTIR al Peninsula (2024)
Amphibala Fiber (96%),
Cirri  nus 10% fragment (3), CP (58%), PET (11%), PP (10%), PE Coast of Hong ~ Xuetal.
pedia  amphitrite 50 KOH FTIR pellet (1%) (8%), PA(6%) 0-8.63 MPs/g  Kong, China (2020b)
0-1.90
Capitulum MPs/individu
mitella 50 al
Tetraclita
Jjaponica
Jjaponica 50
Fistulobala
nus
albicostatus 50
69-3743 0.52 £0.38
pum MPs/individu Zhang et
Balanus 10% Fiber > CP (28.17%), PP (25.35%), PE (without al (without The Yellow al.
albicostatus KOH fragment (23.94%) tube) tube) Sea, China (2022)
194-2885  0.08 +0.08
um (with  MPs/individu
tube) al (with tube)
Capo Milazzo
Fibers (86%) Marine
and 1.74 £ 0.80 Protected Area,  Scotti et
Lepas Gastrointes  10% fragments MPs/individu  Sicily, al.
anatifera 120  tinal tract KOH FTIR (14%) PA, PVC, PE 1-2 mm al Tyrrhenian Sea  (2023)
PE, PDMS, PP, PF, PVAL, PP/PE,
Stom PE/PVA/PVC, PET, EP, PAN, PC, Wang et
atopo  Oratosquill Gastrointes  10% Fragment > POA, PEI, PAN/PAA, PP/PE/PDI, 910 + 700 1.33+£1.39 Liaohe Estuary, al.
da a oratoria 30 tinal tract KOH w-FTIR  fiber PMVA, PS/PMMA/PAN, PAA um (0-7) China (2021)
Fragment, PE, PP, PS, PVC, PET, PA, EVA, PI, Avio et
Squilla 15% line, film, PEST, PU, epoxy resin, PBT, 1.25+05-2 al.
mantis Soft tissue  H202 u-FTIR  pellet polyterpene rubber, PVOH, silicone, N/A +14 Adriatic Sea (2020)
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Amp
hipo
da

Deca
poda

Oratosquill
a oratoria
Talorchesti
a
nipponensis

Ampithoe
valida,
Trinorchest
ia trinitatis

Themisto
Spp.

Paratya
australiensi
s
Macrobrac
hium
rosenbergii
Fenneropen
aeus
indicus

Aristeus
antennatus

Pleoticus
muelleri

Parapenaeo
psis

hardwickii

Metapenae
us
monoceros,

Parapeneop
sis stylifera
Penaeus
indicus

Penaeus
kerathurus

Palaemon
sp.
Metapenae
us
monoceros,
Penaeus
monodon

Metapenae
us affinis

Litopenaeu
s vannamei

Litopenaeu
s vannamei
Acantheph

yra
curtirostris

11

21

Soft tissue

‘Whole
body

Gastrointes
tinal track

Whole
body

Gastrointes
tinal track

Abdominal
muscle
with GI

Flesh

Gastrointes
tinal track

Soft tissue

Gastrointes
tinal track

Gastrointes
tinal track

Intestine

GIT, gills,
exoskeleto
n

Stomach

10%
KOH w-FTIR

30%
H202 FTIR

20%
KOH FTIR

2N
NaOH p-FTIR

10% Raman
KOH spectra
10%

KOH FTIR
Stomach

contents

10%

KOH+ p-

30% Raman
H202 spectra
10%

KOH+

30%

H202 w-FTIR
69% Raman

HNO3 spectra

15%

H202 u-FTIR

30%

H202 w-FTIR
Confoc
al

10% Raman

KOH spectra

10%

KOH w-FTIR

65 %

HNO3 +

68 %

HClO4 N/A
Nitric

70%-+

perchlori ~ FTIR
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Fiber (88%),
fragment,
film,
microbead

Fiber

Fiber

Fibers

Fibers
Fibers,
fragments,
and films

Fibers

Fibers

Fibers
Fibers,
fragments,
beads, pellets
and films

Fragment,
line, film,
pellet

Fiber,
fragment,
line, film,
pellet
Fibers,
particles and
fragments

Fibers, films

Fibers

Fiber,
fragment,

films, granule

Fragment

polyacrylate, copoly(EVA/PA),
copoly(PVC/PVOH/PE)

CP (30%), PET (25%), PE (17%), PP,
PA, PP-PE, VI, PVC, PAN

PE, PP, PS, PET

PES, acrylic, PA, PP, PBT

VIand PES

Cellulose, PP, PE

PE, PP, PA

Cellulosic, PET, acrylic

PE, PP, cellulose

Cellulose and PP

PE, PP, PET, PES, and PA

PA6, VI

PET, PP, PS

Polyethyl acrylate acrylamide
copolymer, PE-PP copolymer

<1000 pm

59 +8.6
pm

<lto2
mm

<0.5-5
mm

157-2785
um

0.16-37.9
mm

0.5-5 mm
74-2000

um

100-250

<250 um-

Between
<100 and
>1000 pm

<0.5 mm

>270 um

MPs/individu
al

7.36 £ 4.57
MPs/individu
al

5.5-76.3
MPs/individu
al

24 + 31 MPs/g
5-12
MPs/individu
al

0.04 +£0.07
MPs/g

Fiber load
from <1 mm
to >1000
mm/individua
1

1.31 fibers/g

0.95+0.28
MPs/individu
al

7.23£2.63
MPs/individu
al

5.36 £2.81
MPs/individu
al

7.40 £ 2.60
MPs/ind
1+0
MPs/individu
al

121+
0.44MPs/indiv
idual

3.40 +£1.23
MPs/g

1.02 MPs/g

14.08 £ 5.70
MPs/g

114.7 £33.2
MPs/g, 13.7
5.3 MPs/g, 3.0
+ 0.5 MPs/g
0.88
MPs/individu
al

Haizhou Bay,
China

Japanese
coastal
enviroment

Sub-Antarctic
Scotia Sea,
Western
Antarctic
Peninsula
Streams and
wetlands in
Northern
central
Victoria,
Australia
Pearl River
Estuary, South
China (farmed)

Kochi, India

Catalan coast,
Spain

Bahia Blanca
Estuary,
Atlantic Ocean,
Argentina

Xiangshan Bay,
China (farmed)

North-eastern
Arabian Sea

Adriatic Sea

Northern Bay
of Bengal,
Bangladesh

Musa Bay, Iran
Zhubhai City,
Guangdong
Province,
China (farmed)

Gulf of
California

Gulf of Mexico

Xie et al.
(2024)

Katte et
al.
(2023)

Jones-
William
setal
(2020)

Nan et
al.
(2020)

Lietal
(2021)
Daniel
etal.
(2020)

Carreras
-Colom
etal.
(2020)
Fernand
ez
Severini
etal.
(2020)

Wu et
al.
(2020)

Gurjar
etal.,
(2021)

Avio et
al.
(2020)

Hossain
etal.
(2020)

Keshava
rzifard
etal
(2021)

Yan et
al.
(2021)
Valencia
Castaie
daetal.
(2022)
Bos et
al.
(2023)
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A
purpurea
Bentheogen
emma
intermedia

Gennadas
capensis

G. valens

Notostomu
s gibbosus

Plesionika
richardi

Systellaspis
debilis

Penaeus
monodon

Caridina
cantonensis

Penaeus
indicus

Metapenae
us dobsoni

Penaeus
merguiensis
Metapenae
us
monoceros

Palaemon
styliferus

Nephrops
norvegicus
Nephrops
norvegicus

Nephrops
norvegicus

Nephrops
norvegicus

Palinurus
elephas

Neohelice
granulata

Chiromant
es dehaani

Metopogra
psus

43

21

46

46

60

Gastrointes
tinal tract
(GIT) and
muscle

Soft tissue

Stomach
and
intestine

Gastrointes
tinal tract

Gut,
hepatopan
creas and
tail

Stomach
and gill

Gill,
gastrointes
tinal tract

cacid
70%

30%
H202

15%
H202

stomach
contents

FTIR

p-FTIR

p-FTIR

10% KOH + Tween
20, 69% HNO3

Tween
20,
protease
digestion
+30%
H202

20%
H202

30%
H202

65%
HNO3

p-FTIR

p-FTIR

Micros
copy
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Fiber

Fragment

Fiber

Fiber,
fragment

Fiber

Fragment

Fragment
Fibers (30%)
and
fragments
(29%)

Fragment,
line, film,
pellet

Fragments
and films

Fibers

Fragments
and fibers

Fragments

(99%), fiber
(2%)

Fibers and
fragments
Fibers

Fiber (68%),
film (29%),

Alkyd resin

Alkyd resin

Cp

CP, PE, alkyd resin, PU

Cp

PP

PE, PP copolymer, CP

LDPE, HDPE, PP, PMMA, PVC, EVA

PE, PP, PS, PVC, PET, PA, EVA, P,
PEST, PU, EP, PBT

PE, PP, PS

PS, PP, PES, PC and PE

PES, PA 6, PVC and PE

PC, PVC, PPS, HDPE,

PET, PP, polyisoprene chlorinate,
aramid

PET, PP

N/A

<100 pm

0.2-1 mm

2.81 mm

50-100
pum
0.02-0.22
mm
(majority
size)
0.02-0.12
mm
(majority
size)
<500-
1500 um
fibers,
<200 pm
fragments

2700 =
410 pm

N/A

0.30
MPs/individu
al

0.73
MPs/individu
al

0.87
MPs/individu
al

0.62
MPs/individu
al

0.53
MPs/individu
al

0.32
MPs/individu
al

0.26
MPs/individu
al

9.22 MPs/g
GIT, 1.81
MPs/g muscle
25.32 MPs/g
GIT, 6.32
MPs/g muscle
15.54 MPs/g
GIT, 1.43
MPs/g muscle
10.01 MPs/g
GIT, 4.50
MPs/g muscle
23.63 MPs/g
GIT, 3.31
MPs/g muscle
21.51 MPs/g
GIT, 2.73
MPs/g muscle
21.96 MPs/g
GIT, 9.76
MPs/g muscle
1+0
MPs/individu
al

2.1+0.6 MPs
t03.9+0.5
MPs/individu
al

1.75+£2.01
MPs/individu
al

17
MPs/individu
al

76.6 £51.5
MPs/individu
al (in
stomach)

82.9 £ 58.6
MPs/individu
al (in gill)

Between <5
and >18
MPs/g

1-2
MPs/individu
al

327.56
MPs/individu
al

Bay of Bengal

Adriatic Sea
Coast of
Sardinia Island,
Mediterranean
Sea

West and
northeast coast
of Ireland

Adriatic Sea

Northwest
Aegean Sea,
Greece

Bahia Blanca
Estuary,
Argentina

Osaka Bay,
Japan
Pramuka
Island,
Indonesia

Mercy
and
Alam
(2024)

Avio et
al.
(2020)

Cau et
al.
(2020)
Hara et
al.
(2020)

Martinel
lietal
(2021)

Kampou
ris et al.
(2020)

Villagra
netal
(2020)
Nakao et
al.
(2020)
Patria et
al.
(2020)
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quadrident
atus

Carcinus
maenas
Eriocheir
sinensis

Tubuca
dussumieri
Cranuca
inversa
Gelasimus
vocans

Pachygraps
us
transversus

Parasesarm
a bidens
Parapleptu
ca
splendida
Metopogra
psus
frontalis

Thalamita
crenata
Parasesarm
a biden,
Ocypode
ceratophtal
mus

Uca
arcuata,
Pyrhila
pisum,
Gelasimus
borealis
Metopogra
psus
frontalis,Pa
rasesarma
plicatum
Hemigraps
us
penicillatus
, Austruca
lactea
Macromed
aeus
distinguend
us, Gaetice
depressus
Macrophtal
mus
convexus

Chiromant
es dehaani
Portunus
tritubercul
atus,
Matuta
planipes
Charybdis
Jjaponicus,
Dorippe
Jjaponica

Chionoecet
es opilio
Portunus
tritubercul
atus

Portunus
pelagicus

tota
171

30

Gill,
gastrointes
tinal tract

‘Whole
tissue

Stomach

Stomach,
gill

‘Whole
body

Gill and
gastrointes
tinal tract

Gastrointes
tinal track,

muscle and
gills

Whole soft
tissue

Gastrointes
tinal tract

Soft tissue
without

10%
KOH

10%
KOH

35%
H202

10%
KOH

30%
H202

10%
KOH

10%
KOH

10%
KOH

10%
KOH

u-FTIR

Micros
copy

FTIR

p-FTIR

-
Raman
spectra

p-FTIR

p-FTIR

u-FTIR

FTIR
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fragment (1),
granula (1%)
Fibers, films
and
fragments

Fibers

Fibers
Fibers,
fragments,
particles

Fibers,
fragments

Fibers

Fibers,
fragments,
films and
spheres

Fragments,
fibers

Fiber > film >
pellet >
fragment

Fragments

PP, PES

PA

PE, PET, VI

CP, PET, PA, PP, PE

PE, PET

CP, PES, PE, PP, PA

PVAL, PES, PA, PE

PET, PE, PVAL, PS, PP, PP/PE, PF, PC

PP, PE, PS

52 um to
34 mm

0.45-4.2
mm

>2 mm

1-20 um,
20-5000
um

19.97-
4976.22
pum

0.87 +
0.14 mm

1005 +
789 um

100-300
mm

1-10.3
MPs/individu
al

0.13-1.24
MPs/g
0.33-0.52
MPs/g

0.79 MPs/g

1
MPs/individu
al

91.53
MPs/individu
al

25.61
MPs/individu
al

69.21
MPs/individu
al

41.57
MPs/individu
al

<lto2.84+
0.44 MPs/g

0.39-2.83
MPs/individu
al, 0.74-4.96
MPs/individu
al

5.17 +4.43
MPs/individu
al

0.0-0.6
MPs/individu
al

1.33 £1.24
MPs/individu
al

0.14 + 0.44
MPs/individu
al

Thames
Estuary, UK

Kenyan Coast

Brazil

Mangroves of
Hong Kong

South China
Sea

Beibu Gulf
mangrove
wetland, China

Yellow sea and
east China sea,
China

Chukchi Sea,
Arctic Ocean

Liaohe Estuary,
China

Coast of
Kerala, India

McGora
netal
(2020)

Awuor
etal
(2020)

de
Barros
etal.
(2020)
Not et
al.
(2020)

Xuetal.
(2020a)

Zhang et
al.
(2021b)

Zhang et
al.
(2021a)

Fang et
al.
(2021)
Wang et
al.
(2021)
Daniel
etal.
(2021)
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Appendix Table 1. (Continued.)

gut and
viscera
Keerthik
Portunus Gastrointes  10% ATR- Fiber > film > Thoothukudi aetal
pelagicus tinal tract KOH FTIR fragment PE, PP 0.5-2mm  0.10 = 0.05 coast, India (2023)
25+1.6
MPs/individu
al out of Renzi et
Callinectes Fibers, which 20% are  Lesina lagoon,  al.
sapidus fragments PE, PET, PA,VI, PES,CP >100 microplastics  Italy (2020)
Fibers,
fragments, 0.87 Gulf Coast, Waddell
Callinectes pellets and Cellulose/Viscose, PES, PAN, PS, PET,  10-400 MPs/individu Corpus Christi  etal.
sapidus Stomach beads PC, phenoxy resin um al Bay (2020)
Fibers, pellets,
microbeads, 43 to 50 Aliko et
Callinectes 10% ATR- and MPs/individu al.
sapidus 90 Gut KOH FTIR fragments HDPE, PP, PE, LDPE 0.1-5mm al Albania (2022)
Cappare
Callinectes 30% ATR- Fragment > Mean2.4 379 lli et al.
sapidus Gills H202 FTIR fiber SI (53.1%), PE (12.5%), PL +14mm  g/individual Gulf of Mexico ~ (2022)
8.62
Mean 3.8 MPs/individu
Digestive tract +12mm al
Mean 2 +
Muscle 0.5 mm 6.89 MPs/g
Fiber (72%),
p- fragment Compa
Callinectes 10% ATR- (26%), film Balearic Island, etal.
sapidus 120  Stomach KOH FTIR and granule LDPE (39%), PP (18%), HDPE, 26% 21+1.5 Spain (2023)
Gastrointes
Callinectes tinal tracts, 0.28 Simantir
sapidus(juv stomach 35% Raman MPs/individu  Antinioti is et al.
eniles) 77 and gill H202 spectra PA,PE al lagoon, Greece  (2024)
Gills, Observ
hepatopan ation
creas and using 7.58 £ 3.96 to Villegas
Leptuca gastrointes  30% micros  Fibers, 29.81+18.13  Isla Santay, etal,
festae tinal tract H202 copy fragments MPs/g tissue Ecuador (2021)
Minuca 0.50 + 0.87 to
ecuadorien 22.93+10.77
sis MPs/g tissue
Bahia Blanca
Leptuca Fiber, estuary, Truchet
uruguayens 10% ATR fragment, 1.5+17 Buenos Aires, etal.
is Carapace KOH u-FTIR  paint sheet Cotton PA, CE MPs/g ww Argentina (2022)
Gills 1+1MPs/g
0.36 £ 0.25
Gut MPs/g
0.70 £ 0.6
Carapace, gills, gut MPs/g
Cyrtograps Fiber, Truchet
us 10% ATR fragment, 0.67 £ 0.52 Buenos Aires, etal.
angulatus Carapace KOH u-FTIR  paint sheet Cotton PA, CE MPs/g Argentina (2022)
0.11 £ 0.07
Gills MPs/g
0.19+0.11
Gut MPs/g
025+0.3
Carapace, gills, gut MPs/g
Fiber, Truchet
Neohelice 10% ATR fragment, 0.11 +0.07 Buenos Aires, etal.
granulata Carapace KOH u-FTIR  paint sheet Cotton PA, CE MPs/g Argentina (2022)
0.17 £0.14
Gills MPs/g
0.06 + 0.07
Gut MPs/g
Eggs 4+2 MPs/g
Carapace,
gills, gut, 1.08 + 1
eggs MPs/g
Fiber (88%), 0.02+0.13 -
film (7%), 1.82 £ 6.31 Garcia
Emerita Digestive 10% fragment MPs/individu  Beaches of etal.
analoga 480  tract KOH (3%) <1000 um  al Lima (2023)
Fiber (88%),
fragment, 5.50 + 4.01
Charybdis 10% film, CP, PET, PE, PP, PA, PP-PE, VI, PVC, MPs/individu ~ Haizhou Bay, Xie et al.
Jjaponica 10 Soft tissue  KOH u-FTIR  microbead PAN <1000 ym  al China (2024)
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Fiber (88%),
Portunus fragment, 4.55 +3.08
tritubercul film, CP, PET, PE, PP, PA, PP-PE, VI, PVC, MPs/individu
atus 11 Soft tissue microbead PAN <1000 um  al
Fiber (88%),
fragment, 5.50 +7.45
Charybdis film, CP, PET, PE, PP, PA, PP-PE, VI, PVC, MPs/individu
variegata 8 Soft tissue microbead PAN <1000 um  al
Fiber (88%),
fragment, 9.71+594
Dorippe film, CP, PET, PE, PP, PA, PP-PE, VI, PVC, MPs/individu
japonica 7 Soft tissue microbead PAN <1000 um  al
Fiber (88%),
fragment, 13.80 + 8.73
Eucrate film, CP, PET, PE, PP, PA, PP-PE, VI, PVC, MPs/individu
crenata 10 Soft tissue microbead PAN <1000 um  al
Fiber (88%),
Eriocheir fragment, 15.00 + 4.72
leptognath film, CP, PET, PE, PP, PA, PP-PE, VI, PVC, MPs/individu
us 9 Soft tissue microbead PAN <1000 um  al
Ano
mura
(her Pechora Sea, Gebruk
mit Pagurus stomach Fibers and North-West etal.
crab)  pubescens Stomach contents fragments Russia (2021)
Mero Juvenile 21.1+134 Northern Wang et
stom  Tachypleus Gastrointes  10% Fiber (99%), MPs/individu  Beibu Gulf, al.
ata tridentatus tinal tract KOH w-FTIR  flake (1%) CP), SR, PP, PE, PAN, PA, PVC,PVA <5 mm al China (2022)
Echinodermata
Fiber (88%),
Asterias fragment, 35.71 + 18.54
Aster  rollestoni Whole 10% film, CP, PET, PE, PP, PA, PP-PE, VI, PVC, MPs/individu  Haizhou Bay, Xie et al.
oidea  Bell 7 body KOH p-FTIR  microbead PAN <1000 um  al China (2024)
Fiber,
fragment, 1-1.66 +£0.58 Avio et
Echin  Paracentrot 15% line, film, PE, PP, PS, PVC, PET, PA, EVA, P, MPs/individu al.
oidea s lividus 21 Soft tissue H202 w-FTIR  pellet PEST, PU al Adriatic Sea (2020)
Fibers (97%),
Digestive fragments 9.7+39 Sevillan
Diadema tract and 33% u- (2%), films Cellulosic (46.0%), PP (24.3%), PET 83-11,638 MPs/individu  Canary Island, o-
africanum 33 gonads H202 Raman  (1%) (24.3%), pm al Spain Gonzéle
zetal
(2022)
Pari and
Fragment Harapan Rahmaw
Echinometr Digestive 30% (75%), fiber PES (31%), PE (21%), PP (21%), PVC 200-2070  0.27 +0.28 Islands, ati et al.
a mathaei 5 tract H202 FTIR (25%) (10%), EP (10 %), um MPs/g dry w Indonesia (2023)
Fragment
Diadema (75%), fiber 140-2690  3.93 +2.25
setosum 16 (25%) PP (67%), PES (33%) um MPs/g dry w
Hemicentro Fiber (88%),
tus fragment, 5.50 + 2.46
pulcherrim Whole 10% film, CP, PET, PE, PP, PA, PP-PE, VI, PVC, MPs/individu ~ Haizhou Bay, Xie et al.
us 10 body KOH w-FTIR  microbead PAN <1000 pm  al China (2024)
Echinoidea
and Fiber (94%), <500 p, Zhang et
Ophiuroide Whole 10% ATR fragment 500-5000  20.9+17.4 Jiaozhou Bay, al.
a 7 body KOH WFTIR  (6%) PE (81%), PET (6.3%), PA (12.5%) u MPs/g China (2023)
Eivissa Island
Holot Fibers (84%), 3.5+0.7 (Spain), Lombar
huroi  Holothuria Digestive fragments MPs/individu ~ Western doetal.
dea tubulosa tract N/A FTIR (16%) PP (27%), PE (17%), and PS (16%) al Mediterranean ~ (2022)
Acaudina 7.05+5.13
molpadioid Whole 10% Fiber (97%), MPs/individu ~ Haizhou Bay, Xie et al.
es 21 body KOH w-FTIR _ film (3%) CP, PE, PVC, PET <1000 ym  al China (2024)
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