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1. Introduction
Pica mauritanica, commonly known as the Maghreb 
Magpie, is a distinctive corvid species endemic to North 
Africa. Originally considered as a subspecies of the Eurasian 
magpie (Pica pica), subsequent studies have revealed 
distinct differences in the North African population 
compared to other global populations (Kryukov et al., 
2017). Consequently, this species has been reevaluated 
and recognized as a separate species (Del Hoyo et al., 
2018). Furthermore, Isenmann et al. (2005) have identified 
Pica mauritanica as abundant in Algeria, Morocco, and 
Tunisia. However, the population of Pica mauritanica is 
currently facing challenges due to the fragmentation and 

destruction of its natural habitats caused by many factors 
such as wildfires, clearing, deforestation, intensification of 
modern agriculture, and urban expansion. Therefore, the 
species’ nesting range has become increasingly restricted, 
leading to a small spatial distribution across the mentioned 
North African countries with isolated populations, 
some of which contain threatened breeding pairs at risk 
of extinction (Isenmann and Thévenot, 2020; Nefla et 
al., 2021). Despite these critical circumstances, limited 
research has been conducted on Pica mauritanica. Apart 
from Nefla’s et al.’s (2021) study, which primarily explores 
the breeding biology of this species in Tunisia, there exists 
a lack of information regarding the habitat characterization 

Abstract: The Maghreb magpie (Pica mauritanica) is an endemic bird to North Africa, encompassing Algeria, Morocco, and Tunisia. 
Unfortunately, its population is facing a significant decline primarily attributed to habitat loss and fragmentation resulting from 
urbanization and agricultural practices. Due to the lack of large-scale studies on habitat requirements of Pica mauritanica, investigating 
the habitat preferences of this species and understanding the potential threats remain crucial for effective conservation strategies. 
We performed species distribution model (SDM), incorporating both occurrence records and predictor variables, to investigate the 
potentially suitable habitat and the factors influencing the distribution of the Maghreb magpie (Pica mauritanica) in North Africa. 
Among the environmental predictors examined, the enhanced vegetation index (EVI), elevation, and human settlement have been 
identified as key factors influencing habitat suitability. Specifically, EVI and human settlements positively contribute to suitability, while 
precipitation and temperature exert negative effects. The SDM results were consistent with our field observations, indicating that Pica 
mauritanica tends to avoid urban settlements or densely forested regions, thus preferring village farm areas, especially during the 
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and suitability of the species across the defined scale 
of its distribution. Therefore, mapping the habitat of 
Pica mauritanica becomes vital for a comprehensive 
understanding of the current distribution of this species 
for developing effective conservation strategies throughout 
North Africa (Guisan et al., 2013). Species range maps, 
such as those from BirdLife International and the IUCN, 
are essential for identifying and conserving key areas and 
species. However, these traditional maps often lack regular 
updates, leading to outdated data, and they typically do 
not incorporate environmental factors that influence 
species distributions (Li et al., 2019). Additionally, these 
maps typically depict broad and generalized regions where 
species occur, without the detailed resolution needed 
to capture specific habitat preferences or microhabitat 
requirements (Peterson et al., 2018). To address these 
limitations, conservation efforts can benefit from the use 
of more advanced techniques such as species distribution 
models (SDMs). In ecology, species distribution models 
(SDMs), also known as ecological niche models (ENMs), 
are tools that use occurrence data and environmental 
variables to predict and map the species’ potential 
distribution, thereby assessing the likelihood of its presence 
or absence in a specified geographical area (Guisan and 
Zimmermann, 2000). 

In the recent years, SDMs find extensive application 
across diverse domains such as conservation biology, 
biodiversity assessment, climate change modeling, and 
invasive species management (Araújo and Peterson, 2012). 
Additionally, the use of SDMs in avian biology has provided 
valuable insights into the distribution and abundance of 
bird species, as well as the ecological and environmental 
factors that influence these patterns (Stiels and Schidelko, 

2018). Consequently, combining expert-based range maps 
with results from species distribution models offers an 
unbiased and comprehensive understanding of species’ 
geographic distributions across habitats, providing 
more rigorous estimates tightly linked to environmental 
variables (Engler et al., 2017). 

Using this modeling framework, this study aims 
(1) to predict and map the current distribution of Pica 
mauritanica, thus depicting it potentially suitable areas, 
(2) to identify factors driving it potential distribution, and 
(3) to determine the environmental niche requirements 
of this species in the Maghreb region. Ultimately, this 
approach will provide insight into identifying high-
priority conservation areas and defining conservation 
implications.

2. Materials and methods
2.1. Study area
The Maghreb region (encompassing Algeria, Morocco, 
and Tunisia) covers an area of approximately 3,254,000 
km2. This region is characterized by a Mediterranean 
climate, where the precipitation varies between 78 and 
390 mm. Moreover, temperature varies between an annual 
mean of 13.7 °C in Atlas Mountains and 23.1 °C in the 
Sahara. Our research was carried out across an area of 
974,536 km2. The altitude ranged between –61 and 3697 
m. The Algerian sites from which we found signs of the 
species were located at 11 stations in the extreme west 
(Beni Boussaid - Tlemcen Province), in the east of the 
country (Tazoult - Batna Province), in the north (Bordj 
Zemoura - Bordj Bou Arreridj Province) and towards the 
south of the country (Senalba - Djelfa Province) (Figure 
1 and Table 1).

Figure 1. The distribution of Pica mauritanica throughout North Africa.
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2.2. Species distribution model 
2.2.1. Occurrence point and environmental data
We compiled a checklist (226 occurrences) of Maghreb 
magpie by merging georeferenced occurrences data 

gathered from the public online repositories GBIF (2021) 
and field surveys carried out from (2000–2019). 

Many observers, especially wildlife photographers and 
ornithologists, have extensively documented the presence 

Region Province Date of 
record

Nesting 
area Habitat type GPS coordinates Municipality Number of 

nests 
Altitude 
(m)

Eastern 
part of 
Algeria

Batna March 2022 Tazoult Category 2 35°28’43.3236”N  
6°17’9.726”E Tazoult _ 1275

Bordj Bou 
Arreridj  March 2022 Bordj 

Zemoura Category 1 36°18’12.8736”N 
4°54’43.0956”E Bordj Zemoura _ 1400

Western 
part
of Algeria

Tiaret 22/05/2022 Ain El 
Hadid Category 2 34°58’49.62891”N

0°57’44.22722”E Ain El Hadid 03 1158

Saïda

24/05/2022 Hassi 
Aoun Category 2 34°42’59.27”N    

0°7’14.28”W Ain El Hadjar 06 1091

24/05/2022 Lala Setti

Western part 
(category 2), 
Eastern part 
(category 3),

34°37’59.8”N      
0°3’8.9”W Moulay Larbi 07 1094

Sidi Bel 
Abbes

26/05/2022 Sidi Chaib Category 4 34°35’43”N         
0°32’29.67156”W Sidi Chaib 08 1098

31/05/2022 Oued 
Sebaa Category 3 34°34’3.07925”N

0°45’17.01609”W Oued Sebaa 02 1183

31/05/2022 Dhaya
Ben Attia

Northen part 
(Category 2), 
Southern part 
(Category 3)

34°39’40.64926”N
0°39’18.15387”W Dhaya 17 1350

Tlemcen

28/06/2022 Moutas Category 1 34°45’52.1”N      
1°29’19.6”W Bouhlou 03 1095

02/07/2022 Al-Asfour Category 1 34°31’39.5868”N
1°44’25.4112”W Beni Boussaid _ 1490

Center of 
Algeria Djelfa August 2022 Senalba Category 3 34°35’58.6”N

3°6’26.9 E Djelfa 10 1289

Table 1. Location and characteristics of nesting sites of the Pica mauritanica. Data recorded in 2022.
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and distribution of the Maghreb magpie within Algeria. 
Based on these efforts, field surveys were carried out, thus 
visiting 11 nesting sites across the Algerian territory. We 
recorded the nest or species presence using a GPS in order 
to georeference its location. 

We downloaded 19 bioclimatic variables from 
the WorldClim 2 database (Hijmans et al., 2005) at a 
spatial resolution of 30 arc-s (approximately 1 km). 
Additionally, we obtained elevation raster data, EVI 
(enhanced vegetation index), slope, and World Settlement 
Footprint through the Google Earth Engine platform. 
All predictor’s variables were standardized at a spatial 
resolution of 30 arc-s (approximately 1 km) in order to 
handle multicollinearity issues (Dormann et al., 2013). We 
first explored correlations among all predictor variables 
using the ‘chart correlation’ function implemented in 
the R package ‘Performance Analytics’ and created a 
dendrogram based on Pearson’s distance. We retained a 
final set of variables that presented a correlation coefficient 
(r) < 0.75. Afterward, we used the function vifstep from the 
R package ‘usdm’ (Naimi et al., 2014), to compute the VIF 
(variance inflation factor) scores of the predictor variables. 
We retained variables with a VIF score less than (<5). The 
seven variables retained were BIO 1, BIO 8, BIO 12, slope, 
world human settlement, elevation, and EVI.
2.2.2. Premodeling 
We processed the predictor layers using a shapefile 
acquired from Ecoregions1. The buffer zone was defined 
based on Ecoregion characteristics, resulting in the 
exclusion of deserts and xeric shrublands. This process 
involved restricting the distribution area to the pertinent 
geographic extent, ultimately enhancing the accuracy of 
the model. 

A spatial thinning was performed where duplicated 
records and points within a distance of less than 1 km 
(falling in the same pixel of the explanatory variables) were 
removed using the function ‘thin_by_dist’ implemented in 
tidysdm package (Leonardi et al., 2023). This process kept 
only one point per pixel to minimize sampling bias (Boria 
et al., 2014), thereby reducing the number of occurrences 
to 138 points. Furthermore, using the function ‘sdmData’ 
based on a gRandom method, we randomly generated 200 
background points, nearly twice the number of presence 
points (Cancellario et al., 2022), resulting in a prevalence 
ratio of approximately 0.41. It has been shown that 
randomly selected background points, which are equally 
weighted to the presence points, yield the most reliable 
distribution models (Barbet‐Massin et al., 2012). In 
addition, the number of background points and the dataset 
balance impact model performance. Linear algorithms, 
such as regression techniques (GLM and GAM), are more 
efficient with a large number of background points with 
1Ecoregions (2017). Mediterranean Forests, Woodlands & Scrub [online]. Website https://ecoregions.appspot.com/ [accessed 01 March 2024].

equal weight. In contrast, classification and machine-
learning models (RF and BRT) perform better with a 
moderate number of pseudo-absences, thus improving 
predictive precision and minimizing bias and variability 
(Li and Wang, 2013). 
2.2.3. Modeling and postprocessing
We used the ‘sdm’ function implemented in the sdm R 
package to run species distribution models using three 
algorithms: generalized linear model (GLM), boosted 
regression trees (BRT), and random forest (RF), which 
belong to regression models and machine learning 
methods. These algorithms were selected for their high 
performance in accurately capturing species-environment 
relationships and their complementarity (Barbet‐Massin 
et al., 2012). 

Generalized linear models are adapted to binary 
(presence/absence) or count (abundance or richness) 
outcome variables (Miller, 2010). However, they may not be 
suitable for complex, species-environment relationships. 
On the other hand, random forest and boosted regression 
trees models are less sensitive to multicollinearity 
(Dormann et al., 2013), can handle unbalanced datasets, 
and are capable of managing complex relationships (Crase 
et al., 2012). 

We used default parameterization of SDM, where 
GLMs were fitted using a binomial family with a logit link 
function, and RF models were fitted with 500 trees and 
the number of variables tried at each split set to the square 
root of the number of predictors. In addition, BRT were 
adjusted with default settings, including 1000 trees. 

Simultaneously, the dataset was divided into 30% 
for testing and 70% for training. Three replications were 
performed for both subsampling and bootstrapping 
methods. Afterward, we created an ensemble model 
using a weighted averaging procedure overall predictions 
from several fitted models based on the true skill statistic 
(TSS). The threshold was set equal to max (sensitivity + 
specificity) (Naimi and Araújo, 2016), thereby minimizing 
the mean error rate for both positive and negative 
observations. This ensemble forecast framework aimed to 
leverage the strengths of various modeling techniques while 
minimizing the impact of individual model weaknesses due 
to prevalence and sampling bias. This approach ultimately 
improves the overall predictive performance of the ensemble 
model (Miller, 2010), and maximizes the effectiveness of 
background points (Barbet‐Massin et al., 2012).
2.2.4 Model evaluation
We conducted a thorough assessment of model 
performance using three primary metrics: true skill 
statistic (TSS), area under the curve (AUC) derived from 
the receiver operating characteristic (ROC) curve, and 
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kappa statistic. AUC values falling between 0.7 and 1.0 
signify strong discriminatory capability, whereas values 
below 0.5 indicate poorer predictive accuracy (Hanley and 
McNeil, 1982). TSS values ranging from -–1 to 1 follow a 
similar pattern: positive values denote performance better 
than random chance, while negative values indicate less 
effective performance (Swets, 1988). In addition, kappa 
statistic, which ranges from –1 to +1, indicates the level of 
agreement between observations. A value of +1 represents 
perfect agreement, while values at or below zero indicate 
agreement no better than random chance (Cohen, 1960).

3. Results 
The area under the curve and true skill statistic (TSS) of 
the models ranged from 0.704 to 0.957 and from 0.339 
to 0.797, respectively (Table 2). The ensemble model 
showed an AUC value of 0.82 ± 0.07 and a TSS of 0.54 ± 
0.14. Additionally, the kappa statistic ranged from 0.33 to 
0.846, with an average of 0.53 ± 0.15. 

The point of occurrence area exhibits distinctive 
climatic and geographical features that collectively 
shape its environmental profile. The average annual 
precipitation amounted to 438.17 mm, with a peak 
concentration occurring between 300 and 400 mm. In 
addition, the average annual temperature was recorded 
at 15.22 °C, while the average temperature of the wettest 
quarter was 9.74 °C. The average elevation was 951.02 
m, with most locations falling within the range of 1000 

m to 1600 m. Moreover, the slope had an average value 
of 3.31, indicating a moderately inclined topography. 
The enhanced vegetation index exhibited a mean value 
of 0.2026, with a peak concentration between 0.2 and 
0.25. The average human settlement score was 12.61, 
displaying a distinct concentration peak between 10 and 
12 (Figure 2). 

EVI and elevation were the most influential variables, 
together accounting for a contribution of 68%, followed 
by human settlement, which contributed 10.2%. This 
highlights their important role in elucidating the factors 
influencing the current distribution of Pica mauritanica 
(Figure 3).

The suitability index ranges from a minimum of zero 
to a maximum of 8.9, indicating a congruent distribution 
in concordance with the known occurrence of the species. 
Highly suitable areas for the Maghreb magpie are located 
in the coastal regions of eastern Tunisia and western 
Morocco, respectively. Additionally, high suitability is 
also located in the Algerian Hautes Plaines region and 
the Moroccan High Atlas (Figure 4A). The binary map 
delineates suitable areas at a threshold greater than 0.6, 
revealing a total expanse of approximately 64,843 km2 
across the entire study area. Within this scope, Algeria 
encompasses 34,853 km2 of suitable terrain, Morocco 
accounts for 25,440 km2, and Tunisia comprises 4550 
km2. The distribution of the species is mainly in the form 
of separated patches (Figure 4B). 

Method Replication AUC TSS Kappa
GLM Subsampling 0.704 0.339 0.331
GLM Subsampling 0.766 0.442 0.433
GLM Subsampling 0.717 0.339 0.331
GLM Bootstrap 0.727 0.366 0.355
GLM Bootstrap 0.714 0.39 0.388
GLM Bootstrap 0.809 0.629 0.621
BRT Subsampling 0.787 0.485 0.475
BRT Subsampling 0.824 0.485 0.475
BRT Subsampling 0.813 0.485 0.475
BRT Bootstrap 0.817 0.484 0.472
BRT Bootstrap 0.858 0.577 0.574
BRT Bootstrap 0.885 0.615 0.605
RF Subsampling 0.839 0.588 0.578
RF Subsampling 0.841 0.528 0.517
RF Subsampling 0.836 0.545 0.536
RF Bootstrap 0.918 0.7 0.69
RF Bootstrap 0.957 0.795 0.846
RF Bootstrap 0.957 0.797 0.792

Ensemble
Mean ± SD Mean ± SD Mean ± SD
0.82 ± 0.07 0.54 ± 0.14 0.53 ± 0.15

Table 2. Model performance metrics of GLM, BRT, and RF models with two replication techniques.
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The high suitability area is concentrated in a moderate 
temperature range of 1.3 °C to 12 °C during the wettest 
quarter (bio8), along with medium vegetation density 
and an elevation range between 750 and 2300 m. The 
annual temperature (bio1) ranges from 7 °C to 14 °C. 
Additionally, the suitable area has an annual precipitation 

average (bio12) of approximately 900 mm and a moderate 
level of human settlement (smode) corresponding to Rural 
grid cell (Figure 5).

There were positive relationships between the habitat 
suitability of Pica mauritanica and various explanatory 
variables, including EVI, human settlement, and slope. 

Figure 2. Histograms illustrating descriptive analyses of climatic and environmental 
characteristics related to the occurrence point of Maghreb Magpies.

Figure 3. Variable importance (based on correlation metric) of the ensemble model.
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Binary map of habitat suitability (threshold > 0.6)

Figure 4. (A) Current distribution of the Maghreb magpie in North 
Africa, (B) binary map of habitat suitability with a threshold > 0.6. 

Figure 5. Two-dimensional plots of Pica mauritanica 
niche hypervolume with the most influential variables.
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Conversely, annual precipitation (bio12) and mean 
temperature of the driest quarter (bio8) showed negative 
relationships with habitat suitability. 

Additionally, the probability of habitat suitability 
exhibited a slight increase within the elevation range of 
1000 to 3000 m and a slope under 5% (Figure 6).

4. Discussion
4.1. SDM modeling 
The preservation of avian biodiversity is a major concern 
in the current context. Our study aimed to assess species 
distribution models to predict high-suitability areas for 
Pica mauritanica in North Africa, using ecological niche 
modeling methods that have shown a high ability to predict 
bird distribution in a real-world situation, even in poorly 
known areas (Peterson et al., 2002). Our study represents 
the first predictive assessment of the distribution of Pica 
mauritanica in North Africa. The results demonstrate a 
strong correlation between predictions of high-suitability 
areas and high values of the area under the curve. Our model 
was comparable to the study that used SDM’s, conducted 
by Brambilla and Ficetola (2012). However, AUC can be 
misleading when dealing with imbalanced datasets, and 
kappa is sensitive to prevalence, unlike TSS (Allouche 
et al., 2006). Therefore, incorporating this multimetric 
approach allows for a deeper understanding of how well 
the model generalizes across different aspects of the data, 
enhancing the overall reliability of the evaluation process. 
In addition, several factors such as positional uncertainty 
(Naimi et al., 2011), spatial autocorrelation, and sampling 

bias arising from variations in sampling effort (Baker et al., 
2022), imperfect detection (Guillera‐Arroita et al., 2015) 
or biases inherent in public occurrence platforms such 
as GBIF (Beck et al., 2014) present significant hurdles in 
accurately modeling species distributions and interpreting 
ecological patterns. Addressing these challenges requires 
a combination of methodological approaches and data 
quality control measures. 

Strategies for mitigating sampling bias may include 
spatially explicit sampling designs, incorporating sampling 
bias correction techniques into modeling workflows 
(Inman et al., 2021), integrating complementary expert 
knowledge (Boyd et al., 2023), as well as  employing 
spatial filtering and weighted target-group background 
(Gutierrez-Velez and Wiese, 2020).
4.2. Suitability habitat distribution
The binary map of habitat suitability showed many 
isolated areas for Pica mauritanica in North Africa. It may 
be suggested that the Maghreb magpie in North Africa 
was a metapopulation, distributed in small groups across 
scattered patches in the area, as formulated in the theory 
of Opdam (1991). The Maghreb magpie populations are 
geographically isolated, with more nesting sites on the 
western side than on the eastern side of Algeria. Because 
the smallest forest fragments might not have the capacity 
to support biodiversity to the extent that larger fragments 
can (Torezan et al., 2020), we can consider that Pica 
mauritanica became more vulnerable as highly adapted 
patches became smaller and more isolated. Therefore, 
we can consider the situation of Pica mauritanica as the 

Figure 6. Response curves of the explanatory variables included in the species distribution 
model (SDM) for Pica mauritanica. (MTWQ: mean temperature of wettest quarter). 
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same as that of the Asir magpie Pica asirensis, which faces 
habitat fragmentation due to multiple factors such as 
residential development and recreational activities, roads, 
and other infrastructure (Boland and Burwell, 2020). 
Moreover, the distribution of Pica mauritanica in North 
Africa is notably fragmented and restricted, with a sole 
relic population persisting in Tunisia (Nefla et al., 2021) 
and only a few populations identified on the eastern side 
of Algeria. Consequently, in the event of additional habitat 
fragmentation in North Africa, especially in the eastern 
region, the vulnerability of Pica mauritanica populations 
would be exacerbated.
4.3. Enhanced vegetation index 
The analysis of the wavelengths showed a positive 
correlation between plant biomass and the value of the 
vegetation index (Galidaki et al., 2017). The EVI presented 
the highest contribution as a variable in our model. The 
frequency distribution of EVI ranged between 0.19 and 
0.5, deliberately excluding extreme values (both high 
and low EVI values). Concerning vegetation cover, the 
Maghreb magpie specifically selects areas that are at least 
partially surrounded by vegetation. However, it tends 
to avoid both densely forested regions and unvegetated 
landscapes. Similar observations were recorded for Pica 
pica by Kamburova (2004) in Bulgaria and in Seoul, 
South Korea by Kang et al. (2012). These species preferred 
isolated trees or small groups of trees near open areas in 
parks and gardens, while avoiding parks with no open 
areas. Furthermore, Kamburova (2004) noticed that while 
Pica pica was present in urban areas, it demonstrated a 
preference for nesting and feeding in urban green areas. 
In Tunisia, the only breeding population of Maghreb 
magpie was reported to breed near farmland, where nest 
were mainly built on thorny shrubs Searsia tripartita 
and Ziziphus lotus. In Tunisia, the exclusive breeding 
population of the Maghreb magpie has been documented 
to breed in close proximity to farmland. Nests are 
constructed on thorny shrubs, including Searsia tripartita 
and Ziziphus lotus (Nefla et al., 2021). Similarly, in Algeria, 
the breeding population located near agricultural areas in 
Sidi Chaib constructs nests within the thorny perennial 
shrub Lycium shawii.
4.4. Topographical and climatic parameters
In this study, we found that the average elevation was 
951.02 m, with a frequency concentrated between 1000 and 
1600 m elevation. Our study results aligned with previous 
research conducted on Eurasian magpie. For instance, a 
study in the Pitarque River valley in Spain by Ponz and Gil-
Delgado (2004) highlighted that the habitat of Pica pica was 
distributed along an elevation gradient from 970 to 1442 
m, which corresponded to a Mediterranean bioclimatic 
zone. On the other hand, Boland and Burwell (2020) 
reported that Pica asirensis nests were mostly located at 

elevations above 2150 m with high temperatures. In India, 
Khan et al. (2022) highlighted that Pica pica nesting sites 
were at an elevation gradient ranging from 2750 m to 3450 
m with very low temperatures, which is higher than our 
values (1000–1600 m in North Africa). In addition, various 
studies have presented contradictory findings regarding to 
the altitudinal variations of nesting habitats for different 
magpie species around the world. In South Korea (Seoul), 
the nesting sites of magpies were found at a relatively low 
altitude of 30 m (Kang et al., 2012).

Altitudinal variations in the nesting habitat have 
been observed in several magpie species, including Pica. 
asirensis in Saudi Arabia, Pica pica in India, Pica sericea 
in South Korea, and Pica mauritanica in North Africa. 
These variations may also apply to other populations of 
Pica pica across different regions globally. The differences 
in altitudinal preferences among these populations could 
potentially be explained by various climate conditions, 
particularly temperature levels and precipitation 
amount, which are influenced by geographical and 
topomorphological factors, creating what was known as an 
altitudinal pluvial-thermal gradient (Douguédroit and de 
Saintignon, 1984). It appears that the negative correlation 
between annual precipitation and habitat suitability is 
attributed to variations in spring precipitation, with higher 
spring rainfall potentially harming nest success during the 
nestling period (Nefla et al., 2021). 

Additionally, our model indicated a suitable slope of 
less than 20%, which is comparable to the Saudi Arabian 
endemic species Pica asirensis, where it was observed on 
mountains with slopes less than 30% (Boland and Burwell, 
2020). Most of the studied stations were located in 
semiarid bioclimatic regions. This finding was consistent 
with the study of Nefla et al. (2021) on the relict population 
of the Maghreb magpie in Tunisia. Furthermore, the 
wide geographical distribution of the magpie species, 
spanning from America to the northwest, includes several 
isolated populations (Kryukov et al., 2017). Each of 
these populations is characterized by unique bioclimatic 
conditions due to their specific geographical locations 
and local environmental conditions. In summary, the 
elevation variability in nesting habitats observed among 
different magpie species and populations can be attributed 
to a combination of factors, including climatic conditions 
linked to geographical and topomorphological influences, 
as well as the diverse ecological adaptations exhibited by 
these widespread and geographically distinct populations.
4.5. Human settlement 
The peak frequency was between 10 and 12, indicating that 
species occurrences and nesting sites were mainly located 
near small villages and farms. A similar observation was 
reported in Spain, where Ponz and Gil-Delgado (2004) 
studied a population close to bull breeding activity. This 
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finding is also consistent with the study by Nefla et al. 
(2021) on Maghreb magpies in Tunisia. Although the 
Tunisian population was found closer to a farm in a rural 
habitat, the results suggest that even in rural habitats, 
magpies select nesting sites closest to human activity. 

Therefore, to ensure the sustainable survival of 
farmland bird population, we endorse the preservation 
of traditional farming practices, where farmland birds are 
mainly impacted by agricultural intensification and land 
use changes (Nefla et al., 2021).

 Kamburova (2004) have focused on Pica pica in urban 
areas. Furthermore, other studies have reported Pica pica 
nesting on human constructions and electricity pylons 
(Lu et al., 2008). However, in the eleven stations visited in 
Algeria, such nesting behaviors were not observed for Pica 
mauritanica. The Maghrebian species was not as much of 
a generalist species as others magpie species, which could 
explain its lower adaptation to anthropized environments, 
where the distribution of Pica mauritanica was mainly 
concentrated in farmland near rural region. 

Our methodological approach, based on integrating 
occurrence, topographic, and climatic data, has refined 
the precision of our models. The selected variables showed 
a significant influence on the distribution of bird species 
in the studied region, especially the enhanced vegetation 
index; however, it is important to acknowledge the 
limitations of our study. As cited in Boland and Burwell 
(2020), the habitat model outlined in this context is 
recognized for its simplicity, as it draws upon restricted 
data. Despite its inherent limitations, the model represents 
a proactive initiative to rapidly assess and map the potential 
habitat for the Maghreb magpie. SDM model depends 
on occurrence data and environmental variables, raising 
questions about the generalization of our results to other 
geographical contexts. Hence, environmental variables 
can vary significantly across different regions, leading 
to inaccuracies when models are applied outside their 
original context (Peterson and Soberón, 2012). Species 
may also exhibit local adaptations that are not captured 
by models trained in different areas (Guisan et al., 2017). 
Additionally, the quality and completeness of species 
occurrence data can be inconsistent, with regions lacking 
comprehensive data resulting in unreliable predictions 
(Elith et al., 2011).

Climate change and dynamic environmental 
conditions further complicate predictions, as SDMs 
often rely on static historical data (Thomas et al., 2004). 
Model transferability is another challenge, as species-
environment relationships can differ across regions, 
reducing model performance when applied elsewhere 
(Rödder and Lötters, 2010). Biotic interactions, which 
are typically not included in SDMs, can vary regionally 
and affect species distributions (Wisz et al., 2013). Spatial 

autocorrelation and sampling bias in occurrence data 
can also lead to overfitting and decreased generalizability 
(Boria et al., 2014). To address these limitations and 
enhance the model’s applicability to diverse regions, 
future studies could focus on refining the model by 
incorporating more influencing variables specific to 
different habitat scales. Future research could explore 
the effectiveness of identifying additional influencing 
variables on bird species at microhabitat scales.
4.6. Leveraging emerging remote sensing platform for 
habitat monitoring
Land use changes, coupled with climate change, 
play a crucial role in influencing species distribution 
by modifying habitat suitability. Habitat loss and 
fragmentation resulting from deforestation and 
urbanization lead to population declines and genetic 
isolation, altering species interactions and distributions 
(Fahrig, 2003). Moreover, climate change is causing 
species to move their habitats toward the poles and to 
higher elevations as they seek more suitable temperature 
and precipitation conditions (Parmesan and Yohe, 2003). 
In this context, remote sensing offers valuable insights 
into habitat dynamics, enabling the detection of current 
changes and the projection of future trends. 

This, in turn, facilitates the development of informed 
conservation strategies to safeguard biodiversity in 
the face of environmental challenges. The recent 
implementation of species distribution models in 
the Google Earth Engine platform may be valuable, 
especially for less economically developed countries, 
for monitoring and analyzing changes in habitats 
over time (Crego et al., 2022). This integration of 
advanced platforms like Google Earth Engine, along 
with frameworks such as GEE_xtract, facilitates the 
preparation of time series data (Gorelick et al., 2017). 
Researchers can utilize this to understand how habitats 
evolve by processing satellite data time series, enabling 
the detection and quantification of changes in vegetation, 
water bodies, and other habitat features (Valerio et al., 
2024). This advancement enhances the capability to track 
and predict shifts in species distributions and habitat 
suitability for environmental management. Despite 
habitat suitability, the application of species distribution 
modeling techniques within an ecological framework 
provides several advantages and implications. These 
include establishing priority zones for management, 
identifying crucial environmental drivers, predicting 
range shifts due to climate change (Khwarahm, 2020), 
as well as monitoring population dynamics and biotic 
interactions (Guisan and Thuiller, 2005). Hence, these 
models can inform proactive management strategies to 
support biodiversity conservation and mitigate climate 
change impact (Hama and Khwarahm, 2023).
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5. Conclusion
Nowadays the distribution of Pica mauritanica is 
discontinuous, especially with more isolated populations 
in the northeast of Africa due to the fragmentation of its 
natural habitats caused by various factors. In this critical 
situation, there is an urgent need to provide information 
regarding the current distribution of the species across 
North Africa to assess the distribution and habitat 
vulnerability of Maghreb Magpie. Our study discussed 
the outcomes concerning the relationship between habitat 
preferences and habitat vulnerability of Pica mauritanica 
at North Africa scale based on the environmental variables 
used in the model. The discontinuity of the remaining high 
suitability habitat patches, which is more fragmented in 
the real-world situations, explains the vulnerability of the 
species. However, recognizing the limitations, our study 

employs a habitat model acknowledged for its simplicity, 
relying on restricted data. Despite these inherent 
limitations, the model serves as a proactive initiative 
for rapid assessment and mapping of potential suitable 
habitats for Pica mauritanica. Future research could 
explore the effectiveness of identifying more influential 
variables on the bird species at different habitat scales. 
Based on these potential distribution results, further 
extensive fieldwork is still needed to explore microhabitat 
requirement and estimate population sizes, thereby 
determining the vulnerability and conservation status of 
Maghreb populations across North Africa. In addition, 
genetic studies might be useful for understanding the 
diversity within populations and potential connectivity 
between different populations.
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