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1. Introduction
With the rapid development of the social economy, 
significant quantities of heavy metals (HMs) are being 
released into agricultural soil environments, resulting 
in HM pollution in these soils. Heavy metals, defined as 
metals with a density exceeding 4.5 g/cm3, include gold, 
silver, copper, iron, mercury, lead, cadmium, among 
others. Accumulating to certain levels in the human body, 
HMs can induce chronic poisoning. Soil serves as the 
substrate for crop growth, and elevated HM concentrations 
beyond environmental tolerance thresholds can impede 
chlorophyll synthesis in crops, leading to alterations in the 
spectral characteristics of crop leaves and canopies. Thus, 
detecting HMs in soil can be accomplished by analyzing 
hyperspectral data from crop canopies and leaves, 
complemented by various spectral indices. Leveraging 
hyperspectral remote sensing (HRS) technology, real-time 
and rapid monitoring of HM fluctuations in farmland soil 
and crops holds immense importance for ensuring food 
safety and safeguarding public health.

HM pollution poses significant threats to both soil 
and human health, underscoring the importance of 
studying HM content to analyze soil agricultural potential. 
Consequently, numerous scholars have undertaken HM 
content calculations. For instance, Lian-Fang Li collected 
124 soil samples from greenhouse vegetable cultivation, 
corn fields, and forest soils across different land use patterns 
within a typical greenhouse vegetable production system 
(Li et al., 2018). Ebrahim Alinia-Ahandani presented 
chemical analyses of lead, nickel, chromium, and copper 
total contents in soil samples, revealing that these exceeded 
permissible limits (Alinia-Ahandani et al., 2020). Naznin 
Nahar conducted a carrot pot experiment to explore 
soil properties, growth patterns, and HM absorption by 
carrots postsewage sludge application (Nahar, 2021). 
Investigating HM pollution status in agricultural soils, 
Xuezhen Li employed spatial autocorrelation methods 
to unveil HM accumulation distributions, along with 
reviewing and synthesizing literature on HM soil pollution 
(Li et al., 2018). Salman A. Salman analyzed soil sample 
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physical and chemical characteristics using pollution 
factors, pollution degree, pollution load index, ecological 
risk factor, potential ecological risk index, and geological 
accumulation index (Salman et al., 2019). Mamdouh 
Alsayed Eissa conducted field and laboratory studies to 
assess HM concentrations in the edible parts of lettuce 
and spinach plants irrigated with sewage, revealing soil 
contamination with HMs (Eissa and Negim, 2018). To 
investigate spatial variability and pollution risks of HMs 
in Dianthus soil and promote sustainable Dianthus 
industry development, Hong-Ju Zhang selected Lin’an, a 
typical Dianthus planting area, for investigation (Hong et 
al., 2017). V. I. Lopushniak aimed to evaluate Jerusalem 
artichoke’s HM absorption capability in oil-contaminated 
ecosystems, focusing primarily on oil and gas pipeline 
areas (Lopushniak and Hrytsuliak, 2021). While these 
studies have described HM soil content calculations, none 
have specifically addressed soil agricultural potential 
analysis.

Ensuring scientific and accurate agricultural decision-
making hinges on the assessment and identification 
of agricultural data quality. High-quality agricultural 
data not only guides production practices and supports 
scientific research but also aids governmental decision-
making processes. Weed identification plays a crucial 
role in crop yield optimization and the realization of 
precision agriculture. To address this, a method based on 
heterogeneity is proposed. This method involves selecting 
a small yet representative sample, fully considering 
data diversity, and developing an efficient crop-weed 
classification system (Yang et al., 2022). Additionally, 
a method for determining the embedding range in the 
feature space and conducting numerous comparative 
experiments has been proposed. Results indicate that, in 
certain recognition tasks, selecting a small subset of good-
quality data can achieve performance comparable to using 
all training data, thus laying the foundation for data and 
information analysis in smart agriculture (Li et al., 2021).

A new data quality evaluation method, termed k-nearest 
neighbor distance entropy (KNN-DE), is proposed for 
assessing crop pest images, filtering informative data, and 
facilitating efficient pest identification tasks. This approach 
offers a data-centric research perspective and establishes 
the groundwork for data quality evaluation (Li et al., 2023). 
Moreover, a simple yet effective method for evaluating data 
quality, termed interference entropy, has been proposed. 
Specifically designed for image classification tasks, this 
method statistically represents existing samples of each 
category as pixel prototypes to perturb unseen samples 
(Li et al., 2022). Bai et al. introduced a novel method 
for identifying atypical breast cancer mammography 
images based on the ZFNet network. Preprocessing steps’ 
effectiveness can be evaluated using Wiener and CALHE 

filters, followed by modification and training of the pre-
trained ZFNet on the CBIS-DSM dataset. Additionally, 
Extreme Learning Machines (ELMs) can replace the 
remaining layers (Bai et al., 2024). Nie Jing explored 
the application of artificial intelligence and digital twin 
technology in smart agriculture, discussing challenges and 
future directions. The study found that digital twins hold 
substantial potential for success in sustainable agriculture, 
offering significant implications for low-cost, high-
precision smart agriculture solutions (Nie et al., 2022). 
Wang Y systematically outlined data collection, mining, 
evaluation, classification, and sustainable algorithm 
applications in sustainable agricultural computing, 
offering guidance for future research and development 
(Nie et al., 2022).

To achieve rapid, nondestructive, and real-time 
monitoring of HMs in soil and crops, thus ensuring soil 
environmental quality and food security, this study utilizes 
hyperspectral data from a specific region spanning 2017 to 
2020. Neural network algorithms are employed to analyze 
HMs enrichment coefficients of soil and agricultural crops 
under HRS technology. The heavy metal enrichment 
coefficient serves as a critical index for evaluating 
organisms’ ability to accumulate heavy metal elements, 
with significant implications for environmental protection 
and ecological security. Through the research and 
application of heavy metal enrichment coefficients, timely 
detection and monitoring of heavy metal pollution in the 
environment can be achieved, assessing the biological 
effectiveness of heavy metal elements in the ecosystem, and 
providing a scientific basis for environmental management 
and ecological restoration. Experimental investigation and 
analysis of HM content in HRS images reveal extremely 
high zinc content and very low mercury content in crops.

2. Detection of HM content in soil and crops
To mitigate long-term health risks and HM pollution, 
measures should be taken to minimize human activities in 
soil areas (Latif et al., 2018). Detection of HM content in 
soil and crops can be categorized into two types: traditional 
detection and novel methods.
2.1. Traditional testing
Traditional detection methods include optical testing, 
electrochemical detection, and biological detection 
(Kandhro, 2023; Hussain, 2022). Soil particle size stands 
out as a pivotal factor influencing the environmental 
behavior of HMs (Huang et al., 2020). Conventional soil 
HM pollution monitoring relies on physical, chemical, and 
other techniques to acquire instantaneous pollution data 
of the contaminated object, allowing for the determination 
of its type, cause, and severity (Uddin, 2022). Nonetheless, 
this process often entails damage to the contaminated 
object (soil, agricultural crops, etc.). In addition, due to the 
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limited capability of existing soil HM detection methods 
to comprehensively analyze farmland soil’s ecological 
environment information, developing a straightforward 
and efficient soil HM pollution monitoring technology 
remains challenging.
2.2. New detection
2.2.1. HRS monitoring
HRS technology can perform hyperspectral analysis of 
surface targets through sensors, with high-resolution and 
multiband spectra, thus achieving quantitative analysis of 
HMs in environments such as soil and crops.
2.2.2. Biomass
The biomass method relies on the luminescence 
characteristics of various biological genes during their 
expression process, and the light signal can form a 
spectrum obtained from HRS, thereby quantifying the 
content of the substance to be tested. The biomass method 
is currently the most widely used method, with the 
advantages of being direct, clear, and technically simple. It 
is calculated based on parameters such as biomass per unit 
area, forest area, distribution ratio of biomass in various 
organs of trees, and average carbon content of various 
organs of trees.
2.2.3. Environmental magnetism
For the calculation and detection of heavy metal content 
in a region, numerous methods exist, ranging from 
traditional monitoring approaches to the latest detection 
techniques. However, this paper opts for HRS technology 
as the preferred method for heavy metal content detection. 
The choice of HRS technology is primarily motivated by its 
ability to swiftly acquire heavy metal content data over large 
areas. Compared to traditional laboratory determination 
methods, HRS technology can save considerable time and 
manpower costs. Furthermore, it facilitates the acquisition 
of continuous monitoring data in a short timeframe, 
enabling timely identification of changes in heavy metal 
content and aiding in prompt problem detection and 
resolution. 

3. Monitoring mechanism and feature extraction of 
HRS technology
3.1. Monitoring mechanism of HRS technology
HRS technology is a new type of remote sensing technology 
that integrates precision optics, weak signal detection, 
detectors, information processing, and computers. HRS 
technology has the following unique features compared 
to traditional remote sensing technology. Firstly, it offers 
a wide array of frequency bands, providing hundreds of 
options in the visible and near-infrared bands. Secondly, 
it boasts high spectral resolution ability. The spectrometer 
has a very small sampling interval, usually 10 nm. 
Thirdly, it exhibits high spatial resolution capabilities. 
With ongoing advancements in computer software, data 

analysis methods, and sensor technology, HRS technology 
is bound to find even broader application prospects. In 
addition, through spectral reconstruction, HRS can obtain 
approximately continuous spectral reflectance data of land 
features, which matches with ground-measured values, and 
thus apply fine spectral models of land feature components 
to land feature information extraction. Both unmanned 
and manned aerial vehicle-based hyperspectral remote 
sensing can detect diagnostic ground spectral absorption 
substances. Leveraging various algorithms, it can not 
only provide accurate data support for distinguishing 
surface feature types, evaluating component content 
but also enables quantitative or semiquantitative feature 
information extraction possible.
3.1.1. Direct monitoring of soil HM pollution
Based on continuous hyperspectral data collected from 
soil across the visible, near-infrared, midinfrared, and 
thermal infrared ranges, the spectral reflectance of soil 
is directly measured using a spectrometer (Huang et al., 
2018). Building upon this , through quantitative detection 
of HM elements in different types of soil under different 
environmental conditions, supplemented by physical 
and chemical characteristic data, the sensitive bands of 
HM elements in different types of soil are diagnosed 
and identified, and corresponding soil HM elements 
quantitative prediction models are analyzed. The function 
of HRS for direct monitoring of HM pollution is to 
transform HM elements in soil into soil organic matter 
and clay minerals. This process can be summarized as their 
adsorption onto carbonate minerals and iron manganese 
oxides.
3.1.2. Indirect monitoring of soil HMs pollution
This article aims to use hyperspectral technology to 
measure the reflectance spectra of crop canopies and 
leaves, and combine them with measured soil HM content. 
By analyzing the correlation between crop reflectance 
spectra and soil HM content, sensitive spectral bands 
can be selected and corresponding prediction models 
can be analyzed to achieve an indirect estimation of soil 
HM pollution levels. On a larger scale, the status of HM 
pollution on soil surfaces can be continuously monitored 
through remote sensing methods such as airplanes and 
artificial satellites in aviation and aerospace. Leveraging 
HRS technology, soil HM pollution can be indirectly 
monitored. Additionally, HMs can interfere with 
chlorophyll synthesis, resulting in changes in spectral 
information of leaves and canopies. Therefore, this project 
plans to use HRS technology to estimate soil HM pollution 
content through joint analysis of different spectral 
indicators.
3.2. Extraction of characteristic spectra
To achieve the correlation and related modeling between 
crop leaf hyperspectrum and research objectives (soil HMs, 
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grain HMs), it is necessary to comprehensively extract and 
characterize hyperspectral information. The commonly 
used feature spectrum extraction methods include:

Single conversion processing: The spectral image can 
be smoothed and applied to the next conversion process 
to remove noise and improve the signal-to-noise ratio. The 
main conversion processes include the reciprocal, square 
root, and reciprocal logarithmic processes.

Derivative processing: In spectral analysis, 
derivative spectroscopy technology is a commonly used 
preprocessing method that can remove the influence of 
certain baselines and other background factors, thereby 
improving the resolution and sensitivity of the spectrum. 
It can also enhance the spectral information contained 
in hyperspectrum. Usually, first-order and second-order 
differentials are used.

Vegetation index is a simple and effective experiential 
method for measuring surface vegetation contour, typically 
designed using red visible light and near-infrared spectral 
channels (Keshavarzi and Kumar, 2019). In a sense, these 
indicators can better reflect the growth status, biomass, 
and health status of plants and can be used to diagnose 
a series of biochemical and biophysical indicators of 
plants. Compared to single-band diagnosis, the sensitivity 
is higher. The vegetation index varies according to the 
development stage: the first vegetation index is based on 
different spectral data, and it is mostly based on empirical 
remote sensing inversion. This vegetation index does not 
consider the atmosphere, soil physicochemical properties, 
and soil interaction. The second vegetation index is a 
type of vegetation index based on physics, mathematics, 
and logic, which comprehensively considers the effects 
of factors such as atmosphere, vegetation, soil, terrain, 
and electromagnetic radiation and continuously corrects 
the original vegetation index. This can establish a new, 
universal, scalable, and highly applicable vegetation index. 
3.3. Issues in measuring HM content in soil and crops
There are three main problems in measuring HM content 
in soil and crops. Firstly, the accuracy of HRS data is 
relatively low and is constrained by various factors. For 
instance, when utilizing satellite remote sensing data for 
spectral analysis, significant errors in the spectral data 
may arise due to various factors such as atmospheric 
conditions and cloud cover. Hyperspectral images 
contain dozens to hundreds of bands, resulting in a lot 
of data redundancy. Improper processing can affect high 
spectral classification accuracy due to the high correlation 
between bands, necessitating increased training sample 
numbers for classification. Insufficient training samples 
often result in unreliable training parameters. Overall, 
the accuracy of hyperspectral remote sensing data is 
relatively low, primarily due to factors such as large data 
volume, inadequate training samples, and limitations 

of models and methods. Under current conditions, this 
error is difficult to avoid. With the expansion of the scope 
and scale of remote sensing monitoring, its influencing 
factors would become more complex and diverse, and the 
impact on soil spectral information would become more 
prominent (Zhao et al., 2022).

Secondly, achieving large-scale monitoring from 
ground-based propulsion to satellite remote sensing is 
challenging. Currently, HRS monitoring of HMs in soil 
remains at the “field sampling indoor analysis detection” 
stage, hindering rapid development from ground-based 
spectroscopy to satellite remote sensing. Although crop 
growth environment and growth monitoring largely rely 
on satellite remote sensing technology, acquiring satellite 
HRS data is challenging due to factors such as crop growth 
cycles, impeding large-scale real-time monitoring of HM 
pollution in soil and crops (Osman et al., 2021). Thirdly, 
existing quantitative models for HMs in soil and crop grains 
suffer from low computational accuracy. The quantitative 
model of soil HM pollution based on HRS technology still 
faces the problem of low prediction accuracy. On the one 
hand, due to the inherent errors of the model, the mutual 
influence between data cannot be completely eliminated. 
In addition, due to the small number of samples used for 
modeling and the poor representativeness of the data, the 
accuracy of the modeling results is low.

4. Collection and preprocessing of soil data
4.1. Collection and soil samples
The research area of this article is located at longitude 
106°45ʹ-109°7ʹ E and latitude 23°35ʹ-25°57ʹ N. It exhibits 
characteristics of a subtropical monsoon climate, 
predominantly influenced by a maritime climate, featuring 
warm and humid conditions. Precipitation in this area 
is generally high, with an uneven distribution and a 
pronounced rainy season, mainly concentrated in summer. 
Meanwhile, there are also some seasonal droughts and 
floods in the region. Summer temperatures can soar above 
30 °C, while winters are relatively cool but not severely 
cold,with temperatures typically around 10 °C. Specifically, 
summer maximum temperatures can exceed 30 °C, while 
winter minimum temperatures can drop below 0 °C.

The river in the area has a bottom bed width of 485 
m, a water depth of 21 m, an average water level of 307 m, 
and a low water level of 8–9 m. The Youjiang River spans a 
total length of 707 km, with a drainage area of 38,600 km2 
and an average annual runoff of 17.2 billion m3, making it 
an important river. The predominant soil types in this area 
are lime soil and paddy soil, and the main crops cultivated 
are corn and rice. Due to its unique geographical location, 
frequent tides occur, and seawater flows into arid areas 
through connected waterways, resulting in an increase in 
soil salinity and HM concentrations, posing great harm to 
agricultural production.
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This study conducted field equidistant grid sampling 
from 2017 to 2020, with sample intervals controlled at 
around 500 m. The crops sampled included corn and rice, 
and the sampling sites included calcareous soil and paddy 
soil. This article investigated the contents of arsenic (mg/
kg), cadmium (mg/kg), chromium (mg/kg), mercury (mg/
kg), lead (mg/kg), copper (mg/kg), zinc (mg/kg), nickel 
(mg/kg), and selenium (mg/kg) in both soil and crops. 
HRS was used to calculate the pH value, organic matter 
content (g/kg), and cation exchange capacity (cmol(+)/kg) 
in the soil.
4.2. Preprocessing of soil spectral data
In order to effectively extract soil element information 
from hyperspectral data, it is necessary to preprocess the 
original reflection spectrum to eliminate background 
noise, enhance differences between similar spectra, and 
highlight spectral feature values. This article conducts 
image denoising, enhancement, and feature extraction 
on HRS images of soil in the survey area, as depicted 
in Figure. From the figure, it can be seen that the noise 
in the soil HRS image almost disappears after image 
denoising, which is very conducive to soil monitoring. 
Following image enhancement, the distribution contour 
of the image becomes clearer, and the boundaries of soil 
and crops become clearer after contrast enhancement, 
and the differences between similar spectra are also more 
pronounced. After image feature extraction, the spectral 
features of soil HRS images become more prominent.

5. Experiments to calculate HM content in soil and 
crops using HRS technology
5.1. HM content in soil and crops in 2017
This article analyzes the HM content in soil and crops based 
on the soil and crop data collected from HRS technology 
images in this experiment. In 2017, two sets of data were 
collected: one for crops and the other for soil. Both sets 
included calculations of HM content in soil and crops, 
thus facilitating analysis from two perspectives. Firstly, 
this article analyzes it from the perspective of crops, as 
displayed in Table 1. According to the data in Table 1, the 
average HM content in rice is 2.71 mg/kg, while in corn, 
it is 2.46 mg/kg. In paddy soil, the average HM content is 
2.75 mg/kg, whereas in lime soil, it is 2.49 mg/kg. Among 
crops, zinc exhibits the highest HM content, while mercury 
has the lowest. Similarly, in soil, the HM content is still the 
highest in zinc and the lowest in mercury. Subsequently, 
this article analyzes the content of different types of HMs 
in soil samples collected in 2017 and investigates the soil’s 
pH value, organic matter, and cation exchange capacity. 
The specific analysis is presented in Table 2. According 
to Table 2, the crops in the soil sampling grew in soil 
with a pH of around 6.196, whereas the overall soil pH 
was around 6.841. The organic matter content in the crop 
category is about 30.484 g/kg, and in the soil category, it 
is about 30.287 g/kg. Regarding cation exchange capacity, 
rice exhibits a higher value than corn, indicating a stronger 
fertilizer retention capacity of rice, while lime soil has a 

 

Original  Sharpened image Original FAST feature extraction

Contrast-enhanced image Noise-filtered image SURF feature extraction Harris corner detection

Hyperspectral remote sensing image denoising Hyperspectral remote sensing image enhancement Feature extraction of hyperspectral remote sensing image

Figure. Preprocessing of soil HRS images.
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Table 1. Analysis of HM content of different categories in crop sampling.
Crops Soil

Rice Corn Mean value Paddy soil Lime soil Mean value

Average sampling area 0.830 1.310 1.070 0.855 0.650 0.753

Arsenic (mg/kg) 0.025 0.120 0.073 0.025 0.158 0.092

Cadmium (mg/kg) 0.252 0.028 0.140 0.249 0.068 0.158

Chromium (mg/kg) 0.060 0.037 0.049 0.060 0.036 0.048

Mercury (mg/kg) 0.011 0.003 0.007 0.012 0.003 0.007

Lead (mg/kg) 0.076 0.047 0.061 0.050 0.042 0.046

Copper (mg/kg) 2.600 1.807 2.204 2.666 1.846 2.256

Zinc (mg/kg) 20.900 19.920 20.410 21.254 20.007 20.630

Nickel (mg/kg) 0.360 0.138 0.249 0.352 0.166 0.259

Selenium (mg/kg) 0.110 0.060 0.085 0.119 0.078 0.099

Table 2. Analysis of HM content of different categories in soil sampling.
Crops Soil

Rice Corn Mean value Paddy soil Lime soil Mean value

Total arsenic (mg/kg) 34.393 23.314 28.854 47.187 44.629 45.908

Cadmium (mg/kg) 1.237 0.992 1.114 1.325 1.626 1.476

Chromium (mg/kg) 54.922 92.565 73.743 54.060 198.735 126.398

Total mercury (mg/kg) 0.244 0.294 0.269 0.234 0.607 0.421

Lead (mg/kg) 57.203 47.933 52.568 57.262 76.035 66.649

Copper (mg/kg) 26.933 31.505 29.219 29.066 62.749 45.908

Zinc (mg/kg) 165.987 134.660 150.323 180.870 166.510 173.690

Nickel (mg/kg) 25.531 21.031 23.281 25.335 48.346 36.841

Total selenium (mg/kg) 0.627 0.499 0.563 0.634 0.284 0.459

pH value 6.469 5.923 6.196 6.387 7.295 6.841

Organic matter (g/kg) 35.990 24.978 30.484 35.251 25.322 30.287

Cation exchange capacity 
(cmol(+)/kg) 18.476 8.684 13.580 17.838 18.184 18.011
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higher cation exchange capacity than rice soil, indicating a 
stronger fertilizer retention capacity of lime soil.
5.2. HM content in soil and crops in 2018
This article uses HRS images to collect soil and crop data 
for 2018 and analyzes the HM content of crops and soil 
in that year. The specific survey results are presented in 
Table 3. In 2018, the average sampling area for crops was 
497.088 acres, while for soil, it was 495.100 acres. The 
mercury content in crops is recorded as 0.005 mg/kg, 
whereas the HM mercury content in soil has not been 
measured. Additionally, the content of inorganic arsenic in 
soil is 0.082 mg/kg higher than that in crops. The elevated 
content of inorganic arsenic can adversely affect the 
nutrient uptake of plants. It is not conducive to the growth 
of crops, and. Moreover, the presence of inorganic arsenic 
in crops can also pose health risks to humans.
5.3. HM content in crops in 2019
After examining the HM content of crops and soil in 2017 
and 2018, this article also analyzed the monitored crop 
data for 2019. The specific results are presented in Table 
4. According to Table 4, in the 2019 survey data, the zinc 
content of rice was approximately 18.872 mg/kg, indicating 

a decrease of 0.287 mg/kg compared to 2018. Similarly, the 
zinc content of corn is about 21.521 mg/kg, reflecting a 
decrease of 7.253 mg/kg compared to 2018. In both 2018 
and 2019, the content of HM zinc in rice was lower than 
that in corn. Overall, the HM content of rice is 2.191 
mg/kg, while that of corn is 2.389 mg/kg, representing a 
difference of 0.198 mg/kg.
5.4. HM content in soil and crops in 2020
Next, this article analyzes the HM content of soil and 
crops monitored in 2020, with the specific analysis results 
provided in Table 5. In the 2020 survey, the HM content in 
crops was approximately 2.760 mg/kg, with corn having 
a 0.493 mg/kg higher HM content than rice. Regarding 
soil, the HM content is 14.838 mg/kg, among which the 
HM content in paddy soil is 24.841 mg/kg lower than that 
in limestone soil. In 2020, the mercury content in paddy 
soil was recorded as 0.005 mg/kg. The mercury content of 
calcareous soil was measured at 41.357 mg/kg, significantly 
exceeding the standard limit. This indicates that it is not 
suitable to plant crops in the calcareous soil during that 
year, as the high HM content inhibits crop growth and 
poses a serious risk to physical health.

Table 3. Analysis of HM content in soil and crops in 2018.
Crops Soil

Rice Corn Mean value Paddy soil Lime soil Mean value

Average sampling area 446.419 547.758 497.088 621.906 368.294 495.100

Chromium (mg/kg) 0.062 0.060 0.061 0.056 0.069 0.063

Cadmium (mg/kg) 0.183 0.029 0.106 0.146 0.019 0.083

Lead (mg/kg) 0.051 0.050 0.050 0.053 0.045 0.049

Mercury (mg/kg) 0.007 0.003 0.005 / / /

Total arsenic (mg/kg) 0.198 0.022 0.110 0.183 0.022 0.103

Inorganic arsenic (mg/
kg) 0.208 0.000 0.104 0.204 0.167 0.186

Copper (mg/kg) 2.698 1.982 2.340 2.518 2.026 2.272

Zinc (mg/kg) 19.159 28.774 23.966 18.926 21.921 20.423

Nickel (mg/kg) 0.244 0.244 0.244 0.239 0.172 0.206

Selenium (mg/kg) 0.074 0.054 0.064 0.066 0.069 0.068



SHAN et al. / Turk J Agric For

246

Table 4. Analysis of HM content in crops in 2019.
Crops
Rice Corn Mean value

Cadmium (mg/kg) 0.139 0.038 0.088

Mercury (mg/kg) 0.005 0.002 0.004

Arsenic (mg/kg) 0.254 0.024 0.139

Inorganic arsenic (mg/kg) 0.245 0.382 0.314

Lead (mg/kg) 0.040 0.031 0.036

Chromium (mg/kg) 0.049 0.034 0.042

Copper (mg/kg) 2.058 1.646 1.852

Zinc (mg/kg) 18.872 21.521 20.196

Nickel (mg/kg) 0.181 0.143 0.162

Selenium (mg/kg) 0.070 0.069 0.070

Table 5. Analysis of HM content in soil and crops in 2020.
Crops Soil

Rice Corn Mean value Paddy soil Lime soil Mean value

Cadmium (mg/kg) 0.107 0.012 0.059 0.120 33.539 16.829 

Total mercury (mg/
kg) 0.005 0.006 0.006 0.005 41.357 20.681 

Total arsenic (mg/
kg) 0.177 0.017 0.097 0.184 37.465 18.825 

Lead (mg/kg) 0.036 0.039 0.038 0.037 46.029 23.033 

Chromium (mg/kg) 0.109 0.093 0.101 0.116 28.080 14.098 

Copper (mg/kg) 2.154 2.004 2.079 2.129 37.489 19.809 

Zinc (mg/kg) 19.603 24.446 22.025 18.714 20.921 19.817 

Nickel (mg/kg) 0.371 0.375 0.373 0.390 0.378 0.384 

Selenium (mg/kg) 0.065 0.070 0.067 0.059 0.064 0.062 
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5.5. Comparative analysis of HM content in soil and 
crops using HRS technology
HMs may persist in soil for a long time, seriously affecting 
soil quality. The coexistence of different HM pollutants 
may lead to biological toxicity and alter microbial activity 
(Xu et al., 2021). In order to study the calculation effect of 
HM content in soil and crops using HRS technology from 
2017 to 2020, this paper conducted a comparative analysis 
of HM content and enrichment coefficient using neural 
network algorithms.

To achieve the mapping of input vectors to hidden layers, 
neural network functions are usually used as their “basis” 
to form a hidden layer space. When the center of the neural 
network is determined, its corresponding relationship is 
determined. Due to the linear transformation between the 
hidden layer and the output layer in the network, the input 
and output of the network are a simple linear addition of 
the hidden layer outputs, with the sum of their weights. 
Meanwhile, the excitation function of the model is a new 
radial basis function. The radial basis function is a real-
valued function whose value is only dependent on the 
distance from the origin, namely Φ(x) = Φ(IxI),or can 
also be a distance to any point c, where point c becomes 
the center point, or Φ(x,c) = Φ(Ix-cI). Any function Φ 
that satisfies the characteristic of Φ(x)=Φ(IxI) is called 
a radial vector function, and the standard generally uses 
Euclidean distance, although other distance functions are 
also possible. The basis function has the property of local 
response to the input signal, and the output of the model 
increases with the distance from the central region of the 
basis function, thus giving a local approximation of the 
neural network. The basis function has a characteristic of 
local response to the input signal, and the output of the 
model increases with the increase of the distance from the 
center region of the basis function, thus giving the neural 
network local approximation. Firstly, the Gaussian radial 
basis function for calculating HM content is:
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 are the center vector of the activation function 
and the width of the radial basis function, respectively. 
According to the radial basis function, the linear network 
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 is the implicit output value of the output layer. 
Then, based on the network output function, the variance 
formula for HM calculation under the radial basis function 
is determined as follows:

𝐴𝐴(𝑥𝑥) = 𝑒𝑒𝑒𝑒𝑒𝑒 (− !
"
(#$%!
&!
)"* , 𝑘𝑘 = 1,2,⋯ , 𝑛𝑛（1） 

𝑝𝑝', 𝑞𝑞'  

f(𝑥𝑥) = ∑ 𝑟𝑟'(
')! 𝐴𝐴(𝑥𝑥), 𝑘𝑘 = 1,2,⋯ , 𝑛𝑛（2） 

𝑞𝑞* =
%"#$
√",

, 𝑖𝑖 = 1,2,⋯ , 𝑛𝑛（3） 

𝑅𝑅 = 𝑒𝑒𝑒𝑒𝑒𝑒 7 ,
%"#$
% ||𝑥𝑥- − 𝑜𝑜-||: , 𝑗𝑗 == 1,2,⋯ , 𝑛𝑛（4） 

𝑆𝑆̅ = #&$#"'(

#"#$$#"'(
（5） 

 

 (3)

In the formula, h is the grouped Euclidean distance 
of the radial basis function, and 

𝑟𝑟! 	 

𝑝𝑝"#$ 𝑥𝑥% 𝑜𝑜%  

𝑥𝑥"#$, 𝑥𝑥"#$  

 

 is the maximum 
center vector of the radial basis function. The final weight 
between the calculated and actual values of HM content 
can be obtained as follows:
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 is the actual value of HM content. The enrichment 
coefficient of HM content can be analyzed through 
normalization based on the weight values.
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,  represent the maximum and 
minimum values calculated for HM content. Based 
on the survey data from 2017 to 2020, the enrichment 
coefficients were analyzed, and the specific analysis results 
are presented in Table 6.

According to Table 6, the HM contents of crops 
from 2017 to 2020 are 2.586, 2.705, 2.290, and 2.760, 
respectively. The soil HM contents in 2017, 2018, and 2020 

Table 6. Comparative analysis of HM content in soil and crops using HRS technology.
2017 2018 2019 2020 Mean value

Heavy metals in rice (mg/kg) 2.710 2.288 2.191 2.514 2.426
Heavy metals in corn (mg/kg) 2.462 3.122 2.389 3.007 2.745

Heavy metals in crops (mg/kg) 2.586 2.705 2.290 2.760 2.586

Heavy metals in paddy soil (mg/kg) 2.754 2.239 / 2.417 2.470

Lime soil HMs (mg/kg) 2.489 2.451 / 27.258 10.733

Heavy metals in soil (mg/kg) 2.622 2.345 / 14.838 4.951

Concentration factor 0.987 1.154 / 0.186 0.582
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are 2.622, 2.345, and 14.838, respectively. Employing the 
formula for calculating the enrichment coefficient, the 
HM enrichment coefficients for 2017, 2018, and 2020 were 
determined to be 0.987, 1.154, and 0.186, respectively. It 
can be seen that the HM enrichment coefficient in 2020 
was the smallest, whereas it peaked in in 2018 was the 
highest. Through the above experimental analysis, it was 
found that zinc content is highest in soil and crops, while 
mercury content is lowest. HRS technology can be used to 
monitor the HM content of soil and crops. By reducing the 
HM content in the soil, the growth speed of crops can be 
improved, and the HM content in crops can be reduced, 
reducing the harm to human health.

6. Conclusions
By using ground HRS technology, hyperspectral data 
of surface targets can be directly obtained, with the 
characteristics of high resolution and continuity. Real-
time detection of hyperspectral data of the tested object 
can be achieved without damaging soil and crops. This can 
thus overcome the drawbacks of traditional HM detection 
methods, such as cumbersome steps, easy damage to 
the tested object, and difficulty in real-time detection. 
The research results of this project would provide strong 
data support for the accurate acquisition and monitoring 
of soil spectral information, and also lay a foundation 
for the application of soil spectral information. This 
article used ground HRS data for monitoring changes in 
HM content in soil and crops, but failed to utilize large-
scale HRS technologies such as airplanes and drones. 
For three-dimensional multi-scale monitoring, future 
research should focus on combining ground HRS with 
high-altitude HRS, and even satellite remote sensing to 
achieve large-scale multiscale remote sensing monitoring 
of metal content changes. Despite its powerful information 
acquisition capabilities, hyperspectral remote sensing 

technology still faces limitations in handling heavy metal 
content and agricultural potential. For example, for some 
heavy metal elements, the spectral information may be 
relatively weak, and it is difficult to be accurately detected 
and identified. In the process of hyperspectral remote 
sensing image processing, it is usually necessary to exclude 
the influence of light, temperature, moisture, and organic 
matter, which increases the complexity and difficulty 
of processing. Therefore, the research on heavy metal 
content and agricultural potential based on hyperspectral 
remote sensing image processing still needs to be further 
improved and perfected.
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