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1. Introduction
The economic significance of spinach (Spinacia oleracea 
L.) is steadily increasing on a global scale due to its high 
nutritive content and vital role in human nutrition. 
European spinach production alone exceeds 690,000 tons, 
contributing to the substantial worldwide production 
of approximately 31 million tons in 2020 (Bhattarai and 
Shi, 2021; Akan, 2022).Spinach cultivation is a year-
round possibility, contingent upon regional temperature 
conditions (Koike et al., 2011; Chitwood et al., 2016). 
It is a cool-season, annual crop with an optimal growth 
temperature range of 15–20 °C, a minimum at around 
5 °C, and a maximum at 32 °C. While spinach can 
germinate at soil temperatures above 1.7 °C, the most 
favorable germination rates occur at approximately 21 °C. 
Nevertheless, germination vigor significantly diminishes 
at temperatures exceeding 30 °C, making early spring 
or late fall more conducive for cultivation (Chitwood 

et al., 2016; Welbaum, 2015). Atherton and Farooque 
(1983) reported that spinach seeds germinate at soil 
temperatures between 5 °C and 30 °C, with the highest 
germination rate at 20°C. The germination rate sharply 
declines between 25 °C and 30 °C. Leskovar and Esensee 
(1999) stated that spinach seeds do not germinate at 35 
°C; however, Chitwood et al. (2016) suggested that if a 
spinach genotype can germinate at high temperatures like 
35 °C and maintain a high germination percentage, it may 
indicate heat tolerance. To achieve high yields in both field 
and greenhouse conditions, spinach seeds must germinate 
rapidly and uniformly, particularly at high temperatures, 
in addition to optimum temperatures. Due to growing 
demand, extending the production season and developing 
heat-tolerant cultivars are essential for year-round spinach 
production. Understanding temperature tolerance in 
spinach is crucial for prolonging its growing season and 
developing heat-tolerant cultivars. Germination is a key 
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factor in assessing heat tolerance in spinach, as genotypes 
with high germination rates at elevated temperatures can 
contribute to year-round production (Chitwood, 2016; 
Katzman et al., 2001).Fatty acid β-oxidation, fueled by 
acetyl coenzyme A and β-oxidase, provides ATP energy 
and plays a vital role in germination. Additionally, seed 
oils undergo quantitative changes in structural oils due 
to membrane formation during germination, especially 
under temperature-related abiotic stress (Huang and 
Grunwald, 1990; Wanasundara et al., 1999; Copeland 
and McDonald, 2001; Kaymak, 2012, Kaymak, 2014a; 
Kaymak, 2014b). Moreover, fatty acid profiles can serve as 
valuable biochemical markers in plant breeding (Barthet, 
2008; Kaymak, 2015). However, there is limited knowledge 
regarding the fatty acid profiles of spinach seeds, with 
only Lee (2015) providing partial information on a single 
spinach cultivar. The present study aims to fill this research 
gap by comprehensively examining the fatty acid profiles 
of spinach seeds and their responses to temperature 
stress. Analyzing fatty acid profiles and their responses 
to temperature stress will aid in the initial selection of 
temperature-stress-resistant cultivars or genotypes in 
breeding studies.

Fatty acid β-oxidation, occurring during seed 
germination, induces structural alterations in seed oils, 
particularly under temperature-related abiotic stress. These 
alterations could potentially influence the germination 
capabilities of diverse spinach varieties, making them 
critical factors in selecting temperature-stress-resistant 
varieties or genotypes.

As such, the objectives of this study are twofold: first, 
to assess the influence of various temperatures on seed 
germination in different spinach cultivars; secondly, to 
identify cultivars demonstrating tolerance to temperature 
stress during germination. Additionally, the study aims to 
explore the correlation between fatty acid profiles and seed 
germination under varying temperature conditions.

2. Materials and methods
2.1. Materials and treatments
This study, conducted at Atatürk University in 2019 and 
2020, aimed to assess the potential impact of fatty acid 
composition on the seed germination of nine spinach 
(Spinacia oleracea L.) cultivars: ‘Matador-1, 2, and 3’, 
‘Ranchero F1’, ‘Aras F1’, ‘El Tajin’, ‘Alreal F1’, ‘Catrina F1’, and 
‘Poyraz F1’, across low, optimum, and high temperatures. 
The seeds utilized were one-year-old spinach seeds, 
selected from these cultivars due to their popularity and 
frequent use in Turkish production, sourced from various 
Turkish seed companies.

Nine temperature treatments were implemented: 2.5, 5, 
10, 15, 20, 25, 30, 32, and 35 oC. The previously established 
optimum germination temperature for spinach is 20 °C, 

with inhibition observed at 30 °C and complete cessation 
at 35 °C. To explore the impact of heat stress, three 
temperatures above the optimum (30, 32, and 35 °C) were 
chosen based on previous studies (Atherton and Farooque, 
1983; Leskovar and Esensee, 1999; Katzman et al., 2001; 
Chitwood et al., 2016). Considering the limited research 
on spinach seed germination at low temperatures, 2.5, 
5, and 10 °C were selected to represent low-temperature 
stress conditions.

Germination tests were conducted with four replicates 
of 50 seeds each, disinfested in 1% sodium hypochlorite 
for 15 min to eliminate seed-borne microorganisms. The 
seeds from each cultivar were placed in 9-cm Petri dishes 
in the dark and subjected to a seed germination unit 
(BINDER, D-78532, Tuttlingen, Germany) for 21 days 
following ISTA guidelines (2011), at 2.5, 5, 10, 15, 20, 25, 
30, 32 and 35 °C. The seeds were incubated between two 
filter papers saturated with water containing Benomyl 
(Methyl 1-(butylcarbamoyl)-2-benzimidazolecarbamate, 
50%) at a concentration of 1 g L–1 to prevent fungal 
pathogen growth.
2.2. Measurement of germination parameters
Visible-radicle protrusion (≥2 mm) served as the 
germination criterion, as established by Kaymak (2012). 
Germination progress was monitored at 24-hour intervals 
over a 21-day period, with germinated seeds recorded, 
and the results expressed as a germination percentage. 
Simultaneously, the length of the radicle was measured 
using a caliper.Germination speed (GS) was determined 
using the formula introduced by Kaymak et al. (2009): 
GS = Germination Percentage in the 1st day/1 + … + 
Germination Percentage in the 21st day/21. Here, 1 and 21 
represent the mean values for the first and last days during 
the germination test.

Mean germination time (MGT) was computed using 
the formula MGT = Σ (ni × ti / ni), as cited by Alsaeedi 
et al. (2017). MGT represents the mean germination time, 
‘ni’ denotes the number of germinated seeds on each 
germination day, and ‘ti’ signifies the number of days 
within the germination period (spanning from 0 to 21 
days).
2.3. Fatty acid analysis
The lipid extraction from seeds, approximately 1 g in 
quantity, followed the procedure outlined by Folch et al. 
(1957). Seed samples were homogenized in a mixture of 
chloroform and methanol (2:1 v/v), supplemented with 
0.01% (w/v) butylated hydroxytoluene (Sigma, ≥99.0% 
gas chromatography, B1378) as an antioxidant, at a ratio 
of 20 vol. (w/v) for 1 min. The homogenization process 
was carried out on ice, while subsequent steps such as 
filtration and incubation were conducted at temperatures 
between 20 and 22 °C. Following this, the organic solvent 
was evaporated using a stream of nitrogen, and the lipid 
content was determined gravimetrically.
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To produce fatty acid methyl esters (FAMEs) from the 
lipids, the crude lipid extract was saponified with NaOH 
in methanol. Subsequently, FAMEs were synthesized 
through transmethylation using boron trifluoride (BF3) 
in methanol, following the method of Metcalfe and 
Schmitz (1961). The analysis of fatty acid methyl esters 
was conducted using a “Hewlet Packard” Agilent 6890 
N model gas chromatograph, equipped with a flame 
ionization detector and a DB 23 capillary column (60 m 
in length, 0.25 mm inner diameter, and 0.25 µm particle 
size). The temperature program for the chromatograph 
initiated at 190 °C for 35 min and then increased at a rate 
of 30 °C per minute until it reached 220 °C, where it was 
held for 5 min. Hydrogen gas (at a flow rate of 2 mL min–1) 
served as the carrier gas. Identification of specific fatty 
acids was achieved by comparing their retention times 
and peaks with a standard mixture of fatty acids (Supelco 
37 component FAME mix, catalog No. 47885-U), and 
their quantities were determined in accordance with the 
method outlined by Kaymak (2015).
2.4. Statistical analysis
The germination test was carried out following a completely 
randomized block design with four replications. The 
resulting data were subjected to one-way analysis of 
variance (ANOVA), and mean comparisons were 
conducted using Duncan’s multiple range test. Prior to 
statistical analysis, an arcsine transformation was applied 
to the germination percentage data.

Furthermore, stepwise multiple regression and 
correlation coefficients (r) between the fatty acid profile and 
germination percentage, along with principal components 
(Principal Component Analyses, PCA), were determined 
for all temperatures. Fatty acid data were presented as 
mean ± standard deviation (SD) and analyzed through 
one-way analysis of variance (ANOVA). Significant means 
were compared using Duncan’s multiple range tests at a 
significance level of α = 0.05 (n = 4). 

3. Results and discussion
Variations in germination percentage and speed among the 
nine spinach cultivars were determined under the tested 
temperatures (Table 1). With the exception of Matador-1, 
all other cultivars exhibited the highest germination 
percentages at 15 and 20 °C. Conversely, deviations from 
these temperatures, whether increasing or decreasing, 
resulted in a decline in germination percentage. El-Tajin 
demonstrated the highest germination percentage at 10 
°C, ranging from 62.04% (Poyraz F1) to 88.72% (El-Tajin). 
At 25 °C, Aras F1, Alreal F1, Matador 1 and 2, Catrina 
F1, and Poyraz F1 displayed intermediate germination 
percentages. Notably, germination percentages at 5 °C 
for all cultivars, except for Poyraz F1, exceeded those at 
30 °C. At 32 °C, Ranchero F1 and Matador-3 exhibited no 

germination, while other cultivars showed percentages 
ranging from 11.31% (Poyraz F1) to 62.04% (Catrina 
F1). Interestingly, Matador-2 and Catrina F1 maintained 
germination percentages above 50% at 32 °C. However, 
none of the cultivars, except Matador-1 (9.10%) and 
Catrina F1 (9.10%), germinated at 35 °C. Ultimately, it 
was observed that high-temperature stress had a more 
unfavorable impact than low-temperature stress on the 
germination of the tested spinach cultivars.

Table 1 also illustrates the seed germination speed of 
the nine spinach cultivars across temperatures ranging 
from 2.5 °C to 35 °C. Statistically significant differences in 
germination speeds at different temperatures were observed 
for all cultivars (p = 0.01). The highest germination speeds 
among the nine cultivars were recorded at 15 °C, with 
speeds ranging between 0.28% (Matador-1, 35 °C) and 
14.06% (El-Tajin, 15 °C). Increasing the germination 
temperature from 2.5 °C to 15 °C corresponded to an 
improvement in germination speed. However, raising the 
temperature from 20 °C to 35 °C resulted in a decrease 
in germination speed across cultivars. Furthermore, 
temperatures between 10 °C and 20 °C exerted a more 
significant effect on germination speed than low and high 
temperatures, with a decline observed at values below and 
above the specified range.

The decline in spinach seed germination under heat 
stress has been consistently documented by several 
researchers (Wahid et al., 2007; Chitwood et al., 2016; Neto 
et al., 2020). Magnee et al. (2020) also reported the high 
sensitivity of spinach seed germination to temperature 
fluctuations. This decrease in germination is attributed 
to the induction of dormancy by elevated temperatures 
(Neto et al., 2020). Among various environmental factors, 
high temperatures are identified as the most critical factor 
inhibiting radicle growth during spinach seed germination 
(Ashraf and Foolad, 2005). The optimal germination 
temperature for spinach falls within the range of 15–20 °C, 
with germination rates declining outside this temperature 
range (Ting et al., 2012; Chitwood et al., 2016). Similarly, 
Imran et al. (2021) reported that spinach seeds exhibit 
optimal germination between 15 and 24 °C. Beyond 20 
°C, germination starts to decrease, reaching rates below 
50% at 30 °C and ceasing entirely at 35 °C (Røeggen, 1984; 
Leskovar et al., 1999). Previous studies have specified the 
limited germination of spinach seeds at temperatures below 
12.3 °C and above 23.3 °C, with complete cessation at 35 °C 
(Wilcox and Pfeiffer, 1990; Leskovar and Esensee, 1999). In 
the present research, a significant and substantial decrease 
in germination percentage was observed at temperatures 
exceeding 20 °C across all cultivars. While there was a 
decline in germination percentages at temperatures below 
20 °C, it was not as pronounced as at higher temperatures. 
Moreover, germination did not occur in cultivars other 
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than Matador-1 and Catrina F1 at 35 °C. Correspondingly, 
Masuda and Konishi (1993) and Masuda et al. (2005) noted 
a significant reduction in the germination percentage of 
spinach seeds at temperatures exceeding 25 °C. Previous 
studies have highlighted the ability of spinach seeds to 
germinate within the temperature range of 5 °C to 30 
°C, with a sharp decline between 25 °C and 30 °C, and 
optimal germination rates at 15 °C and 20 °C (Atherton 
and Farooque, 1983). Additionally, Chitwood et al. (2016) 
determined that the germination percentage of spinach 
seeds varies based on both varieties and temperatures. 

In this study, variations in germination speed were 
observed across different varieties and temperatures. 
Notably, an increase in germination speed was noted at 
temperatures ranging from 10 °C to 20 °C, while a decrease 
was observed at temperatures below and above this range. 
The germination speed of seeds, in general, can be affected 
by stress factors such as temperature, drought, salinity, 
and seed coat impermeability. Additionally, variations in 
germination speed may arise due to differences in species 
and cultivars. The balance of growth regulators within the 
seed or shell can also play a role in affecting germination 
speed. In the case of spinach, germination inhibition may 
occur as germination inhibitors are secreted from the 
pericarp at temperatures below and above the optimum 
range (Suganuma and Ohno, 1984), impacting the overall 
germination speed. Balkaya (2004) highlighted that 
germination speed can vary based on species and cultivars, 
with the seed coat and temperature exerting an influence.

Suganuma and Ohno (1984) stated that spinach seeds 
exhibit rapid germination at 20 °C, with both germination 
percentage and speed decreasing as temperatures rise. 
Chen et al. (2010) also found that spinach seeds germinate 
quickly at 15 °C and 20 °C, with the highest germination 
rates observed at these temperatures. The findings of this 
study regarding germination percentage and speed align 
with and support the results of previous research.

The impact of germination temperature on the MGT 
of spinach cultivars’ seeds was evident (Table 2). The 
highest MGT was observed at low temperatures, such as 
2.5 °C and 5 °C, while lower MGT values were associated 
with temperatures where germination was highest. At low 
temperatures, spinach seed germination occurred over a 
more extended time period and at a higher rate (Tables 1 
and 2). Interestingly, MGT exhibited lower values at high 
temperatures, such as 32 °C and 35 °C, where germination 
rates were low. Germination at high temperatures (32 °C 
and 35 °C) mainly occurred within the first 7–10 days, 
with no germination observed in the later period. This 
phenomenon likely contributed to the low MGT at high 
temperatures. For instance, the shortest MGT (7.0 days) 
was observed in Catrina F1 and Matador-1 at a temperature 
of 35 °C. Similar MGT values were noted at temperatures 

of 15 °C and 20 °C, considered optimum conditions. If 
spinach seeds can germinate at high temperatures, but this 
occurs within the first 10 days, it suggests that the seeds 
may subsequently perish due to the adverse effects of high 
temperatures in the later stages.

The effect of temperatures (ranging from 2.5 °C to 
35 °C) on MGT varies across cultivars, and significant 
differences were observed between the means at the 1% 
level. Under conditions of salinity, drought, and heat stress, 
vegetable seed germination percentages tend to decrease, 
while MGT increases. Although MGT can differ based on 
species and cultivars, it is considered a reliable indicator 
of seed vigor. Various priming applications, such as those 
involving KNO3 and KH2PO4, have been shown to affect 
the MGT of spinach seeds. For instance, after applications 
with KNO3 and KH2PO4, the MGT was found to be 10.4 
days in the control (at 5 °C), whereas it decreased to 5.4 
days and 4.7 days at 15 °C and 25 °C, respectively (Orhan, 
2013).

The radicle length results indicate substantial variations 
among spinach cultivars and tested temperatures (Table 
2). Radicle length was more extended at 15 °C and 20 
°C compared to low (2.5 °C) and high temperatures (32 
°C and 35 °C). This suggests that the inhibitory effect 
of low and high temperatures on radicle length is more 
pronounced than that of optimum temperatures. This 
trend is consistent across all cultivars, with Catrina F1 
and Matador-1 showing the strongest response at high 
temperatures. Additionally, the highest radicle length was 
consistently observed at 15 °C across all cultivars, ranging 
from 3.3 mm (35 °C) to 62.0 mm (15 °C).

Table 3 presents the major fatty acids in the seeds of 
the nine spinach cultivars. Significant differences were 
found in the fatty acids contents among the cultivars’ seed 
samples. Linoleic (C18:2n-6), oleic (C18:1n-9), palmitic 
(C16:0), and stearic acid (C18:0) were the predominant 
fatty acids, followed by C20:1n9 at less than 3%, with other 
fatty acids present at even lower concentrations (<1%) in 
spinach cultivars.

Total SFA, MUFA, n-6 PUFA, and total oil contents 
varied, as detailed in Table 4. PUFA ranged from 41.30% 
(El-Tajin) to 62.52% (Matador-3) of total fatty acids across 
all cultivars. Monounsaturated and saturated fatty acids 
contributed to 23.02% (Catrina F1), 27.41% (Ranchero F1), 
13.77% (Matador-3), and 30.65% (El-Tajin) of total fatty 
acids in the tested spinach cultivars, respectively. Seeds 
of all tested cultivars exhibited high concentrations of oil 
content, with Matador-3 having the highest (12.12%) and 
Poyraz F1 the lowest (9.97 Although the total oil content 
of small-seeded vegetables varies between 7% (Spinacia 
oleracea L.) and 50% (Cucurbits) (Al-Khalifa, 1996; 
Taylor, 1997), ), specific lipid contents for pepper, radish, 
and cabbage are 22%, 36%, and 38%, respectively (Taylor, 
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1997). Additionally, Lee et al. (2015) reported a 4.5% total 
oil content for spinach seeds. In our study, the determined 
total oil contents of spinach seeds were higher than those 
reported by Taylor (1997) and Lee et al. (2015). However, 
this disparity could be attributed to variations in spinach 
cultivars, as seed oil content is influenced by factors such 
as harvest time, maturity level, seasonal fluctuations, 
drying conditions, cultivar type, variety, soil conditions, 
and storage conditions (De Mello, 2000; Kaymak, 2012; 
Kaymak, 2014a).  

The number of in-depth studies on the fatty acid profile 
of spinach seeds is scarce. In one of the limited studies on 
this subject, it was reported that palmitic, stearic, oleic, 
and linoleic acid in spinach seeds constituted 22.6%, 
1.7%, 15.4%, and 49.3%, respectively (Lee et al., 2015). 
According to the findings of this research, the fatty acid 
profiles of the seeds exhibited significant variations among 
cultivars. For instance, linoleic acid ranged from 40.94% 
(El Tajin) to 62.00% (Matador-3), oleic acid varied from 
20.03% (Catrina F1) to 25.23% (Ranchero F1), palmitic acid 
ranged from 11.91% (Matador-3) to 21.55% (El Tajin), 
and stearic acid ranged from 1.61% (Matador-3) to 7.42% 
(Ranchero F1). Previous studies have shown that the fatty 
acid profiles of vegetable seeds, such as summer and winter 
squash, cucumber, melon, watermelon, and gherkin, vary 
based on both species and cultivars within the species 
(Kaymak, 2012; Kaymak, 2014a; Kaymak, 2014b, Kaymak 
et al., 2022). It is well-established that the fatty acid profile 
differs based on production region, temperature, harvest 
period, genetic structure, breeding period, and ecological 
factors of the region (Baydar, 2000; Kaymak, 2015). As 
far as our knowledge extends, this research represents 
a pioneering effort that significantly contributes to the 
existing scientific knowledge. It addresses a notable 

gap in the research domain by being the first study to 
comprehensively examine the fatty acid profiles of spinach 
seeds across nine distinct cultivars.

Cluster analysis was employed to gain a deeper 
understanding of the fatty acid contents of the cultivars 
and to reveal differences between them (Figure 1). The 
dendrogram resulting from the cluster analysis categorized 
cultivars into two main groups based on fatty acids 
content, namely Cluster 1 and Cluster 2. Cluster 1 includes 
Aras F1, Poyraz F1, Ranchero F1, Matador-1, and El-Tajin 
cultivars, while Cluster 2 comprises Alreal F1, Matador-2, 
Matador-3, and Catrina F1 cultivars. According to the 
cluster analysis results, it can be inferred that Aras F1 and 
Poyraz F1, as well as Matador-2 and Matador-3 spinach 
cultivars, share similarities in terms of the examined 
characteristics (Figure 1).

The correlation coefficients between the fatty acid 
profile, total oil, and seed germination percentage 
at various temperatures for all spinach cultivars are 
presented in Tables 5 and 6. Significant correlations were 
observed between 10 °C and 32 °C for seed germination 
and fatty acid contents of spinach seeds at various 
temperatures. However, no significant correlations were 
identified between the fatty acid contents of seeds and 
germination percentage at 2.5, 5, and 35 °C. Significant 
correlations were determined between fatty acids and 
germination percentage at 30 °C and 32 °C, considered 
stress temperatures, where the germination percentage 
decreases considerably. Although fatty acids C17:1, 
C18:1n9, and MUFA were negatively correlated with 
germination percentage, there were positive correlations 
between C18:3n-6, C20:1n9, and germination percentage. 
Other significant correlations at 10 °C, 15 °C, 20 °C, and 25 
°C are clearly presented in Table 5.

 

 

Figure 1. The dendrogram obtained from cluster analysis by fatty acids 

 

 

Figure 1. The dendrogram resulting from cluster analysis based on fatty acids.
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Additionally, similar results were obtained in stepwise 
multiple regression analysis (Table 6), indicating the 
indirect effects of fatty acids in addition to their direct 
effects on germination percentage. The regression 
equations (Y), R square, and other details are shown in 
Table 6 for germination percentage. As observed in the 
correlation analysis, most of the fatty acids’ indirect effects 
are clearly stated in the related table.

The germination process heavily relies on free fatty 
acid β-oxidation, acetyl coenzyme A, and β-oxidase, all 
of which significantly contribute to energy production in 
the form of ATP. Furthermore, it is a well-established fact 
that the oils stored within seeds are metabolized during 
germination to supply the required energy for high-energy 
activities, particularly under adverse abiotic conditions 
like temperature stress. Additionally, the composition of 
structural oils undergoes quantitative alterations as new 
membranes are formed (Huang and Grunwald, 1990; 
Wanasundara et al., 1999; Copeland and McDonald, 
2011; Kaymak, 2012, Kaymak, 2014a; Kaymak, 2014b). 
Germination of cultivars at various temperatures is closely 
related to extra or deficient endogenous fatty acids. The 
results of the present study support previous research, 
confirming that triglycerides, a major form of stored 
lipids in seeds, are hydrolyzed by lipases to diglycerides, 
monoglycerides, and then to glycerol and fatty acids 
(Krist et al., 2005). Similarly, Salisbury and Ross (1985) 
determined that since oils provide more energy than 
sugars, carbohydrates are converted into fats and provide 
more energy for seed germination. Fatty acids and high 
total oil content can prevent dormancy caused by high 
temperatures and increase germination. Furthermore, 
fatty acids are essential in plant breeding, as the fatty acids 
in seeds can be used as biochemical markers (Barthet, 
2008; Kaymak, 2015). Therefore, these research results, 
the first in spinach, are predicted to be a key and provide 
convenience when determining spinach cultivars or 
genotypes resistant to heat stress.

Barthet (2008) determined that the studied species can 
be classified by using statistical similarities or differences 
of C18:1(n-7) / (n-9) ratios for chemotaxonomy in 
cruciferous crops. Previous research, such as Kaymak 
(2015), emphasized the importance of palmitoleic acid 
in synthesizing long-chain fatty acids and proposed 
using (n-7) / (n-9) ratios of erucic acid as biochemical 
markers for assessing variations among radish varieties. 
Similar findings emerged from previous studies on various 
vegetable species, employing correlation and Stepwise 
Multiple Regression tests. For instance, Kaymak (2012) 
established statistically significant relationships between 
total oil, fatty acid composition, and the germination rate 
and speed of cucurbit seeds, identifying C14:0, C18:2n-6, 
and C20:0 as influential factors. Additionally, simple 

correlation coefficients and stepwise multiple regression 
analyses suggested that palmitic acid (C16:0), oleic acid 
(C18:1n-9), linoleic acid (C18:2n-6), stearic acid (C18:0), 
myristic acid (C14:0), palmitoleic acid (C16:1n-7), 
margaric acid (C17:0), arachidic acid (C20:0), eruic acid 
(C22:1n-9), behenic acid (C22:0), MUFA, n-6 PUFA, and 
total oil significantly affect seed germination in pepper, 
eggplant, radish, and cabbage at different temperatures 
(Kaymak, 2014a). In line with these findings, Kaymak 
(2014b) reported similar results in the germination rates of 
pepper cultivars under different temperature conditions. 
These observations suggest that fatty acid levels, whether 
high or low, play a major role in the germination of 
pepper cultivars at diverse temperatures, with linoleic acid 
(C18:2n-6) standing out as particularly influential.
In addition to simple correlation coefficients and stepwise 
multiple regression analysis, principal component analysis 
(PCA) was performed to determine the relationship 
between fatty acids and germination. Different analyses 
were employed to comprehensively evaluate the subject 
and provide a clearer understanding. The applicability 
of PCA in the dataset was assessed, and the correlation 
coefficient matrix’s identity matrix nature was examined 
using Bartlett’s sphericity test. Bartlett’s sphericity test 
yielded a value of 341.395 (p < 0.001), indicating that the 
correlation matrix is not an identity matrix, suggesting 
significant correlations among some variables. Therefore, 
PCA is deemed applicable to the dataset.

The results of principal component analysis are 
presented in Table 7. The eigenvalues of each principal 
component and the proportion of total variance explained 
by these eigenvalues are provided. Principal components 
with eigenvalues greater than 1 were considered 
significant. The first five components explain a total 
variance of 92.859% of the dataset. Specifically, the first 
component explains 46.496% of the total variance, the 
second component explains 19.53%, the third component 
explains 12.677%, the fourth component explains 8.251%, 
and the fifth component explains 5.904%. The total variance 
explained by the other three components is 7.141%, and 
these components were not considered significant.
Upon examining Table 8 and Figure 2, it can be observed 
that the variables contributing the most to the first 
principal component are, in descending order, n-6 PUFA 
(8.403), C18:2n6 (8.393), SFA (8.193), and C16:1n7 
(8.033). Similarly, the second principal component is 
primarily influenced by GP 32 °C (16.194), GP 30 °C 
(11.212), C20:1n9 (9.944), and GP5 °C (8.550). The third 
principal component’s major contributors include GP2.5 
°C (19.262), C22:0 (14.940), GP 5 °C (14.663), and GP 15 
°C (7.902). Moving on to the fourth component, GP 20 
°C (27.556), C18:3n6 (15.402), GP 35 °C (15.399), and GP 
25 °C (10.222) variables have the most substantial impact. 
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Finally, the fifth component’s primary contributors are GP 
25 °C (19.305), GP 35 °C (16.427), C 18:0 (13.660), and 
C15:0 (9.827).

The principal component analysis (PCA) conducted 
in this study has provided valuable insights into the 
complex interplay between temperature stress and fatty 
acid profiles during spinach seed germination. The 
results indicate that the first five principal components 
collectively capture an impressive 92.859% of the total 
dataset variance, signifying their significance in explaining 
the relationships within the data. These findings align with 
our initial hypothesis that temperature stress significantly 
influences fatty acid profiles during seed germination. 
Notably, the first principal component, accounting for 
46.496% of the total variance, is predominantly influenced 
by n-6 PUFA, C18:2n6, SFA, and C16:1n7, emphasizing 
the pivotal role these fatty acids play in mediating the 
impact of temperature stress on seed germination. The 
subsequent components, each contributing substantial 
portions of the variance, elucidate additional key variables 
in this intricate relationship. Our results reveal a nuanced 
connection between temperature stress and fatty acid 
composition. The exclusion of nonsignificant components 
underscores the importance of focusing on these significant 
components in future research to decipher the specific 
mechanisms governing this relationship. This study not 
only advances our understanding of the temperature-fatty 

acid-seed germination nexus but also lays the foundation 
for future investigations aimed at unraveling the specific 
metabolic pathways and molecular processes through 
which temperature stress modulates fatty acid profiles 
during spinach seed germination.

4. Conclusion
The optimal temperature ranges for spinach seed 
germination, as determined by this study, fall between 15 
and 20 °C. Beyond 20 °C, germination percentages decline 
significantly, with a sharp drop observed at 35 °C, except 
for the Matador-1 and Catrina F1 cultivars. Most spinach 
varieties, excluding ‘Aras F1,’ ‘Catrina F1,’ and ‘Poyraz 
F1,’ experienced a substantial decrease in germination 
percentages, dropping to less than 30% above 25 °C. 
‘Catrina F1’ demonstrated notable heat tolerance, with 
a 62.04% germination rate at 32 °C and 9.10% at 35 °C, 
making it a potential candidate for heat-tolerant spinach 
breeding. The variability among spinach cultivars suggests 
the feasibility of breeding for heat tolerance.

The study identified significant correlations between 
fatty acid profiles and germination percentages at stress 
temperatures, particularly at 30 °C and 32 °C, where 
germination percentages substantially decrease. Negative 
correlations were found between C17:1 and C18:1n9 
with germination percentage, while positive correlations 
were observed between C18:3n-6 and C20:1n9 with 

 

Figure 2. Principal component analysis showing the relationships between fatty acids and 

germination of spinach cultivars at various temperatures. 
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Figure 2. Principal component analysis illustrating the relationships between fatty acids 
and the germination of spinach cultivars under different temperature conditions.
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germination percentage at stress temperatures exceeding 
30 °C. Furthermore, stepwise multiple regression and 
principal component analysis indicated that the levels of 
certain fatty acids, including C16:1n7, C18:2n6, C18:3n6, 
C22:0, SFA, and PUFA, play a pivotal role in germination 
at various temperatures in the tested cultivars. 
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