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Abstract: As an important macro element for all living cells, phosphorus is essential in agricultural production systems and is required 
in large quantities by elite varieties of crops to maintain yields. Approximately 70% of the worldwide cultivated land suffers from 
phosphorous deficiency, and it has recently been estimated that the worldwide phosphorous resources will be shattered by the end of this 
century, thereby increasing the need to develop phosphorus-efficient crops. A greater understanding of how plants can maintain yield 
with lower phosphorous availability is highly desirable to both breeders and farmers. For this research, we focused on the phosphorus-
starvation tolerance 1 (PSTOL1) gene, which is known to be involved in enhancing early root growth, thereby enabling plants to acquire 
more phosphorus and other nutrients and enhancing grain yield in phosphorus-deficient soil. As there is no reported structure and 
function of the PSTOL1 gene, this project involves a distinct set of opportunities and challenges and requires different approaches 
to model the interaction between PSTOL1 and the gene phosphorous uptake 1 (PUP1). This article covers the modeling, docking, 
and simulation of PSTOL1 to check the protein stability and its behavior over time. The physiochemical properties were ascertained, 
a phylogenetic tree was constructed to find the evolutionary relationship, and the conserved domains were analyzed for functional 
annotation. This study reports that the advancement of the PSTOL1-mediated phosphorous uptake 1 (PUP1) signaling cascade using 
structural bioinformatics is a potent biological mechanism against phosphorous starvation in wheat.
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1. Introduction
Wheat (Triticum aestivum) is a dominant crop in temperate 
countries being used for human food and livestock 
feed. Its success depends partly on its adaptability and 
high yield potential. Wheat contributes essential amino 
acids, minerals, vitamins, beneficial phytochemicals, and 
dietary fiber components to the human diet, and these are 
particularly enriched in whole-grain products. Worldwide, 
wheat is counted among the ‘big three’ cereal crops, with 
over 600 million tons harvested annually (Shewry, 2009). 
Out of 121 wheat-growing countries, Pakistan ranks 
eighth in terms of production in the world but 29th in 
terms of yield per unit area and is presently producing over 

25 million tons due to the consolidated efforts of farmers ; 
however, it is still low compared to other countries. Wheat 
is a leading food grain of Pakistan and occupies a central 
position in the agricultural policies of the country. It 
contributes 9.1% to value added in agriculture and 1.7% to 
GDP (Mehmood et al., 2023).

There are many physiological, agronomic, 
socioeconomic, political, and management factors 
responsible for the low wheat yields in Pakistan. Favorable 
weather, meaning sufficient rainfall and cool temperatures, 
are essential requirements for grain formation and grain 
maturity. Also, research has found that an increase in 
nitrogen and phosphorus and a decrease in the use 
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of tillage and irrigation enhances wheat productivity 
(Bashir et al., 2005). Research conducted in Punjab, 
Pakistan concluded that the fertilizers nitrogen (urea) 
and phosphorus (diammonium phosphate) are the two 
main factors involved in increasing yield (Mehmood 
et al., 2018). Therefore, phosphorus (P) is considered to 
be a vital nutrient required by wheat crops. P supports 
plant development throughout its growth from seedling 
to maturity and helps in photosynthesis, energy storage, 
and cell division. Wheat takes up 0.5–0.6 pounds of P2O5 
(an available form of P for the plant) per metric ton (Jin 
et al., 2020), while a deficiency of P in the soil will cause 
plants to suffer from mineral shortage. The obvious signs 
of P deficiency in wheat include stunted growth, stems 
and leave turning purple, reduced root systems, and poor 
tillering (López-Bucio et al., 2002). As time passes, it is 
becoming more and more urgent to be able to grow wheat 
crops in P deficient soil.

The PSTOL1  and  PUP1  genes are necessary for 
P solubilization and better root systems in wheat. 
Successful  PSTOL1  gene simulation and docking with 
PUP1 is vital for the availability of P in plants; thus, a 
comprehensive understanding of  the PSTOL1 gene using 
bioinformatics studies can help disclose its functions. For 
this study, bioinformatics tools were used to investigate the 
3-dimensional structure and docking of the PSTOL1 gene 
along with a molecular dynamics (MD) simulation and its 
evolutionary relationship in wheat. 

2. Material and methods
2.1. Sequence retrieval 
The amino acid sequences of the PSTOL1 gene 
(QKY76792.1) and the PUP1 gene were downloaded from 
the NCBI database (https://www.ncbi.nlm.nih.gov/protein) 
in FASTA format. The downloaded sequences were used 
for the in silico analysis.
2.2. Physiochemical characterization
After sequence retrieval, the protein was subjected to 
physiochemical characterization analysis. Physiochemical 
characterization of protein in the design and development 
phase is significant as it helps in subsequent wet lab 
studies (Asad et al., 2018). This was accomplished by 
calculating several parameters, including grand average 
of hydropathicity (GRAVY) index, instability index, 
theoretical isoelectric point (pI) value, average aliphatic 
index value and molecular weight (Mw). The analytics were 
carried out using the Protparam online server (https://web.
expasy.org/protparam/) (Gasteiger et al., 2005).
2.3. Subcellular localization predictions
Further, a comparative subcellular localization was 
performed using the 4 following online tools: (1) CELLO 
v2.5 (http://cello.life.nctu.edu.tw/) (Yu et al., 2006), (2) 
CELLO2GO (http://cello.life.nctu.edu.tw/cello2go/) (Yu 

et al., 2014), (3) EuLoc (http://euloc.mbc.nctu.edu.tw/) 
(Chang et al., 2013), and (4) Plant-mSubP (http://bioinfo.
usu.edu/Plant-mSubP/) (Sahu et al., 2020).
2.4. Topological analysis
The number of transmembrane helices in the target 
protein was evaluated using TMHMM v2.0 (http://
www.cbs.dtu.dk/services/TMHMM/) (Krogh et al., 2001) 
and HMMTOP v2.0  (http://www.en.zim.hu/hmmtop/) 
(Tusnady & Simon, 2001). Computing transmembrane 
helices is vital as protein harboring values less than or 
equal to 2 are more feasible for cloning and expression 
analysis (Käll et al., 2004).
2.5. Secondary structure prediction 
A protein’s secondary structure acts as an information 
bridge between the primary sequence and the tertiary 
structure. An accurate 8-state secondary structure 
prediction gives more precision and higher resolution for 
structure-based property analyses. Also, the biological 
activity of a protein largely depends on its folding pattern 
and amino acid sequence. PSIPRED v4.0 was used for 
secondary structure prediction (http://bioinf.cs.ucl.ac.uk/
psipred/) (McGuffin et al., 2000).
2.6. Tertiary structure prediction
An in silico approach was used to determine the structure 
of structurally unknown proteins. BlastP (https://blast.
ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp) was used 
for finding sequence similarities in the Protein Data Bank 
(PDB) database (Sussman et al., 1998). The sequence 
with the lowest e-value, the maximum coverage, and 
the highest sequence identity was selected as a template 
for the query sequence. The protein tertiary structure 
was built using several tools: (1) phyre2 v2.0 (Protein 
Homology/analogy Recognition Engine version 2), 
which predicts 3D protein models by using advanced 
remote homology detection methods (http://www.sbg.
bio.ic.ac.uk/~phyre2/html/page.cgi?id=index) (Kelley et 
al., 2015), (2) the SWISS MODEL (https://swissmodel.
expasy.org/), a server that generates protein secondary 
and tertiary structures, functions, contact maps, solvent 
accessibility, and binding sites (Schwede et al., 2003), (3) 
the Intfold2 (https://www.reading.ac.uk/bioinf/IntFOLD/) 
server, which generates a protein’s 3D structure, identifies 
disordered regions, evaluates the quality of 3D models, 
detects disordered regions, identifies structural domain 
boundaries, and detects likely ligand binding site residues 
(McGuffin et al., 2015), (4) I-Tasser v5.1, a comprehensive 
platform for structure and function prediction based on 
iterative structural assembly simulations and multiple 
threading alignments (http://zhanglab.ccmb.med.umich.edu/
I-TASSER/) (Yang et al., 2015), and (5) CPHmodels v3.0, 
an easy protein homology modeling (HM) server in which 
template recognition is based on profile–profile alignment 
guided by secondary structures and exposure predictions. 
(http://www.cbs.dtu.dk/services/CPHmodels/) (Nielsen et 
al., 2010). 
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2.7. Model validation and optimization
Each of the predicted structures underwent a structure 
evaluation analysis using the following tools: (1) 
PROCHECK (PDBSum generate) (http://www.ebi.
ac.uk/thornton-srv/databases/pdbsum/Generate.html) 
(Laskowski, 2001), (2) ProSA v4.0 (https://prosa.services.
came.sbg.ac.at/prosa.php) (Wiederstein & Sippl, 2007), (3) 
ERRAT (https://www.doe-mbi.ucla.edu/errat/) (Colovos & 
Yeates, 1993), and (4) Verify3D (https://www.doe-mbi.ucla.
edu/verify3d/ ) (Eisenberg et al., 1997). The structure with 
the best results was selected and energetically optimized 
through UCSF Chimera v1.17 (https://www.cgl.ucsf.edu/
chimera/) (Pettersen et al., 2004). Gasteiger charges were 
applied and the steepest descent and conjugate gradient 
were set to 750 steps with a step size of 0.02 Å under a 
tripos force field. The backbone conformation of the 
protein structure was estimated by using a Ramachandran 
plot. To determine the compatibility of the atomic model 
(3D) with its amino acid sequence (1D), Verify3D was 
used, in which higher scores indicate a better quality 
structure. Nonbonded interactions between different atom 
types were analyzed using ERRAT. 
2.8. Phylogenetic analysis
An evolutionary analysis of the PSTOL1 protein was 
carried out. In this analysis, the PSTOL1 protein of 
Triticum aestivum was compared with the PSTOL1 protein 
sequences of other species of Triticum and Oryza sativa. 
These sequences were taken from Uniprot (https://www.
uniprot.org/). The comparison was made by using multiple 
sequence alignment tools from Clustal Omega (https://
www.ebi.ac.uk/Tools/msa/clustalo/) (Sievers & Higgins, 
2014). The analysis involved 5 sequences, including the 
target protein. The Triticum species that were selected for 
the PSTOL1 protein sequence comparison were Triticum 
dicoccoides (QKY76794.1), Triticum monococcum subsp. 
aegilopoides (QKY76797.1), Triticum monococcum 
(QKY76796.1), and Triticum dicoccoides var. namuricum 
(QKY76795.1). In addition, MEGA7 (molecular 
evolutionary genetic analysis) (https://www.megasoftware.
net/) (Kumar et al., 2016) was used for phylogenetic tree 
construction by the neighbor-joining method. 
2.9. Functional analysis and protein-protein interaction 
study
For functional annotation, the conserved domain of 
the PSTOL1 protein sequence was identified using the 
following 3 tools: (1) NCBI CDD v3.20 (https://www.ncbi.
nlm.nih.gov/Structure/cdd/wrpsb.cgi), which identifies 
the conserved domain by employing multiple sequence 
alignment of ancient domains and full length proteins 
(Marchler-Bauer et al., 2015), (2) DeepGOWeb v1.0.15 
(https://deepgo.cbrc.kaust.edu.sa/deepgo/), a web server for 
predicting protein functions based on protein sequence 
using the DeepGOPlus v1.0.1 (https://deepgo.cbrc.kaust.
edu.sa/deepgo/) method that uses deep convolutional 

neural networks to learn sequence features and combines 
predictions with sequence similarity-based predictions 
(Kulmanov et al., 2021), and (3) ScanProsite (https://
prosite.expasy.org/scanprosite/), which consists of manually 
created rules that can automatically generate annotation 
in the UniProtKB/Swiss-Prot format based on PROSITE 
(https://prosite.expasy.org/) motifs (De Castro et al., 2006). 
In addition, the STRING (search tool for the retrieval of 
interacting genes/proteins) v10.0 (http://string-db.org/) 
database was used to identify the interacting network 
of prioritized proteins at the cellular level. The STRING 
database is designed to provide critical assessment and 
integration of protein–protein interactions, including 
direct (physical) as well as indirect (functional) associations 
(Szklarczyk et al., 2015).
2.10. Phosphorylation site prediction
The phosphorylation sites of PSTOL1 were predicted using 
MusiteDeep software, which is a deep-learning framework 
for protein posttranslational modification site prediction 
(https://www.musite.net/) (Wang et al., 2017).
2.11. Docking and simulation study 
Molecular interactions, including protein–protein, 
enzyme–substrate, protein–nucleic acid, drug–protein, 
and drug–nucleic acid, play important roles in many 
essential biological processes, such as signal transduction, 
transport, cell regulation, gene expression control, enzyme 
inhibition, antibody–antigen recognition, and even the 
assembly of multidomain proteins. These interactions 
very often lead to the formation of stable protein–protein 
or protein–ligand complexes that are essential to perform 
the necessary biological functions. Knowledge of suitable 
cavities in the protein structure capable of binding to other 
molecules is required to perform docking. The binding 
pocket and active residues within binding sites were 
predicted using ClusPro v2.0 (Kozakov et al., 2017). The 
docked complex with the best binding interactions was 
selected and evaluated further for its dynamics. The MD 
simulation of the target protein was performed with the 
help of AMBER14 (assisted model building with energy 
refinement) v14 to reveal the mechanistic, dynamics, and 
stability details of the target enzyme inhibitor complex 
(Ahmad et al., 2017). The initial parameters for the complex 
were prepared using Visual Molecular Dynamics (VMD) 
v1.9.4 (Humphrey et al., 1996). Additionally, root mean 
square fluctuation (RMSF), root mean square deviation 
(RMSD), and principal component analysis (PCA) were 
visualized using Bio3D v2.4-1.9000 (Grant et al., 2021).

3. Results
In this study, the protein sequence of wheat was explored 
for its structural and functional evaluation. Docking 
and simulation were carried out to check the stability of 
PSTOL1. The step-wise procedure followed in the study 

http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/Generate.html
http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/Generate.html
https://www.ebi.ac.uk/Tools/msa/clustalo/
https://www.ebi.ac.uk/Tools/msa/clustalo/
https://prosite.expasy.org/scanprosite/
https://prosite.expasy.org/scanprosite/
http://string-db.org/
https://www.musite.net/
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is presented in Figure 1. P, an essential macronutrient, 
is a prerequisite for various plant-growth mechanisms 
including root establishment/development, early/late 
vegetative stage development, and reproductive stage 
development. Wheat usually takes up 0.5–0.6 pounds of P 
per metric ton, and a deficient supply of P can lead plants 
to suffer. 
3.1. Physiochemical characterization
The PSTOL1 protein was physiochemically characterized 
using Protparam (https://web.expasy.org/protparam/). 
The GRAVY value is the measure of the hydrophobic or 
hydrophilic nature of the protein. For most proteins, the 
GRAVY values range from –2 to +2, in which the negative 
value indicates a hydrophobic nature. For the PSTOL1 
protein, the GRAVY and instability indices were –0.178 
and 30.31, respectively, indicating that it is a hydrophobic 
and highly stable protein. The instability index of proteins 
is predicted by calculating the weighted sum of dipeptides 
that occur more frequently in unstable proteins when 
compared to stable proteins. An instability index greater 
than 40 indicates an unstable protein. The calculated 
theoretical pI value was 6.24, indicating the acidic nature 
of the target proteins. The average aliphatic index value for 
the protein was 81.97, indicating high thermal stability. 
The calculated Mw of the target protein was 32109.69 
(Table 1).

3.2. Subcellular localization prediction
The PSTOL1 protein was analyzed for subcellular 
localization using 4 online tools, as described in section 
2.3. Among these tools, CELLO, CELLO2GO, and EuLoc 
showed that the protein is located in the plasma membrane 
while Plant-mSubP indicated that the protein is located in 
the cell membrane (Table 2).
3.3. Structure prediction and model validation
The PSTOL1 protein was investigated using HM to 
determine its molecular structure and functional 
properties. At first, the availability of experimental 
structures was explored, but the protein was found to have 
no experimentally determined structure. In such cases, a 
comparative structure modeling approach can be useful 
for structure modeling. Suitable templates for HM were 
available for nominated proteins. The 6ctha protein from 
Chloroherpeton thalassium was used as a template on the 
basis of having the highest Z-score to predict structure. The 
selected template is involved in signal transduction, ADP 
binding, and microtubule motor activity. The 3D structure 
of the protein was predicted using the comparative 
structure prediction approach. The procedure to find the 
dimer structure of the generated model is shown in Figure 1. 
To select the optimum model, all of the structures predicted 
by the different structure prediction tools were evaluated. 
The most reliable models were created by I-TASEER, as 
shown in Figure 2. 

Figure 1. Schematic workflow highlighting the major steps employed.
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Table 1. Physiochemical characteristics of the PSTOL1 protein.

No. of amino acids Molecular weight (Da) Theoretical pI Instability index Aliphatic index Grand average of hydropathicity 
(GRAVY)

289 32109.69 6.24 30.31 81.97 –0.178

Table 2. Prediction of the subcellular localizations of the PSTOL1 protein.

Tool Subcellular localization

CELLO Plasma membrane

CELO2GO Plasma membrane

EuLoc Plasma membrane

Plant-mSubP Cell membrane

The protein was subjected to transmembrane helices 
analysis using TMHMM and HMMTOP. From the 
prediction of both tools, it was revealed that the protein 
has no transmembrane helices (Table 3). Computing the 
number of transmembrane helices was important, as 
proteins having a large number of transmembrane helices 
are difficult to clone and express. 
3.4. Phylogenetic/function analysis and protein 
interaction study
The functional annotation of hypothetical proteins was 
analyzed by searching protein families based on conserved 
domains. It was observed that these proteins were present 
in different functional categories, including catalytic 
activity, transferase activity, phosphorus metabolic process, 
protein modification process, response to stimulus, and 
metabolic process. The PSTOL1 protein was found to 
have a histone H4 domain, as shown in Figure 3A. It was 
observed that PSTOL1 belongs to the major facilitator 
superfamily (H4), which is one of four histones, with H2A, 
H2B, and H3, that form the eukaryotic nucleosome core, 
and with H3, plays a central role in nucleosome formation; 
histones bind to DNA and wrap the genetic material into 
“beads on a string”. H4 plays a vital role in the inheritance 
of specialized chromosome structures and the control of 
gene activity. Evolutionary studies were performed using 
multiple sequence alignment and the construction of a 
phylogenetic tree. From the multiple sequence alignment, 
it can be understood that the protein sequences are 100% 
conserved among Triticum aestivum (QKY76792.1), 
Triticum monococcum (QKY76796.1), and Triticum 
monococcum subsp. Aegilopoides (QKY76797.1), but the 
protein sequences of Triticum dicoccoides (QKY76794.1) 
and Triticum dicoccoides var. namuricum (QKY76795.1) 
showed a single residue difference in the alignment, as 
shown in Figure 3B. The constructed phylogenetic tree 
illustrates that Triticum aestivum (QKY76792.1), Triticum 
monococcum (QKY76796.1), and Triticum monococcum 

subsp. Aegilopoides (QKY76797.1) fall in the same clade, 
showing their phylogenetic closeness, while Triticum 
dicoccoides (QKY76794.1) and Triticum dicoccoides var. 
namuricum (QKY76795.1) are expressed as a separate 
branch of the tree, indicating they are phylogenetically 
distant from the other 3 sequences. The constructed 
phylogenetic tree has a branch length of 0.00693895. The 
evolutionary distances were computed using the Poisson 
correction method and were in the units of the number of 
amino acid substitutions per site (Figure 4). 
To understand the cellular interactome of the target protein, 
a STRING analysis was carried out. The PSTOL1 protein 
(A0A3BGV69, highlighted with red in Figure 5) showed 10 
interacting partners in its protein network. Furthermore, 
PSTOL1 protein possesses one transmembrane helix, 
which additionally favors easy purification and expression. 
3.5. Phosphorylation site prediction
The phosphorylation site prediction revealed 8 
phosphorylation sites for the PSTOL1 protein, as 
shown in Figure 6A. According to the predicted results, 
phosphorylation occurred at residues 4 (serine), 75 
(tyrosine), 82 (serine), 117 (tyrosine), 163 (serine), 170 
(threonine), 173 (tyrosine), and 180 (serine), as shown 
graphically in Figure 6B.
3.6. Molecular docking
The molecular docking was then applied to the best-
modeled structure. A hypothetical protein was chosen as 
the domain protein for the protein–protein docking. The 
putative protein was downloaded to participate in a type 
of kinase processes. This potential PUP1 protein possessed 
one domain involved in the P uptake process.
The model with the most precise binding-site interface and 
the model with the largest percentage of nativelike contacts, 
out of 180 and 230 submissions, respectively, were both 
predicted by ClusPro, the first completely automated, web-
based software for the computational docking of protein 
structures. Utilizing solely the information provided by 
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Table 3. Prediction of the transmembrane helices in the PSTOL1 protein.

Tool Number of transmembrane helices

HMMTOP 0

Phobius 0

TMHMM 0

 1 

Figure 2. Predicted 3-dimensional structure of 
PSTOL1 based on the top analysis result.

Figure 3. (A) The conserved domain prediction. (B) The multiple sequence alignment 
of Triticum aestivum (PSTOL1 protein) with other Triticum species (PSTOL1 protein).
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 1 

 1  Figure 5. Interactome analysis of the PSTOL1 gene. The PSTOL1 protein 
(A0A3BGV69) highlighted in red shows 10 interacting partners in its 
protein network, including A0A3B5Y789, A0A3B5Z5U9, A0A3B6A242, 
A0A3B6G1I4, A0A3B6GV69, A0A3B6IZ74, A0A3B6JNY9, A0A3B6KS68, 
A0A3B6NN79, A0A3B6PN93, and A0A3B6QDS0.

Figure 4. The phylogenetic tree constructed using MEGA7. The evolutionary history 
was inferred using the neighbor-joining method. The optimal tree has a sum of 
branch length of 0.00693895.

the protein component structures and thermodynamic 
considerations, the ClusPro server quickly docks, filters, 
and ranks potential protein complexes. By default, the 
parameters were configured to investigate the protein’s 
binding position within the designated active site residue, 
with a 10 area limit (Comeau et al., 2005). Despite the 
server being heavily utilized, runs typically take 4 h or less.
With the use of a modified version of the particle swarm 
optimization algorithm, the SwarmDock technique 
reduces the interaction energy. The swarm optimization 
approach was coupled with a local search, where flexibility 
is represented by a linear combination of elastic network 
normal modes (Li et al., 2010). Depending on the size 
of the complex and whether the resources are shared, a 
typical server-based docking operation can last up to 36 

h. Three straightforward requirements should be followed 
when uploading PDB structures of binding partners 
to SwarmDock: there should be a TER keyword after 
each chain, standard residues should be used, and there 
should preferably be no missing residues. The server will 
attempt to replace nonstandard residues and simulate 
missing residues or residues with missing atoms if the final 
two requirements cannot be met (Torchala et al., 2013). 
Prior to clustering, the structures are reduced, docked, 
minimized once more, and rescored using the centroid 
potential as described by Tobi (2010). These improvements 
significantly enhanced the algorithm’s performance.

The docked complex analysis results of both programs 
were compared. Both docking systems often indicated that 
the binding would occur in the same area. A complex was 
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chosen based on a number of factors, including the robust 
protein–protein interactions. Simulated investigations 
were chosen to be performed on the top-scoring docked 
complex, as shown in Figure 7.
3.7. Molecular dynamics simulation
The docking study provides meaningful insights into the 
structural basis of the docked complex (Abbasi et al., 
2016). However, the information provided by docking 
is limited to a single, static snapshot of the protein. The 
MD simulations were carried out to further characterize 
the protein–protein complex. The simulations show the 
dynamic behavior of the protein and also highlight the 
residues that play an important role in binding (Ahmad et 
al., 2017). Structural properties including RMSD, RMSF, 
and PCA were plotted as a function of time to understand 
the dynamics within a solvated environment. Analysis of 

the protein in the docked stage led to the evaluation of 
the structural transformation and the underlying atomic 
level transition (Ahmad et al., 2017). MD simulations of 
the selected docked complex were performed to reveal 
mechanistic, dynamic, and stability details of the target 
enzyme inhibitor complex (Stocchi et al., 2018). The 
initial parameters for the complex were prepared using 
AMBER14 (Pearlman et al., 1995). An antechamber 
was used to generate suitable parameters, and force field 
parameters were described for protein ff99SB (Özpınar et 
al., 2010). The MPI version of Sander within AMBER14 
was used to carry out the simulations. The system was 
submerged in a three-point transferable intermolecular 
potential (TIP3P) water box with 12 Å padding distance 
between the protein and water box boundary, as illustrated 
in Figure 8. The overall charge of the system was 

 1 

Figure 6. (A) The prediction of phosphorylation sites by the MusiteDeep software. (B) A 
graphical representation of the phosphorylation sites in the protein structure.
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 1 

 1 

Figure 7. An illustration of different docked poses of the PSTOL1 
protein with a hypothetical protein.

Figure 8. The solvation box surrounding the PSTOL1 protein.

neutralized by the addition of 12 Na+ ions. The deviation 
of the backbone Cα atoms was monitored throughout 
the 10-ns simulation. The RMSD of the complex over the 
studied timescale is mostly stable with an average value of 
3.2 Å, reaching a maximum value of 4 Å at 5 ns. Over the 
course of the simulation, minor structural changes were 
observed, as shown in Figures 9A and 9B.

3.8. Principal components based on PSTOL1 and PUP1 
residual positions
To aid interpretation, a PDB format trajectory of PSTOL1 
and PUP1 can be produced that interpolates between the 
most dissimilar structures in the distribution along a given 
principal component. This involves dividing the difference 
between the conformers into a number of evenly spaced 
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steps along the principal components, forming the frames 
of the trajectory (Figure 10). Such trajectories can be 
directly visualized in a molecular graphics program, such 
as VMD (Humphrey et al., 1996). 
3.9. Trajectories analyses using PCA 
Coarse-grained models enable us to carry out MD 
simulations starting from the unstabilized state and ending 
in the native state while consuming a fairly short CPU 
time. In this work, we present the results of the trajectories 
analyzed by PCA, as shown in Figure 10. All trajectories 
start with the same initial (extended) structure but with 
different velocities. The total time of all MD simulations 
was the same at ~10,000 ps. If the protein stabilizes before 
half of the full simulation time, the trajectory is called 
fast-stabilizing. If the protein spends half (or more) of 
the entire trajectory time to fold, the trajectory is called 
slow-stabilizing. If the system never folds during the 
entire 10000-ps MD simulation, the trajectory is called 
nonstabilizing.

In contrast to the fast and slow stabilization trajectories, 
in which the first principal component (PC) captures most 
of the behavior of the RMSD, the correlation between 
the PCs and RMSD is observed in the first three PCs in 
the nonstabilizing  MD trajectory of (panel c). Also, the 
amplitudes of fluctuation along PC1 and PC2 (in panel c) 
are relatively similar to each other. Hence, the distribution 
of the captured parts of the overall fluctuations by the first 
few PCs is different for the nonstabilizing MD trajectory: 
PC1 is ~34.85%, PC2 is ~16.01%, and PC3 is ~15.13%, as 
shown in Figure 11. Thus, for the nonstabilizing trajectory, 
the first PC is not enough to depict the main features of the 
energy landscape.

As a measure of atomic fluctuation, the RMSF provides 
a means to identify structural flexibility of the rigid regions 
of the targets. The average Cα fluctuation for the ligand-
bound protein was observed to be 0.9 Å. The maximum 
value of RMSF for the ligand-bound protein was 4 Å.

4. Discussion
Phosphorus deficiency is one of the factors that excessively 
increases farmers’ costs because it must be applied as 
fertilizers, which are not cost effective. Plants try to 
survive under phosphorus deficiency by increasing their 
phosphorus uptake, which can be achieved by modifying 
their root system architecture, changing rhizospheres, 
interacting with microorganisms, or using the transport 
of internal phosphorus and mobilization (Bechtaoui et 
al., 2021). Over time, multiple genes have been identified 
in different plants that can influence their responses to 
many macronutrient deficiencies. With all the tools and 
genomes at our disposal, identifying genetic variants 
of many genes, even in very complex genomes such as 
wheat, has become more accessible. We have analyzed 
the interaction of PSTOL1 and PUP1 in wheat and 
highlighted their molecular dynamic behaviors involved 
in morphophysiological traits and root architecture.

Although the exact molecular mechanisms that lead 
to the occurrence, progression, and metastasis of P uptake 
are not yet fully understood, several genes, factors, and 
pathways are involved in the development of P uptake. 
PSTOL1 is a member of the receptor-like kinases (RLK) 
family and is a calcium-independent serine-threonine 
kinase. The RLK family consists of 232 members (Yan et 
al., 2023). PSTOL1 has a distinctive structure consisting 

Figure 9. The statistical parameters for the top scoring docked complex over 
a simulation period of 10000-ps. (A) is RMSD and (B) is RMSF.
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Figure 10. The PCA plot for the PSTOL1 simulation displays the relationships 
between different conformers, highlights the positions responsible for the major 
differences between PSTOL1 and PUP1 structures, and enables the interpretation 
and characterization of multiple interconformer relationships.

Figure 11. The PCA plot for a PSTOL1 simulation.
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of one domain, namely the histone H4 domain, an 
important protein in the structure and function of 
chromatin. Previous research has suggested that PSTOL1 
overexpression is observed in P uptake and is correlated 
with deeper rooting. Similarly, PUP1 is a kinase that 
promotes the sensing and signaling of P homeostasis, was 
discovered by Gamuyao et al. (2012), and was named as the 
PSTOL1 gene in rice (Oryza sativa). It was observed that 
when the PSTOL1 gene was overexpressed in rice plants 
grown in P-deficient soil, a significant increase in yield and 
biomass occurred. The PSTOL1 gene acts by increasing the 
early growth of roots, enabling the plants to acquire more 
phosphorus from P-deficient soil (Gamuyao et al., 2012). 
The strategy of identifying PSTOL1 orthologs in different 
crops and targeting their expression will help to develop 
crops that proliferate in P-deficient soil with more yield 
and biomass. However, the structural bioinformatics of 
PSTOL1 in wheat is yet to be investigated.

The PSTOL1 gene, in the RLK family, is responsible 
for early root growth in P-deficient soil and can increase 
grain yield exponentially. Computational biology helps 
to predict the binding positions of different potential 
ligand proteins within the active sites of target proteins 
as pockets. Modeling and molecular docking are often 
employed to discover new binding partners. Molecular 
docking methods aim to identify the correct position of 
a ligand protein within the binding or active site of the 
target or receptor protein to investigate the right position 
of the ligand with the receptor protein. The methods are 
also used for the prediction of the binding patterns of the 
ligand with the receptor protein. This study explored in 
silico PSTOL1 and PUP1 interaction predictions using 
the BLAST search, molecular modeling, docking, and 
simulation protocols.

We have identified PUP1 as a potential complex of the 
main wheat kinase PSTOL1 through large-scale in silico 
and focused simulation studies. P deficiency can reach 
alarming proportions due to the emergence of several 
environmental variations, such as low pH, dry soil, and 
high temperature, and thereby inhibit proper root system 
growth and efficient root architecture generation. The 
main kinase PSTOL1, which is reported as a key player 
among several wheat and rice species, provides an effective 
insight for P deficiency in crops. The naturally occurring 
biological protein PUP1 present in wheat genomes has 
been found to be a potent activated complex with the 
PSTOL1 gene. The protein was downloaded to participate 
in a variety of kinase processes containing one domain. 
The STRING network, phylogenetics, phosphorylation 
site prediction, molecular modeling, docking, MD 

simulations, RMSD, RMSF, and PCA were then applied 
to the PUP1 and PSTOL1-docked and simulated structure 
involved in the root growth and architecture development. 
In the present study, P deficiency was positively associated 
with the overexpression of PSTOL1 and PUP1 in an 
activated complex state. In brief, our research highlights 
the potential role of PSTOL1 genes in the efficient 
use of P in a deficient environment using structural 
bioinformatics approaches. Understanding the behaviors 
and dynamics of the interactions of proteins in the time 
frame of nanoseconds shows the stability of the protein. 
The binding free energy for the complex was calculated 
using both MGL tools. Further investigations are required 
to systematically characterize the function of all PSTOL1 
genes in wheat phosphorus use efficiency, but these 
findings are highly encouraging and PSTOL1 appears to 
be a promising compound to enhance wheat crop growth. 
This in silico study can further assist in vivo studies of the 
PSTOL1 protein.
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