
Turkish Journal of Mathematics Turkish Journal of Mathematics 

Volume 46 Number 4 Article 15 

1-1-2022 

An application of modified sigmoid function to a class of $q-$ An application of modified sigmoid function to a class of $q-$ 

starlike and $q-$ convex analytic error functions starlike and $q-$ convex analytic error functions 

ARZU AKGÜL 

Follow this and additional works at: https://journals.tubitak.gov.tr/math 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
AKGÜL, ARZU (2022) "An application of modified sigmoid function to a class of $q-$ starlike and $q-$ 
convex analytic error functions," Turkish Journal of Mathematics: Vol. 46: No. 4, Article 15. https://doi.org/
10.55730/1300-0098.3162 
Available at: https://journals.tubitak.gov.tr/math/vol46/iss4/15 

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for 
inclusion in Turkish Journal of Mathematics by an authorized editor of TÜBİTAK Academic Journals. For more 
information, please contact academic.publications@tubitak.gov.tr. 

https://journals.tubitak.gov.tr/math
https://journals.tubitak.gov.tr/math/vol46
https://journals.tubitak.gov.tr/math/vol46/iss4
https://journals.tubitak.gov.tr/math/vol46/iss4/15
https://journals.tubitak.gov.tr/math?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol46%2Fiss4%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol46%2Fiss4%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.55730/1300-0098.3162
https://doi.org/10.55730/1300-0098.3162
https://journals.tubitak.gov.tr/math/vol46/iss4/15?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol46%2Fiss4%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:academic.publications@tubitak.gov.tr


Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

An application of modified sigmoid function to a class of q− starlike and q−
convex analytic error functions

Arzu AKGÜL∗

Department of Mathematics, Faculty of Science and Arts, Kocaeli University, Kocaeli, Turkey

Received: 13.07.2021 • Accepted/Published Online: 15.03.2022 • Final Version: 05.05.2022

Abstract: In this study, in the open unit disc Λ , by applying the q− derivative operator and the fractional q−
derivative operator and by using the principle of subordination between analytic functions, we introduce some new
interesting subclasses of q− starlike and q− convex analytic functions associated with error functions and modified
sigmoid functions.

Key words: univalent function, analytic function, q− starlike error function, q− convex error function, modified
sigmoid function, subordination, convolution.

1. Introduction
Let A be the family of functions of the form

g(z) = z +

∞∑
n=2

anz
n, (1)

which are normalized analytic functions by the conditions g(0) = g′(0) − 1 = 0 in the open unit disc
Λ = {z : |z| < 1} and let S be the subclass of A consisting of the form (1) which are also univalent in Λ .
To remember the concept of subordination between analytic functions, let h and g be analytic in Λ . Then for
h, g ∈ Λ , g is subordinate to h if there exists a Schwarz function w ∈ S given by the form

w(z) = c1z + c2z
2 + c3z

3 · · · , (z ∈ Λ), (2)

such that g(z) = h (w(z)) , (z ∈ Λ) , where w(0) = 0, |w(z)| < 1, z ∈ Λ. This subordination is denoted by

g(z) ≺ h(z). (3)

Specially, if h is univalent in Λ , mentioned subordination is equivalent to g(0) = h(0) and g(Λ) ⊂ h(Λ) .

In the field of Geometric Function Theory, different subclasses of A have been considered from various
aspects. The q− calculus and the fractional q -calculus play imperative role in the theory of hypergeometric
series, quantum physics and the operator theory. Srivastava first used the q−calculus in the situation of
Geometric Function Theory and the basic (or q−) hypergeometric functions in a book chapter [28]. With
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the help of q− calculus theory, we can describe the theory of univalent functions with different ways (see, for
example, [12–14, 24, 25]). Jackson [12, 13] initiated the application of q−calculus and systematically developed
q−derivative and q− integral. Also these operators play virtual role in the theory of relativity, astronomy,
atomic physics, nuclear physics and quantum mechanics.

Now, we recall some basic concepts to present with the fundamental content:
For the function g ∈ A , the Jackson’s q-derivative is defined by [12]

Dqg(z) =

{
g(z)−g(qz)

(1−q)z z ̸= 0

g′(0), z = 0
(4)

where 0 < q < 1 and limq→1− Dqg(z) = g′(z) if g is differentiable at z .
Among the special functions, the error function is an important one. This function take places in different

areas of science. The function

erg(z) =
2√
π

z∫
0

exp(−t2)dt =
2√
π

∞∑
n=0

(−1)n

(2n+ 1)(n)!
z2n+1 (5)

was defined by Abramowitz [1] and then it became the topic of compherensive studies and applications. One may
find different properties and inequalities of error function in [4, 5, 8]. Error function also its inverse, introduced
by Carlitz [6] and denoted by inverg , were widely studied in applied mathematics and mathematical physics,
for example, data analysis [11], probability, and statistics [7], concentration-dependent diffusion problems [22],
in heat conduction problem [7] and solutions to Einstein’s scalar-field equations. Very recently, normalized
analytic error function by the form of

Erg(z) =

√
πz

2
erg(

√
z) = z +

∞∑
n=2

(−1)n−1

(2n− 1)(n− 1)!
zn (6)

was studied by Ramachandran et al. [27] and by using convolution, the family of analytic functions defined as

ε = A∗Erg =

G : G(z) = (g∗Erg) (z) = z +

∞∑
n=2

(−1)n−1

(2n− 1)(n− 1)!
anz

n, g ∈ A

 (7)

where Erg denotes the class consisting of a single function and the symbol ∗ denotes the well known Hadamard
product of two analytic functions. By using equation (3), one can conclude that

DqG(z) = 1 +

∞∑
n=2

(−1)n−1[n]qan
(2n− 1)(n− 1)!

zn−1, (8)

where [n]q = 1−qn

1−q , (n ∈ N) . As well as error functions, activation function can be given an important example

of special functions. Activation function plays role as a crashing function, such that in a neural network, the
output of a neuron is between certain values (generally 0 and 1 , or −1 and 1). The sigmoid function is the
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most popular function among the activation functions and it is usually used in gradient descendent type learning
algorithms. There are several possibilities for using sigmoid function, for instance, truncated series expansion,
look-up tables, or piecewise approximation. The sigmoid function is given by the form

k(z) =
1

1 + exp(−z)
. (9)

This function is called the sigmoidal curve or logistic function. In light of the properties mentioned in [9] and
[21], we can say that sigmoid function is very useful in geometric function theory. Recently, sigmoid function
for various classes of analytic and univalent functions was studied by Oladipo [18], Murugusundaramoorthy,
and Janani [17], Olantunji et al. [19], Olatunji [20], Ramachandran and Dhanalakshmi [26], and Kamali et al.
[15]. We need the following lemmas to derive our main results.

Lemma 1 [23] If a function p ∈ P is given by

p(z) = 1 + p1z + p2z
2 + · · · , (z ∈ Λ),

then |pk| ≤ 2, k ∈ N where P is the family of all analytic functions in Λ for which p(0) = 1 and ℜ{p(z)} > 0 .

We recall the series form of a modified sigmoid function defined in equation (9) is given by (see [21])

Υ(z) = 2k(z) = 1 +

∞∑
m=1

(−1)m

2m

( ∞∑
n=1

(−1)n

n!
zn

)m

. (10)

Lemma 2 [21] Let k(z) be a Sigmoid function defined in equation (9) and Υ(z) = 2k(z) . Then Υ(z) ∈ P, z ∈
Λ , where Υ(z) is a modified sigmoid function.

Lemma 3 [21] Let

Υn,m(z) = 1 +

∞∑
m=1

(−1)m

2m

( ∞∑
n=1

(−1)n

n!
zn

)m

.

Then |Υn,m(z)| < 2, z ∈ Λ.

Letting m = 1 , Fadipe et al. [21] remarked that

Υn,1(z) = Φ(z) = 1 +

∞∑
n=1

dnz
n, (z ∈ Λ), (11)

where dn = (−1)n+1

2n! .

In the literature, celebrated Fekete-Szegö functional for normalized univalent functions of the form given
by (1) is well known for its rich history. The Fekete-Szegö problem is the problem of maximizing the value of the
nonlinear functional

∣∣a2a4 − µa23
∣∣ [10]. The equality is valid for the Koebe function. The sharp upper bound for

Fekete-Szegö functional was found by Keogh and Merkes [16] for some subclasses of univalent function classes.
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In recent decades, coefficient estimates and famous celebrated Fekete-Szegö inequality were studied for the class
of univalent functional defined by some special functions like error functions, sigmoid functions, q -derivative
operators as well as with their convolution. All of these special functions occur widely in multiple branches of
mathematics and sciences. More examples endowed with the special functions which are mentioned above can
be found in [2, 3, 9, 15, 17, 19, 20, 26, 27]

The aim of this work is to benefit from the error function, modified sigmoid function, and the principle of
the subordination, to introduce new interesting subclasses of univalent functions and derive Taylor-Maclaurin
coefficient inequalities for functions belonging these new subclasses. Also we will consider the famous Fekete-
Szegö problem.

2. The classes Sq(k,Υ) and Cq(b,Υ)

In the rest of the paper, unless otherwise stated, the function g∈ A is explained by (1) and modified logistic
sigmoid activation function is shown by Υ(z) ∈ A .

Definition 4 A function g∈ A is said to be in the class Sq(k,Υ) if it satisfies the following subordination
condition

1 +
1

k

(
zDqG(z)
G(z)

− 1

)
≺ Υ(z), (12)

where Υ(z) as given in (10), k ∈ C\ {0} and the real numbers 0 < q < 1 .

Definition 5 A function g∈ A is said to be in the class Cq(b,Υ) if it satisfies the following subordination
condition

1 +
1

k

(
Dq (zDqG(z))

DqG(z)
− 1

)
≺ Υ(z), (13)

where Υ(z) as given in (10), k ∈ C\ {0} and the real numbers 0 < q < 1 .

As q → 1−, [n]q → n and limq→1− Dqg(z) = g′(z) , we can give some new classes related to above defined
classes:

Remark 6 1. For k ∈ C\ {0} , the real numbers 0 < q < 1 and Υ(z) as given in (10),

i) limq→1− Sq(k,Υ) = S(k,Υ) and this new class consists of the functions g∈ A of the form

1 +
1

k

(
zG′(z)

G(z)
− 1

)
≺ Υ(z).

ii) limq→1− Cq(k,Υ) = C(k,Υ) and this new class consists of the functions g∈ A of the form

1 +
1

k

(
(zG′(z))

′

G′(z)
− 1

)
≺ Υ(z)

2. For k = 1, the real numbers 0 < q < 1 and Υ as given in (10),

1321
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i) limq→1− Sq(k,Υ) = S(Υ) and this new class consists of the functions g∈ A of the form

zG′(z)

G(z)
≺ Υ(z).

ii) limq→1− Cq(k,Υ) = C(Υ) and this new class consists of the functions g∈ A of the form

(zG′(z))
′

G′(z)
≺ Υ(z).

Theorem 7 Let Υ(z) be given as equation (10). For g∈ A if g∈ Sq(k,Υ) , then

|a2| ≤ 3

2 ([2]q − 1)
|k| , (14)

|a3| ≤
(
1 +

1

2 ([2]q − 1)
|k|
)

5

([3]q − 1)
|k| . (15)

Particularly, taking m = 1 for Υ(z) given by (10), if Schwarz function is chosen w(z) = Φ(z)− 1, then

a2 =
3

4 (1− [2]q)
k ,

a3 =

(
1 +

1

2 (1− [2]q)
k

)
5k

4 (1− [3]q)
,

where Φ(z) is given by (11).

Proof Assume that g ∈ Sq(k,Υ) . Then, from (10) and principle of subordination, there exists a function
w(z) satisfying the conditions of the Schwarz lemma such that

1 +
1

k

(
zDqG(z)
G(z)

− 1

)
= Υ(w(z)), (16)

where Υ(z) is a modified sigmoid function given by

Υ(z) = 1 +
1

2
z − 1

24
z3 +

1

240
z5 − 17

40320
z7 + · · · . (17)

By taking

w(z) = c1z + c2z
2 + c3z

3 · · · , (z ∈ Λ), (18)

w3(z) = c31z
3 + 3c21c2z

4 + (3c21c3 + 3c1c
2
2)z

5 + · · · ,

w5(z) = c51z
5 + · · · ,

and putting w(z) , w3(z) and w5(z) in the equality

Υ(w(z)) = 1 +
1

2
w(z)− 1

24
w(z)3 +

1

240
w(z)5 − 17

40320
w(z)7 + · · · ,
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we obtain

Υ(w(z)) = 1 +
c1
2
z +

c2
2
z2 +

(
c3
2

− c31
24

)
z3 +

(
c4
2

− c21c2
8

)
z4 + · · · . (19)

It is well known that if |w(z)| < 1, then
|cj | ≤ 1, (20)

for all j ∈ N and ∣∣c2 − ρc21
∣∣ ≤ max{1, |ρ|}. (21)

From (7) and (8), we have

zDqG(z)− G(z) =
∞∑

n=2

([n]q − 1)Ananz
n, (22)

where

An =
(−1)n−1

(2n− 1)(n− 1)!
, (23)

zDqG(z)− G(z) = kG(z) [Υ (w (z))− 1] . (24)

Using (19) and (22) in equation (24) and taking expanding in series forms, we get

∞∑
n=2

([n]q − 1)Ananz
n = k

z + ∞∑
n=2

Ananz
n

[c1
2
z +

c2
2
z2 +

(
c3
2

− c31
24

)
z3 +

(
c4
2

− c21c2
8

)
z4 + · · ·

]
, (25)

⇒ ([2]q − 1)A2a2z
2 + ([3]q − 1)A3a3z

3 + ([4]q − 1)A4a4z
4 + · · ·

= k
[
z +A2a2z

2 +A3a3z
3 +A4a4z

4 + · · ·
] [c1

2
z +

c2
2
z2 +

(
c3
2

− c31
24

)
z3 +

(
c4
2

− c21c2
8

)
z4 + · · ·

]
.(26)

Comparing the coefficients of z2, z3 , and z4 in (26), using (23) for n = 2, 3, 4 , writing A2 = − 1
3 , A3 = 1

10 , after
simplifying the above, we have

a2 =
c1

2A2 ([2]q − 1)
k

=
−3c1k

2 ([2]q − 1)
, (27)

a3 =

(
c2
2

+
A2a2c1

2

)
k

=

(
c2
2

+
c21

4 ([2]q − 1)
k

)
k

([3]q − 1)A3

=

(
c2 +

c21
2 ([2]q − 1)

k

)
5k

([3]q − 1)
. (28)
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Applying absolute value to equalities (27), (28) and using the inequality (20), we obtain

|a2| =

∣∣∣∣ −3c1k

2 ([2]q − 1)

∣∣∣∣
≤ 3

2 ([2]q − 1)
|k| ,

|a3| =

∣∣∣∣(c2 + c21
2 ([2]q − 1)

k

)
5k

([3]q − 1)

∣∣∣∣
≤

(
1 +

1

2 ([2]q − 1)
|k|
)

5

([3]q − 1)
|k| .

Also, if we take m = 1 in (10), we have

Φ(z) = 1 +

∞∑
n=1

dnz
n, dn =

(−1)n+1

2n!
,

w(z) = Φ(z)− 1 =
1

2
z − 1

4
z2 +

1

12
z3 − · · · . (29)

Comparing with (18) and (29), we get

c1 =
1

2
; c2 = −1

4
; c3 =

1

12
; · · · . (30)

Putting (30) in (27) and (28), we obtain

a2 =
3

4 (1− [2]q)
k ,

a3 =

(
1 +

1

2 (1− [2]q)
k

)
5k

4 (1− [3]q)
.

2

Corollary 8 Letting q → 1− in Theorem 7, we have

|a2| ≤ 3

2
|k| , (31)

|a3| ≤
(
1 +

1

2
|k|
)

5

2
|k| . (32)

Particularly, taking m = 1 for Υ(z) given by (10), we have

Φ(z) = 1 +

∞∑
n=1

dnz
n, dn =

(−1)n+1

2n!
.

1324



AKGÜL/Turk J Math

If Schwarz function is chosen w(z) = Φ(z)− 1, then

a2 = −3

4
k ,

a3 =

(
1

2
k − 1

)
5k

8
.

Theorem 9 Let µ be a nonzero complex number and let g∈ Sq(k,Υ) . Then

∣∣a3 − µa22
∣∣ ≤ 5 |k|

([3]q − 1)
max

{
1,

∣∣∣∣10 ([2]q − 1)

([3]q − 1)
− µ

∣∣∣∣ 9 ([3]q − 1)

20 ([2]q − 1)
2 |k|

}
. (33)

Proof From (27) and (28), we get

∣∣a3 − µa22
∣∣ =

∣∣∣∣∣
(
c2 +

c21
2 ([2]q − 1)

k

)
5k

([3]q − 1)
− µ

(
−3c1k

2 ([2]q − 1)

)2
∣∣∣∣∣

≤ 5 |k|
([3]q − 1)

max

{
c2 − c21

(
9µ ([3]q − 1)

20 ([2]q − 1)
2 k − 1

2 ([2]q − 1)
k

)}

From inequalities (20) and (21), we obtain

∣∣a3 − µa22
∣∣ ≤ 5 |k|

([3]q − 1)
max

{
1,

∣∣∣∣∣ 9µ ([3]q − 1)

20 ([2]q − 1)
2 k − 1

2 ([2]q − 1)
k

∣∣∣∣∣
}
.

By a simple calculation, we obtain the desired result. 2

Corollary 10 Letting µ = 1 in Theorem 9, we have

∣∣a3 − a22
∣∣ ≤ 5 |k|

([3]q − 1)
max

{
1,

∣∣∣∣10 ([2]q − 1)

([3]q − 1)
− 1

∣∣∣∣ 9 ([3]q − 1)

20 ([2]q − 1)
2 |k|

}
..

Corollary 11 Letting q → 1− in Theorem 9, we have

∣∣a3 − µa22
∣∣ ≤ 5 |k|

2
max

{
1,

∣∣∣∣59 − µ

∣∣∣∣ 109 |k|
}
.

Now, we give an example for Theorems 7 and 9.

Example 12 Let Υ(z) be given as equation (10). For g∈ Sq(k,Υ) , if the Schwarz function is w(z) = z, then
we can show that the following estimates can be obtained by the same process with Theorems 7 and 9.

|a2| ≤ 3

2 ([2]q − 1)
|k| , (34)

|a3| ≤ 5

2 ([3]q − 1)
|k|2 . (35)
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and the Fekete-Szegö inequality is

∣∣a3 − µa22
∣∣ ≤


5

2([3]q−1) |k|
2
(
1 +

9([3]q−1)

10([2]q−1)2
µ
)

, µ ≥ 0

5
2([3]q−1) |k|

2
(
1− 9([3]q−1)

10([2]q−1)2
µ
)

, µ < 0

 . (36)

Also, letting q → 1− inequalities in example 12, we have

|a2| ≤ 3

2
|k| , (37)

|a3| ≤ 5

4
|k|2 . (38)

and ∣∣a3 − µa22
∣∣ ≤ { 5

4 |k|
2 (

1 + 9
5µ
)

, µ ≥ 0
5
4 |k|

2 (
1− 9

5µ
)

, µ < 0
(39)

Theorem 13 Let Υ(z) be given as equation (10). For g∈ A if g∈ Cq(k,Υ) , then

|a2| ≤ 3

2[2]q ([2]q − 1)
|k| , (40)

|a3| ≤
(
1 +

1

2 ([2]q − 1)
|k|
)

5

[3]q ([3]q − 1)
|k| . (41)

Particularly, taking m = 1 for Υ(z) given by (10), if Schwarz function is chosen w(z) = Φ(z)− 1, then

a2 =
3

4[2]q (1− [2]q)
k ,

a3 =

(
1 +

1

2 (1− [2]q)
k

)
5

4[3]q (1− [3]q)
k,

where Φ(z) is given by (11).

Proof The proof is obtained by following the same process with Theorem 7. 2

Corollary 14 Letting q → 1− in Theorem 13, we have

|a2| ≤ 3

4
|k| ,

|a3| ≤
(
1 +

1

2
|k|
)

5

6
|k| .

Particularly, taking m = 1 for Υ(z) given by (10), we have

Φ(z) = 1 +

∞∑
n=1

dnz
n, dn =

(−1)n+1

2n!
.
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If Schwarz function is chosen w(z) = Φ(z)− 1, then

a2 = −3

8
k ,

a3 =

(
1

2
k − 1

)
5

24
k,

Theorem 15 Let µ be a nonzero complex number and let g∈ Cq(k,Υ) . Then

∣∣a3 − µa22
∣∣ ≤ 5 |k|

[3]q ([3]q − 1)
max

{
1,

∣∣∣∣∣10[2]2q ([2]q − 1)

9[3]q ([3]q − 1)
− µ

∣∣∣∣∣ 9[3]q ([3]q − 1)

20[2]2q ([2]q − 1)
2 |k|

}
. (42)

Proof The proof is obtained by following the same process with Theorem 9. 2

Corollary 16 Letting µ = 1 in Theorem 15, we get

∣∣a3 − a22
∣∣ ≤ 5 |k|

[3]q ([3]q − 1)
max

{
1,

∣∣∣∣∣10[2]2q ([2]q − 1)

9[3]q ([3]q − 1)
− 1

∣∣∣∣∣ 9[3]q ([3]q − 1)

20[2]2q ([2]q − 1)
2 |k|

}
.

Corollary 17 Letting q → 1− in Theorem 15, we have

∣∣a3 − µa22
∣∣ ≤ 5 |k|

6
max

{
1,

∣∣∣∣2027 − µ

∣∣∣∣ 2740 |k|
}
.

Now, we give an example for Theorems 13 and 15.

Example 18 Let Υ(z) be given as equation (10). For g∈ A if g∈ Cq(k,Υ) and the Schwarz function w(z) = z ,
then we can show that the following estimates can be obtained by the same process with Theorems 13 and 15.

|a2| ≤ 3

2[2]q ([2]q − 1)
|k| , (43)

|a3| ≤ 5

2[3]q ([3]q − 1) ([2]q − 1)
|k|2 . (44)

and the Fekete-Szegö inequality is

∣∣a3 − µa22
∣∣ ≤


5

2([3]q−1)([2]q−1)[2]q
|k|2

(
1 +

9([3]q−1)
10([2]q−1)[2]q

µ
)

, µ ≥ 0

5
2([3]q−1)([2]q−1)[2]q

|k|2
(
1− 9([3]q−1)

10([2]q−1)[2]q
µ
)

, µ < 0

 . (45)

Also, letting q → 1− in inequalities above, we have

|a2| ≤ 3

4
|k| ,

|a3| ≤ 5

12
|k|2 .

and the Fekete-Szegö inequality is

∣∣a3 − µa22
∣∣ ≤ { 5

8 |k|
2 (

1 + 9
10µ
)

, µ ≥ 0
5
8 |k|

2 (
1− 9

10µ
)

, µ < 0

}
. (46)
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