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1. Introduction
It is well-known that climatic factors, such as temperature 
(Cossins and Bowler, 1987), play a substantial role in 
determining the geographical distributions of species 
(Gaston, 2003). During the Late-Quaternary climatic 
oscillations, species changed their ranges to find 
climatically favorable areas to survive; otherwise, they 
became extinct. This argument has been well-tested for 
temperate region species, especially for vertebrates in the 
Nearctic and Palearctic (e.g., Hewitt, 2000; Waltari et al., 
2007). Nevertheless, there is a scarcity of phylogeographic 
studies and ecological discussions concerning 
invertebrates such as fruit flies (genus Drosophila) (Franco 
and Manfrin, 2013; Sillero et al., 2014). This is due to 
the fact that, unlike phylogenetic systematics, similar 
studies in invertebrates are not widely observed, primarily 
because our focus lies in understanding the ecological 
causes of intra-species genetic diversity. These studies have 
concluded that temperature affects the ecological niches of 
drosophilids (Sillero et al., 2014), mainly because of their 
local adaptation.

Understanding species’ responses to present climatic 
conditions is important to predict past and future 
climatic oscillations. Phylogeography plays a valuable 

role here by using genetic information to investigate the 
demographic history of species. In addition, meaningful 
inferences about demographic history can be made 
through ecological approaches (e.g., ecological niche 
modeling, Perktaş and Gür, 2015). Hence, integrating 
phylogeography and ecological niche modeling at a 
species level provides a useful methodological perspective 
for biogeographical analysis of the published genetic and 
distributional information of any species (e.g., Metzger et 
al., 2015; Perktaş et al., 2017). Accordingly, in this study, 
we designed a historical biogeographic framework for 
the South American endemic fruit fly species, Drosophila 
gouveai, based on published DNA data (Moraes et al., 
2009) together with species occurrences in a meta-analysis 
framework.

D. gouveai (Tidon-Sklorz and Sene, 2001), which is a 
cactophilic fruit fly species and member of the D. buzzatii 
cluster, includes seven species within the repleta group 
(Diptera: Drosophilidae). This species has a moderate 
distribution from midwestern to northeastern Brazil 
(Figure 1); in some parts of its range, the species shows 
a parapatric distribution pattern with other members of 
the D. buzzatii cluster (e.g., D. antonietae and D. serido). 
Distribution of this cluster in South America mostly 
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Figure 1. Approximate distribution of D. gouveai (green area) showed Caatinga and Cerrado domains and the localities 
sampled for the species (based on Moraes et al., 2009), descriptive statistics (n, number of individuals; H, the number of 
haplotype; Hd, haplotype diversity; pi, nucleotide diversity) and median joining network of 48 individuals of D. gouveai. 
All statistics based on nucleotide sequences were adopted from Moraes et al. (2009). MIR: Pirapotanga; FOR: Morro do 
Forno; FUR: Furnas; CEU: Vale do Céu; CRI: Cristalina; FER: Fercal; PIR: Pirenópolis; SER: Serrinha; IBO: Ibotirama; 
BAX: Baxio.
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depends on the presence of Cactaceae (Manfrin and Sene, 
2006), this species is particularly associated with two cacti 
species (Cereus hildmannianus and Pilosocereus machrisii), 
because decaying cacti are the exclusive feeding resource 
for the larvae of this cluster (Pereira et al., 1983). Previous 
phylogeographic studies on D. gouveai show that the 
species’ ancestral area was located in north-eastern Brazil 
and that it experienced a range expansion event (Moraes 
et al., 2009), although none of these inferences have been 
tested by any ecological analyses. Similar studies in North 
America based on allozyme and mitochondrial DNA 
(mtDNA) data showed substantial genetic differentiation 
between cactophilic Drosophila species, like D. pachea, 
D. mettleri, and D. nigrospiracula (Markow et al., 2002; 
Hurtado et al., 2004). However, mtDNA studies (Hurtado et 
al. 2004) on these species showed demographic expansion 
within each species that is similar to D. gouveai (see Moraes 
et al., 2009). Additionally, the expansion pattern has not 
been integrated with ecological analysis. Therefore, our 
objective in this study is to reevaluate previously published 
mitochondrial DNA data of D. gouveai, based on Moraes 
et al. (2009), through Isolation-by-Distance analysis 
and beside this, construct an ecological niche model in 
order to better understand D. gouveai’s species-specific 
demographic history and its future range dynamics. In 
addition to this, while revealing the demographic history 
of the species, we wanted to draw attention to a different 
point. Fruit flies live in their geographical distribution 
areas depending on host plants (Soto et.al., 2007; Soto et al., 
2008a, 2008b; Soto et al., 2010). For this reason, modeling 
the most suitable hosts for D. gouveai with an ecological 
niche modelling approach can help us better understand 
the future predictions of this cactus-dependent fruit fly 
species. 

2. Methods
2.1. Historical demography
Isolation-by-distance - A matrix of genetic distances 
between all pairs of populations was estimated from the 
net average genetic distances (dA) between groups for 
mtDNA locus by MEGA version 7 (Kumar et al., 2016). 
A matrix of the geographic distances (km) between all 
pairs of populations from each sampling location were 
estimated using Geographic Distance Matrix Generator 
(version 1.2.3, https://biodiversityinformatics.amnh.org/
open_source/gdmg/). A Mantel test with 10,000 random 
permutations was performed between the matrices of 
the net dA and geographic (log) distances (Slatkin, 1993; 
Rousset, 1997).
2.2. Ecological niche modeling
Input data-The main components of the study were two 
different groups. One was the endemic D. gouveai; the 
other group was two cactus species, which are the host 

of this species. For this reason, we got spatial occurrence 
records from different sources to use in the ecological 
niche modelling. 

D. gouveai-Species occurrence data were compiled from 
the following sources: TaxoDros (www.taxodros.uzh.ch) 
and Moraes et al. (2009). The occurrence records showed 
more intense sampling in the northwest of the distribution 
range of D. gouveai and much less (or no sampling) in the 
southeast (Figure 2). As we only had a limited number of 
occurrence records (n = 34, see Supplementary Table S1 
for raw data), we did not rarefy the data. Thus, a buffered 
minimum convex polygon of spatial occurrence records 
was created using a sampling bias distance of 200 km to 
produce a bias grid for the ecological niche modelling 
(Elith et al., 2010; Fourcade et al., 2014). 

Host species-Species occurrence data for both cacti 
species (C. hildmannianus, P. machrisii) were compiled 
from the Global Biodiversity Information Facility (GBIF, 
www.gbif.org). Since the geographical information is 
limited for these two cactus species, we evaluated spatial 
occurrence records of the two species together in ecological 
niche models. The fact that both cacti species preferred 
arid places and that the ecological requirements of both 
species were similar did not prevent the analysis from 
being conducted together. A total of 47 spatial occurrence 
records was used for ecological niche modeling. We did 
not simplify the data, we just extracted the duplicate 
occurrence records from the dataset. Thus, a buffered 
minimum convex polygon of spatial occurrence records 
was created using a sampling bias distance of 50 km as the 
same procedure described for D. gouveai.

Climate data-The Future (2050 and 2070), the 
Present (1950-2000), the Last Glacial Maximum (22,000 
years ago), and the Last Interglacial (130,000 years ago) 
bioclimatic data were downloaded from the WorldClim 
database (Hijmans et al., 2005, www. worldclim.org) 
at a resolution of 2.5 arc-min. Bioclimatic data for the 
Future were based on two time periods, 2050 (average 
for 2041–2060) and 2070 (average for 2061–2080), and 
19 different simulations considering a middle-moderate 
climate change scenario (rcp45): ACCESS1-0, BCC-
CSM1-1, CCSM4, CESM1-CAM5-1-FV2, CNRM-CM5, 
GFDL-CM3, GFDL-ESM2G, GISS-E2-R, HadGEM2-AO, 
HadGEM2-CC, HadGEM2-ES, INMCM4, IPSL-CM5A-
LR, MIROC-ESM-CHEM, MIROC-ESM, MIROC5, 
MPI-ESM-LR, MRI-CGCM3 and NorESM1-M. The 
Last Glacial Maximum was based on three general 
circulation model (GCM) simulations: CCSM4, MIROC-
ESM, and MPI-ESM-P. The bioclimatic data include 19 
bioclimatic variables derived from monthly temperature 
and precipitation values (for detailed descriptions of these 
bioclimatic variables, see www.worldclim.org/bioclim). 
After masking the data for South America, we checked 
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that the correlations between the 19 bioclimatic variables 
were sufficiently strong (r ≥ 0.70 or ≤–0.90). For this, we 
made four different data sets and tested them in the model 
calibration process for D. gouveai and its host species. 

Models-We defined the M area, that indicates the 
movement capacity of the species, for D. gouveai and its 
host species as suggested by Barve et al. (2011). For this, 
we followed the natural history of D. gouveai (Manfrin 
and Sene, 2006; Moraes et al., 2009; Franco and Manfrin, 
2013) and its hosts. This approach is crucial because all 
ecological niches (e.g., fundamental or realized niches) can 
be estimated using both landscape and species occurrences 
in this landscape (Peterson and Soberon, 2012, for an 
example; see also Ülker et al., 2018). The projections for 
the Future, the Present, and the Past in the ecological 
niche models were performed with the mask set of South 
America. We used MaxEnt (the maximum entropy 
machine learning algorithm), version 3.3.3k (Phillips 
et al., 2006; Phillips and Dudik, 2008 www.cs.princeton.
edu/~schapire/maxent) to construct the models of D. 
gouveai’s geographic distribution under the Future, the 
Present and the Past climatic conditions. We used receiver 

operating characteristic (ROC) analysis in MAXENT, and 
followed the methodological process suggested by Peterson 
and Cohon (1999). For model calibration and afterwards 
for the final models, we followed recent advances in 
ecological niche modelling, and used the kuenm package 
(https://github.com/marlonecobos/kuenm; Cobos et al., 
2019) in R 3.5.0 (R Core Team, 2018).

For model calibration, 928 candidate models, with 
parameters reflecting all combinations of 8 regularization 
multiplier settings (0.1, 0.2, 0.5, 0.8, 1, 2, 5, 8), 29 feature 
class combinations (L, Q, P, T, H, LQ, LP, LT, LH, QP, QT, 
QH, PT, PH, TH, LQP, LQT, LQH, LPT, LPH, QPT, QPH, 
QTH, PTH, LQPT, LQPH, LQTH, LPTH, LQPTH), and 4 
distinct sets of environmental variables based on different 
correlation values (see above), have been evaluated for 
D. gouveai and its host species. We had 592 significant 
models for the calibration area (that is, M area) of D. 
gouveai, and 690 significant models for the calibration 
area of host species. These models were compared based 
on the corrected Akaike Information Criterion (AICc) 
produced by the kuenm package in R. The optimal model 
was selected based on its omission rate and the lowest AICc 

Figure 2. Occurrence points used for ecological niche modeling are shown in red. 
Squares equal approximately 2 decimal degrees and the background image on the 
map shows the elevational structure of Brazil.
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(Akaike’s Information Criterion with a correction for small 
sample sizes) value. AICc serves as a model selection criterion, 
taking into account both the model’s goodness of fit and 
complexity, with a preference for simpler models that provide 
a better fit. Finally, for D. gouveai, based on the best model 
of the calibration area, 24 different models were developed 
across the projection region for the set of 10 bioclimatic 
variables (Bio1, Bio2, Bio3, Bio5, Bio7, Bio12, Bio14, Bio15, 
Bio18, Bio19) based on 90% correlation coefficient for the 
Future (19 models), the Present (one model), the Last Glacial 
Maximum (three models), and the Last Interglacial (one 
model). MAXENT settings for the models were default while 
cross-validation was the replicated run type. Each model 
was run 10 times with a maximum of 500 iterations and a 
1 × 10–5 convergence threshold. We used the 10-percentile 
training presence for both D. gouveai and its host species, 
and maximum training sensitivity plus specificity (max SSS) 
thresholding approaches for D. gouveai to convert model 
outputs to binary predictions (Liu et al., 2013; Radosavljevic 
and Anderson, 2014; Ülker et al., 2018). To assess the 
statistical robustness of the model predictions, the partial 
ROC statistic was taken into consideration. In our final model 
output, we prioritized low omission rates and AUC (Area 
Under the Curve) for the most accurate predictions. AUC 
is a metric employed in ecological niche modeling to gauge 
model performance, with higher values signifying increased 
accuracy. Raster calculation implemented in ArcGIS version 
10.2 and some tools in SDMToolbox version 2.1 (Brown, 
2014) were used to show overlap of the three different Last 
Glacial Maximum models.

3. Results
Although the haplotype network (Figure 1) showed 
moderately high genetic diversity within D. gouveai, 

average genetic distances (Table 1) were positively but 
weakly correlated with geographic distance, which is 
evidence of isolation-by-distance (Figure 3). 

Model calibration results based on the omission rate 
and AICc values showed that the best model included 
a regularization multiplier of 1 for D. gouveai and two 
feature types: linear and quadratic; and that the best model 
included a regularization multiplier of 8 for host species 
and 3 feature types: quadratic, product, and threshold. The 
ecological niche model performed better than a random 
prediction for both D. gouveai and its host species based 
on the most acceptable statistics (the omission rate, 
and the AUC). The AUC values were larger than 0.7 for 
training data [AUC for training data = 0.917 (±0.019) for 
D. gouveai, and AUC for training data = 0.745 (±0.038) for 
its host species] based on ten replicates cross-validation 
runs for D. gouveai and its host species. The prediction 
for Present bioclimatic conditions mostly matched the 
known geographic distribution of both D. gouveai and 
its host species, suggesting that the species is very near 
to equilibrium with climate. However, the prediction also 
included areas where these species have not been observed 
in South America, especially on the west coast and middle 
latitudes (Figure 4). The prediction for the potential 
distribution of D. gouveai did not change much between 
the Last Glacial Maximum and the Present whereas it did 
change between the Last Interglacial and the Last Glacial 
Maximum, and did substantially change between the 
Present and the Future. This result indicates that D gouveai’s 
distribution was more limited in the Last Interglacial than 
in the Present, and the species’ future distribution will be 
more limited or the species will be extinct in near future. 
The projection results for the host species supported the 
range dynamics of D. gouveai for the past and the future 

Table 1. The net average genetic distances (dA) among ten populations of D. gouveai. Highest values showed in bold. 

FOR FUR CEU MIR CRI PIR FER BAX IBO SER
FOR 0
FUR 0 0
CEU 0 0 0
MIR 15.67 2.85 13.29 0
CRI 2.85 0.72 2.33 9.00 0
PIR 1.63 0.72 1.56 –0.01 1.33 0
FER 3.17 0.79 2.70 5.67 2.03 1.22 0
BAX 1.33 0.52 1.27 0.09 1.22 –0.04 0.85 0
IBO 1.33 0.28 1.22 1.44 1.17 0.37 0.41 0.06 0
SER 0.89 0.23 0.89 0.61 0.85 0.14 0.49 –0.07 –0.06 0

FOR: Morro do Forno; FUR: Furnas; CEU: Vale do Céu; MIR: Pirapotanga; CRI: Cristalina; PIR: Pirenópolis; FER: Fercal; BAX: Baxio; 
IBO: Ibotirama; SER: Serrinha.
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 1 

LIG (~130 000 ybp)
LGM-mrLGM-meLGM-cc

Current20502070 (~22 000 ybp)

Maximum training sensitivity plus speci city logistic threshold

10 percentile training presence logistic threshold

Figure 4. Last Interglacial, Last Glacial Maximum, Present (1960–1990), and the Future (2050 and 2070) predictions of the 
potential distribution of D. gouveai based on two thresholding approaches. Arrows shows very limited potential distribution 
of D. gouveai in 2050 and 2070. The abbreviations are defined as follows: LGM-Last Glacial Maximum, LIG-Last Interglacial. 
Additionally, specific climate models include LGM-cc (Community Climate System Model), LGM-me (MPI-ESM-P, General 
Circulation Models), and LGM-mr (Model for Interdisciplinary Research on Climate, Earth System version 2 for Long-term 
simulations).
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Figure 3. Isolation-by-distance of populations of D. gouveai based on mtDNA. Linear regression lines were 
drawn for all comparisons among populations (full line), and for populations not included MIR (dotted 
line).
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(See Figure 5 for predictions). Host species will have a 
substantial range shift and range contraction in 2050 and 
2070.

The percentage contribution or permutation 
importance suggests that ‘Temperature of Warmest Month’ 
(Bio5, 25.7% contribution to the model), ‘Precipitation 
of Warmest Quarter’ (Bio18, 16.9% contribution to the 
model), ‘Precipitation of Coldest Quarter’ (Bio19, 18.2% 
contribution to the model) were the most significant 
bioclimatic variables in predicting the present distribution 
of D. gouveai; “Mean Diurnal Range (Bio2, 65.3% 
contribution to the model)” was the most significant 
bioclimatic variable in predicting the present distribution 
of two cacti species.

4. Discussion
This study integrated some phylogeographic insights and 
ecological niche modelling in order to understand how D. 
gouveai has responded to global climate changes through 
its evolutionary history during the Late Quaternary 
glacial–interglacial cycles. Including the possible host 
of D. gouveai in this integrity has also led to significant 
implications for the biogeographical history and future of 
the species. 

Demographic events (e.g., population fluctuations) 
should be concordant with climate-driven distributional 
shifts (e.g., expansion and/or contraction, see Brito, 2005). 
Our results here clearly show that the phylogeography of 
D. gouveai is mostly concordant with the ecological niche 
modeling results. However, demographic results based 
on mtDNA genes might have discordant patterns not 
only with different genes, but also for ecological niche 
modeling if the negative selection is to driving force (Hung 
and Zink, 2014; Lapierre et al., 2016). In this study, we 
only used published mtDNA data, and the neutrality tests 

based on Tajima’s D indicated that results did not depart 
from neutrality (see Moraes et al., 2009). Finally, these 
results show a mostly identical pattern to that previously 
described for cytochrome C oxidase subunit I (COI, 
Manfrin et al., 2001; de Brito et al., 2002) and II (COII, 
Moraes et al., 2009). The substantial difference in this 
study from previous ones is the main discussion on the 
historical demography of D. gouveai.

According to Moraes et al. (2009), the most common 
mtDNA haplotypes, which are central in haplotype 
network, occur in different geographic locations in species’ 
distribution range. This means that all these haplotypes are 
probably ancestral, and that the species filled its distribution 
range very fast, probably during a very recent time period 
(e.g., before or after the Last Glacial Maximum). Details 
of Pleistocene climatic fluctuations in South America are 
not understood very well (Bush and Silman, 2004), and 
published information about this topic is very scarce (e.g., 
Bonatelli et al., 2014). The available predictions for South 
America indicate evidence of a drier climate in central and 
eastern Brazil during the Last Glacial Maximum (Ledru et 
al., 1996, 1998; Salgado-Labouriau et al., 1998; Barberi et 
al., 2000; Behling 2003). Findings by Barberi et al. (2000) 
suggested that semiarid climate was dominant in central 
Brazil during the Last Glacial Maximum. In addition to 
this, Collevatti et al. (2012) showed some Neotropical 
savanna tree species exhibited the distributional shrinkage 
during the Last Glacial period suggesting dry vegetation 
(e.g., Cactaceae) and its dependencies (e.g., D. gouveai) 
expansion in the same period. Similar to our case in 
this study, D. pachea, the other cactophilic species in 
the Sonoran Desert, showed a population expansion 
pattern way before the Last Glacial Maximum (Pfeiler et 
al., 2007), which was a kind of concordant demographic 
pattern for D. gouveai that we discussed in this study. The 

 1 

Cereus hildmannianus & 
Pilosocereus machrisii

2070 2050 Current LGM LIG

Figure 5. Last Interglacial, Last Glacial Maximum, Present (1960–1990), and the Future (2050 and 2070) 
predictions of the potential distribution of two cacti species (C. hildmannianus and P. machrisii) based on 10% 
thresholding approaches. The abbreviations are defined as follows: LGM-Last Glacial Maximum, LIG-Last 
Interglacial.
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phylogeographic study of the other species, D. mojavensis, 
showed some signals for separate refugia located in 
the Mojave Desert and Sonoran Desert during the Last 
Interglacial (Smith et al., 2012). 

Vertebrate species distributed in the southern part of the 
Western Palearctic temperate region (i.e. Mediterranean 
species) have different distribution patterns during the Last 
Glacial Maximum than temperate species (e.g., Gür, 2013; 
Perktaş et al., 2015). Even in the far eastern Palearctic, in 
China, one songbird species, the green-backed tit (Parus 
monticolus), shows a similar pattern to the Mediterranean 
species (Wang et al., 2013). Therefore, D. gouveai was a 
suitable species to test this biogeographic pattern in South 
America using phylogeography and ecological niche 
modeling. 

Our results showed that D. gouveai experienced 
unusual demographic and range expansion because of the 
Late Quaternary glacial–interglacial cycles. This is likely 
to have occurred during the cooling transition between 
the Last Interglacial and the Last Glacial Maximum, 
approximately at the beginning of the Last Glacial Period. 
The present patchy distribution of D. gouveai could have 
been because of independent expansion from different 
refugia (see Moraes et al., 2009) during the Last Interglacial. 
Moraes et al. (2009) gave a detailed discussion about 
haplotype distribution within D. gouveai, and underscored 
the absence of gene flow between geographical regions. In 
this study, we conducted an isolation-by-distance analysis 
and it showed a significant positive correlation between 
average genetic distance and geographical distance. This 
result clearly supports the claim of an expansion event 
from different refugia because of the more than model 
haplotypes, as discussed by Moraes et al. (2009); and this 
result might be significant due to isolation in allopatric 
refugia in the Last Interglacial.

Integrating phylogeography with ecological analysis is 
crucial to understand species’ recent demographic history 
(Perktaş and Gür 2015, for an example, please refer to 
Capainolo et al. 2023). In this study, we added ecological 
niche modeling analysis to the previously published 
demographic panorama. Moraes et al. (2009) suggested 
that all demographic events experienced by D. gouveai 
occurred before the Last Glacial Maximum. This claim 
is clearly supported by our ecological niche modeling 
results. The pre-Last Glacial Period has been discussed as 
an age of range expansion for various organisms in this 
region (Wüster et al., 2005; Almeida et al., 2007) and in 
the Palearctic Region, as mentioned above (Perktaş et al., 
2015; Wang et al., 2013). This raises the scenarios of how 
and why the Last Interglacial affected the distribution of D. 
gouveai in South America.  

During the Last Interglacial, climate conditions 
supported a similar vegetation structure to that observed 

today (Li et al., 2006; Qu et al., 2011). Thus, we first 
expected that the predicted distribution for D. gouveai 
should be similar during the Last Interglacial to its present-
day distribution. However, very interestingly, the results of 
our ecological niche modelling analysis did not support 
this hypothesis for D. gouveai in South America. Instead, 
the predicted refugial area was almost consistent with 
previously published genetic analysis and our historical 
demography analysis. The expansion started before the 
Last Glacial Maximum and continued until about 22,000 
years ago. This exactly matches the conclusion of Moraes 
et al. (2009). Allopatric refugia are located on the east bank 
of the Paraná River and the other on the west bank. These 
results mean that all dry vegetation was more common than 
today. Average temperatures during the Last Interglacial are 
known to have been about 2 °C–5 °C warmer than present 
(Otto-Bliesner et al., 2006). This warmer temperature led 
to the dry areas within the distribution range of D. gouveai 
becoming larger. However, especially precipitation during 
the coldest quarter, which was the most important variable 
in the model of the distribution range of D. gouveai, must 
have been very high during most of the Last Interglacial. 
Therefore, a warming climate could have made D. gouveai 
more widespread in its distribution range. However, the 
precipitation pattern may have pushed their distribution 
to the refugia or something else may have happened. The 
most evident conclusion regarding this situation becomes 
apparent when we concentrate on D. gouveai’s host. Two 
different species of cacti (C. hildmannianus and P. machrisii) 
were those that shaped the vegetation where D. gouveai 
was found. D. gouveai lives to some extent dependent on 
these cacti species. Therefore, when the possible scenarios 
are combined with the results of the ecological niche 
modelling of the potential hosts of D. gouveai, it turns 
out that the species probably lost most of its distribution 
range in the south after the Last Interglacial, and made an 
almost complete range shift during the Last Glacial period. 
In other words, D. gouveai possibly started to increase its 
effective population size during the last 55,000 years, and 
following its hosts, especially due to the displacement of 
arid areas. The conclusion we reached in this study draws 
attention to an important point. In order to understand 
the biogeographic responses of host-dependent endemic 
species such as D. gouveai to climate change, we must first 
understand the biogeographic responses of their hosts to 
climate change.

Previous phylogeographical studies have suggested that 
responses to Pleistocene climate fluctuations vary among 
species and regions. However, there is now concordance 
between South America, the Mediterranean Region, and 
East Asia for different organisms. Our results strongly 
show that the Last Interglacial played a significant role in 
shaping the demographic history of not only D. gouveai, 
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but also its hosts. Thus, this study contributes to the idea 
that species’ responses to Pleistocene climate fluctuations 
have been more varied than previously thought. Overall, 
this study makes a significant contribution to the growing 
literature on the effect of the Last Interglacial on the 
distribution patterns of different organisms. 

Regarding climate change in the future, our results 
confirmed that D. gouveai will certainly be affected by global 
warming in the near future. This is substantially important 
for conservation actions in South America, because this 
species uses a specific habitat based on specific vegetation 
in this region, and has relatively narrow physical limits 
for resource utilization like other drosophilids (Parsons, 
1982). Therefore, this specification makes this species 

more sensitive to climate change, and, of course, D. gouveai 
may experience the extinction risk or a substantial range 
shift and range contraction once again, depending on the 
range-shift and contraction event of the host to which it is 
associated (Figure 5). The extinction risk is also important 
for the region where this species distribute because global 
warming will finally lead to a reduction in biodiversity 
by eliminating this kind of specialist, and conservation 
strategies need to be taken care of this effect in this kind of 
high biodiversity region in the world. 
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