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Abstract: The simple structure, low manufacturing cost, rugged behavior, high torque per unit volume, and wide

torque-speed range make a switched reluctance motor (SRM) very attractive for industrial applications. However, these

advantages are overshadowed by its inherent high torque ripple, acoustic noise, and difficulty to control. The controlled

parameters in SRM drives can be selected as the turn-on angle, the turn-off angle, and the current reference. This paper

investigates the problem of optimal control parameters considering the maximum average torque, minimum copper losses,

and minimum torque ripple as the main objectives in SRM drives. The use of evolutionary algorithms (EAs) to solve

problems with multiple objectives has attracted much attention recently. Differential evolution (DE) is an EA that

was developed to handle optimization problems over continuous domains. A multiobjective DE (MODE) technique is

introduced here to find the optimal firing angles under multiple operating conditions. The simulation results carried out

on a 4-phase 8/6 pole SRM show that the proposed MODE can be a reliable alternative for generating optimal control

in the multiobjective optimization of SRM drive systems.

Key words: Optimal control parameters, differential evolution, multiobjective differential evolution, SRM drives,

performance optimization

1. Introduction

In recent years, switched reluctance motor (SRM) drives have received considerable attention among researches

as possible high-performance drives for many applications [1,2]. Its ability to operate in harsh environments,
high torque density, and excellent torque-speed characteristics are attractive in the traction domain. However,
a SRM is difficult to control. In particular, the SRM phase magnetization characteristics vary strongly as a
function of the excitation current and rotor position. The magnetic circuit is saturated severely, the torque
production varies nonlinearly with the rotor position, and the drive performance depends strongly on the control
strategy [3–5]. Hence, there is still a need for further development in the performance optimization of SRM

drives capable of operation over a large speed range [6].

High efficiency and low torque ripple are the major SRM drive characteristics designed for vehicle
propulsion [7–9]. Here, we addressed these 2 performance quantities with 3 criteria for evaluating the motoring
operations of SRM drives. They imply a maximum average torque, minimum copper losses, and minimum
torque ripple, respectively. The effects of the turn-on and turn-off angles on these criteria are usually conflicting.
Specific turn-on and turn-off angles may reduce the torque ripple, but at the cost of a lower developed torque.

∗Correspondence: hedi.yahia@enim.rnu.tn
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There is a need for a technique capable of finding the control parameters that achieve an optimum for the
conflicting performance quantities, such as the maximum average torque, minimum copper losses, and minimum
torque ripple.

In the past, many researchers have developed interesting optimization techniques for switched reluctance
drives. For those techniques, control objectives were selected to maximize the average torque, to maximize
the torque per root mean square (RMS) current, to maximize the efficiency, to minimize the loss, or to obtain

the balance between the maximum efficiency and the minimum torque ripple [10–12]. Recently, to fulfill the
best motoring operation, a multiobjective optimization function was developed by adopting a weighted sum
approach [13]. This method requires multiple single-objective optimization runs with different weights for the
various objectives. Usually, there can be no single optimal solution that can simultaneously satisfy all of the
objectives. Pareto-based approaches, on the other hand, offer the advantage of generating multiple Pareto
solutions simultaneously. In this study, the differential evolution (DE) algorithm is extended to multiobjective
optimization problems using a Pareto-based approach to solve problems with multiple conflicting objectives.
The approach shows promising results in SRM control. Related examples will be reported in this paper.

The remainder of this paper is organized as follows. The SRM model and motoring operation criteria are
described in more detail in Sections 2.1 and 2.2. The effects of the control parameters are detailed in Section 2.3,
before the previous related work in the SRM optimization techniques are presented (Section 3.1). Section 3.2
describes the proposal approach-based multiobjective DE. The simulation results are then presented in Section
4 and the conclusions drawn are given in Section 5.

2. Consideration of the SRM drive characteristics

The torque-speed characteristics of the SRM are very flexible and the adequate control-based tuning both in the
turn-on and turn-off angles can effectively perform in its constant power region. Figure 1 shows the torque-speed
and power-speed characteristics of the 8/6, 4 kW, 300 V SRM Oulton that has been chosen for this study. As
can be seen, the highest speed of this motor in its maximum power region is more 3 times that of its base speed.
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Figure 1. Simulated characteristics of the used SRM Oulton: a) torque-speed characteristics and b) power-speed

characteristics.

To obtain the maximum torque, the turn-on should be set to near the minimum inductance position, as
there, the current has to meet its maximum value at its maximum torque point, and the turn-off must be at
about the maximum inductance position [14]. To prevent negative torque production and any loss of positive
torque production, the turn-off should be carefully chosen. Thus, an optimization problem arises concerning the
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both turn-on and turn-off for a higher speed range in the constant power region for SRM drives. This region is
very important for industrial applications like electric vehicles [4].

2.1. SRM model

As previously indicated, the SRM used in this paper has 8 stator teeth, 6 rotor teeth, and 4 phases. It is
assumed that the machine is balanced and symmetrical, the mutual phase coupling is negligible, and that the
hysteresis and eddy currents are absent. Some approaches taking these factors into account were reported in
[15–17]. The voltage across each phase winding j is equal to the sum of the resistive voltage drop and the rate
of the flux linkages, and is given by:

Vj(t) = Rij(t) +
dϕj(θ, i)

dt
. (1)

In SRM, the coenergy W ′ is equal to the area enclosed by the curve of the flux linkage versus the current over
an exercitation cycle, and can be expressed for the jth phase by:

W ′
j(θ, i) =

i∫
0

ϕj(θ, i)d ij | θ=cons tan t. (2)

For the case of constant excitation, the electromagnetic torque produced by each phase can be obtained from
the derivative of the coenergy versus the rotor displacement as:

Tej(θ, i) =
∂W ′

j(θ, i)
∂θ

|i=cons tan t . (3)

The total instantaneous torque is given by the sum of the individual phase torques as follows for the considered
SRM:

Te =
4∑

j=1

Tej(θ, i), (4)

and the average torque can be derived mathematically by integrating Eq. (4) over an electrical cycle as follows:

Tavg =
1
2π

2π∫
0

Tedθ. (5)

Integrating Eq. (1) over a time period τ , the flux linkage is given by:

ϕ(t) = ϕ(0) +

τ∫
0

[V (t) − Ri(t)]dt. (6)

An improved indirect measurement method, based on the data acquisition system developed for the digitized
characterization of the flux linkage, was used to determine the flux linkage versus the current data. It consists
of winding a sense coil around the stator teeth of the fed phase and then measuring the induced voltage. The
flux is deduced from the measured induced voltages off-line. Furthermore, a numerical method is presented that
permits the compensation of the effects of the current ripple. The measured static data perfectly characterize
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the motor and are used in the performance optimization for the machine drives. The measured flux linkage
and static electromagnetic torque versus the current under the rotor angles for the studied SRM are shown in
Figures 2a and 2b, respectively. The instantaneous current of the winding is deduced by the inversion of the
measured static data. The flux linkage at any instant can be obtained by calculating Eq. (6), using an adequate
digital integration technique and voltage sensor. Next, the instantaneous induced electromagnetic torque is
determined from the static torque table for the current corresponding to the obtained curve of the flux linkage
under the rotor positions.
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Figure 2. SRM magnetization characteristics of: a) measured phase flux linkage and b) phase static electromagnetic

torque.

2.2. Criteria

The multiobjective optimization technique introduced in this paper is based on 3 criteria to evaluate the motoring
operations. They are the maximum average torque, the minimum copper losses, and the minimum torque ripple.

The SRM average-torque maximization returns to maximize the average torque developed by each phase
during one electrical cycle at a fixed speed and current limit condition. Hence, by adjusting the turn-on and
turn-off at a given speed and under a current reference, the instantaneous torque area changes, as shown in
Figure 3. We notice that the average torque increases with an increase in the area under its instantaneous torque
curve. Thus, more average torque can be achieved by allowing a negative phase torque, and, consequently, a
higher phase current, which leads to the generation of more copper losses and a high-torque ripple factor [1].
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Figure 3. Comparison of instantaneous torque areas: a) curve obtained with θon = 30◦ and θoff=120◦ and b) curve

obtained with θon = −35◦ and θoff=150◦ .

Based on the multiobjective optimization, we consider the copper losses and torque ripple as the main
criteria, as well as maximum average torque.
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The copper loss depends on the RMS stator current and is given by:

Pcu = 4I2
rmsR. (7)

The torque ripple is defined by the normalized torque deviation with respect to the average torque. This
corresponds to the following coefficient, KT , calculated over a cycle:

KT =
Te max − Te min

Tavg
. (8)

2.3. Effects of the control parameters

Investigating the effects of the controlled parameters on the criteria is conducted for several combinations of
turn-on and turn-off when the SRM is operating at a fixed speed and a given current reference. Figure 4a
illustrates the effect of the control angles on the torque criterion for a rotor speed of 1500 r/min and a current
reference of 10 A. There are optimal turn-on and turn-off angles maximizing the developed torque. The effect
of the control angles on the torque ripple factor criterion is depicted in Figure 4b for the same rotor speed
and current reference. The minimum torque ripple factor can be reached according to the optimal turn-on and
turn-off angle combination. Figure 4c shows the effect of the turn-on and turn-off angles on the copper losses
criterion at 1500 r/min and 10 A for the motor speed and current reference, respectively. This characteristic is
monotone and the global minimum cannot be clearly observed. Minimizing the copper loss can be regarded as
maximizing the average torque per RMS current.
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Figure 4. Effects of the control angles at 1500 r/min and Iref = 10A of: a) average torque, b) torque ripple factor,

c) copper loss, and d) average torque per RMS current.

Consequently, the average torque per RMS current can be expressed by Eq. (9) and the effect of the

turn-on and turn-off angles is illustrated in Figure 4d at 1500 r/min and 10 A for the motor speed and current
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reference, respectively. The maximum average torque per RMS current is clearly detected and the optimal
control angles are found.

TP =
Tavg

Irms
(9)

Various simulations are conducted in the entire speed range for the maximization of the average torque,
minimization of the torque ripple, and maximization of the average torque per RMS current and the optimization

results are compared in Figures 5, 6, and 7, respectively. The optimal control parameters, θopt
on and θopt

off ,

according to the drive criteria at a selected speed are recapitulated in Table generated for a current reference
of 10 A.
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Figure 5. Comparison of torque-speed curves.
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Figure 7. Comparison of torque ripple factor-speed

curves.

The performance optimization leads to high calculation times (the processing time required to generate

the solution was more than 2 h on a Pentium Core 2 Duo) and there is not a single solution that optimizes
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all of the criteria. The problem drive can be formulated in multiobjective optimization. Hence, the field of
multiobjective optimization deals with the simultaneous optimization of multiple conflicting objective functions.

Table. Optimal control angles at the corresponding criteria.

Tavg, N.m TP, N.m/A KT

Criteria θopt
on , θopt

off , θopt
on , θopt

off , θopt
on , θopt

off ,

ω, r/min degree degree degree degree degree degree
500 –3 171 44 158 43 136
1000 –6 163 39 149 34 132
1500 –9 155 34 140 34 132
2000 –13 147 28 133 37 135
2500 –15 140 21 128 40 136
3000 –19 133 13 122 41 136
5000 –32 111 –13 105 39 135
7000 –39 96 –36 93 41 136

2.4. Control strategies

To avoid difficulties in obtaining the analytical derivatives for the severely nonlinear SRM, numerical optimiza-
tion techniques may be favored [18]. Based on these equations and the measured characteristics of the flux
linkage and static torque, we have developed a simulation function in a MATLAB environment with M-file
scripts. This function delivers the average torque, average torque per RMS current, and torque ripple as a func-
tion of the turn-on angle, turn-off angle, reference current, phase voltage, winding resistance, angular velocity,
and SRM measured characteristics in the form of:

[Tavg , TP, KT ] = Function Optimisation (θon, θoff , Iref , V, R, ω, SRM mc) .

In order to achieve a high performance, the SR motor should be operated with variable commutation angles.
Various researchers have elaborated on the performance of SRMs with angle control, but there is little guidance
for choosing these angles that does not involve direct experimental search or computationally intensive numerical
optimization.

2.5. Existing techniques

From the available literature, it is observed that conventional a priori guidance-based numerical optimization
techniques, as alternatives to circumvent the difficulties in obtaining the analytical derivatives of the objective
functions, may only offer a local optimum and are usually appropriate for single-objective optimization [19].
The computationally intensive numerical optimization belongs to an a posteriori guidance search method that
can find the best solution after all of possible trials have been conducted [20]. An example of applying such a
technique for finding the optimal control angles for the maximum average torque, maximum torque per copper
loss, and minimum torque ripple under a predetermined operating condition is presented in Section 2.3. Here,
we note that this technique is only applied to single-parameter optimization. The maximum average torque
and minimum loss criteria are performed by a response surface methodology [20]. The optimization algorithm
acts on 2 steps. The maximum average torque angles are determined in the 1st step and these results are used
as starting points in the 2nd step, which optimizes the switching angles on the minimal losses in the windings.
However, these performance quantities are sequentially optimized, one at a time. Mainly due to the inability
of these methods in multidimensional performance optimization, a practical search method, by mapping the
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performance quantities in the final map, is used to determine the optimum firing angles for achieving the highest
drive efficiency with a lower torque ripple in a 102-kW SRM drive [21]. The manual search, by trial and error,

is implemented in a genetic algorithm (GA) and is also applied to Pareto multiobjective optimization [22].

Pareto-optimal firing angles are developed for efficiency and torque maximization [18].

Recently, control angles have been optimized to maximize the multiobjective function developed for
motoring the torque, copper loss, and torque ripple criteria using 3 weight factors [23]. This method follows a
preference-based approach, where a relative preference vector is used to scalarize the multiple objectives. The
outcome of using classical searches and optimization methods uses a point-by-point approach, where one solution
in each of the iterations is modified to a different solution as a single optimized solution [24]. Achieving a set of
Pareto-optimal control angles for a high motoring torque, high torque per RMS current, and low torque ripple
avoids a precommitment on weighting the performance objectives. However, evolutionary algorithms (EAs) can

find multiple optimal solutions in a single simulation run due to their population-based search approach [25].

In this paper, a multiobjective DE (MODE) is applied to SRM performance optimization problems.

2.6. Multiobjective differential evolution-based method

Mathematical programming techniques have certain limitations when tackling multiobjective optimizations
(MOPs), such as most of them cannot find multiple solutions in a single run, and the multiple application of

these methods does not guarantee finding widely different Pareto-optimal solutions [26–28]. However, EAs deal
simultaneously with a set of possible solutions that allows for the finding of several members of the Pareto-
optimal set in a single run of the algorithm [29]. Additionally, EAs are less susceptible to the shape or continuity

of the Pareto front [30].

The DE algorithm is a novel EA for faster optimization, of which the mutation operator is based on the
distribution of the solutions in the population [31]. DE is a simple yet powerful population-based direct search
algorithm with a generation-and-test feature for globally optimizing functions using real valued parameters.
While a conventional GA uses binary coding to represent problem parameters, it sometimes uses integer or real
number representation as well [32]. The DE algorithm utilizes NP (population size) and D -dimensional vectors

as a population for each iteration (called a generation of this algorithm).

Xi = (xi1, ..., xin)T
i = 1, ..., NP

The initial NP D-dimensional vector is chosen randomly and should cover the entire parameter space X0
i

X0
i = lower(xi) + randi[0, 1]× (upper(xi) − lower(xi))

At each generation, 2 operators, namely the mutation and crossover, are applied to each individual, thus
producing the new population. Next, a selection phase takes place, where each individual of the new population
is compared to the corresponding individual of the old population, and the best between them is selected
as a member of the population in the next generation [31]. According to the mutation operator, for each

individualXG
i , i = 1, ..., NPXG

i , i = 1, ..., NP at generation G , a mutation vector,

V
(G+1)
i =

[
v
(G+1)
i1 , v

(G+1)
i2 , ..., v

(G+1)
in

]T

,
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is determined using Eq. (10). The choice of Eq. (10) dictates the variant of DE to be used in the application:

V
(G+1)

i = X
(G)
best + F

(
X

(G)
r1 − X

(G)
r2

)
, (10)

where X
(G)
best is the best individual of the population at generation G , F ≥ 0 is a real parameter, called the

mutation constant that controls the amplification of the difference between 2 individuals so as to avoid search
stagnation, and r1 and r2 are mutually different integers, randomly selected from the set {1, 2, ..., i− 1, i +

1, ..., NP} .

Following the mutation phase, the crossover operator is applied to the population. For each mutant

vector, V
(G+1)
i , an index rnbr(i) ∈ {1, 2, ..., n} is randomly chosen, and a trial vector

U
(G+1)
i =

[
u

(G+1)
i1 , u

(G+1)
i2 , ..., u

(G+1)
in

]T

is generated with:

u
(G+1)
ij =

{
vG+1

ij if [randb(j) ≤ CR] or [j = rnbr(i)]

xG
ijif [randb(j) > CR] and [j �= rnbr(i)]

, (11)

where j = 1, 2, . . . , n ; rand b(j) is the jth evaluation of a uniform random number generator within [0,1];

and CR is the user defined crossover constant in the range of [0,1] [31].

To decide whether the vector U
(G+1)
i should be a member of the population of the next generation, it is

compared to the corresponding vector XG
i . Thus, if f denotes the objective function to minimize, then:

X
(G+1)
i =

{
UG+1

i iff(UG+1
i ) < f(XG

i

XG
i otherwise

. (12)

Therefore, each individual of the trial vector is compared with its parent vector and the better one is passed to
the next generation.

DE has been applied successfully to a wide range of single optimization problems [33]. Hence, several
researchers have tried to extend it to handle MOPs. In single-objective optimization, the decision is easy: the
candidate replaces the parent only when the candidate is better than the parent. In MOPs, on the other hand,
the decision is not so straightforward due to the set of optimal solutions, and the selection procedure has to be
modified.

In the literature, many algorithms are used to find multiple nondominated fronts like the näıve and slow
method [34], fast and efficient method [35], and Kung et al.’s method [36]. Recently, 2 new algorithms were

proposed by Mishra [37] and Jun Du [38]. In this study, we use the sorting-based algorithm proposed by Jun Du
for finding the undominated set in the multiobjective optimization selection scheme extended to the traditional
DE. According to Jun Du, his algorithm is better than Kung’s algorithm. Through the selection scheme,
the strategy used to solve the multiobjective performance optimization for SRM drives is DE/best/1/bin. It
operates like the classical DE, except that the base vector is selected from the best vector among the population
and the other 2 individuals are selected randomly. DE/best/1/bin starts by defining and evaluating the initial
population through calculating the fitness value for each individual. After that, until the termination condition
is not reached, the necessary individuals are picked, and a new one is produced according to the selected DE
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scheme [39]. This new individual is evaluated and compared with the old one. Only the one with the best
fitness value will be chosen and pass for population of the next generation. The pseudo-code of the selected
DE scheme is presented in Figure 8 and the working principle of the proposed MODE algorithm is given in
Figure 9.

Begin

(1) Initialize the population

(2) Evaluate the initial population

(3) Wile termination condition is not satisfied

Do

. Randomly select individual Xr1 �= Xbest

. Randomly select individual Xr2 �= Xr1 and �= Xbest

. Generate trial individual: Xtrial = Xbest+ F(Xr1 – Xr2)

. Use Cr to define the amount of genes changed in trial individual

. Evaluate the trial individual

. Deterministic selection

End While
End

Figure 8. Pseudo-code for DE/best/1/bin scheme.

3. Simulation results

The turn-on and the turn-off angles can be used to control the average torque, average torque per copper loss,
and torque ripple when the SRM is operating at a fixed speed and for a given current reference. However, it can
be observed from Section 2.3 that the turn-on and turn-off angles have different optimal values, respectively,
to optimize the average torque, the average torque per copper loss, or the torque ripple factor. It is impossible
to simultaneously optimize those 3 objectives. There are 3 conflicting objectives that need to be optimized
simultaneously. The field of multiobjective optimization deals with the simultaneous optimization of multiple
competing objective functions. Hence, we consider a multiobjective problem of the form:

Maximize
f1 = Tavg(θon , θoff )

Minimize
f2 = KT (θon , θoff )

Maximize
f3 = TP (θon, θoff )

Two decision variables, namely the turn-on angle and turn-off angle, are considered for optimization. Their
bounds are:

−45◦ ≤ θon ≤ 45◦

100◦ ≤ θoff ≤ 190◦
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Begin

1. Initialize the set of MODE parameters (D, NP, CR, F, and NG).

2. Specify SRM criteria.

3. Specify the SRM measured characteristics.

4. Generate randomly control angles (θon andθoff ) with uniform distribution and respecting the
constraint θon〈θoff

XG
i =

[
θon−i

θoff−i

]
, where i =1, 2, . . .NP.

5. Generate random vector XG
best =

[
θon−best

θoff−best

]
and compute its performance by MATLAB func-

tion.

6. While stopping criterion is not satisfied
DO

. Select randomly 2 integer r1 �= r2 ∈ (1, NP ) and XG
r1 =

[
θon−r1

θoff−r1

]
, XG

r2 =

[
θon−r2

θoff−r2

]
.

. Compute the mutant vector V G
i = XG

best + F
(
XG

r1 − XG
r2

)
.

. Apply the crossover operator and compute the trial vector:

UG
i =

{
V G

i if(jrand(j) ≤ CR)orj = Rnbr(i)

XG
bestotherwise

. Apply the selection mechanism by evaluating the objective functions f(UG
i ):

if f(UG
i ) ≤ f(XG

best)

selectUG
i , thetrialvector

XG+1
i = UG

i

else

XG+1
i = XG

best

End While.

7. Remove the dominated solutions from the last generation using the Jun Du algorithm [36].

8. Output the set of nondominated solutions.

End
Figure 9. Pseudo-code for MODE algorithm.

One constraint is also considered for optimization:

θon〈θoff ,

at a fixed speed and for a given current reference.

The proposed MODE algorithm is coded in MATLAB 7.6 and the results obtained through the simulation
are discussed below. The following parameters are used while applying the MODE algorithm. The initial
population was set to 90, CR = 0.3, mutation constant F = 0.5, and the maximum number of generations =
600.
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Figure 10 shows the undominated solutions for the SRM drive when maximizing the average torque and
average torque per RMS current and minimizing the torque ripple. The algorithm gives a good spread of the
solution, maintaining the diversity and convergence, and offering more potential solutions to choose from.

The easiest way to approve the computed results with the real Pareto solution is to plot the Pareto
solutions obtained in the 2-dimensional objective plane. The maximizing average torque is plotted against the
minimizing torque in Figure 11, whereas the maximizing torque per RMS current versus the minimizing torque
ripple is shown in Figure 12. The MODE method produces quality undominated solutions along the Pareto
front. This proves that the MODE performs well on real-world engineering systems.
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Figure 10. Pareto-optimal solutions using the MODE

algorithm involved in the 3-dimensional objective space.

Figure 11. Pareto front in the 2-dimensional objective

plane of maximizing torque versus minimizing torque rip-

ple.
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Figure 12. Pareto front in the 2-dimensional objective plane of maximizing torque per RMS current versus minimizing

torque ripple.

Figure 13 shows the decision variables θon and θoff plotted against the objective functions. The decision

maker can choose any desired solution of his/her interest from the broad range of solutions available.

In order to demonstrate the effectiveness of the proposed algorithm for SRM drives, the results of a typical
simulation run with the MODE/best/1/bin algorithm and multiobjective GA (MOGA) are shown in Figure 14.
To apply the MODE algorithm, the following parameters are used. The initial population is set to 90, CR =
0.3, mutation constant F = 0.5, and the maximum number of generations = 600. For the MOGA, the initial
population is set to 90, the crossover probability = 0.85, and the mutation probability = 0.02. This algorithm
is also run for 600 generations. It can be clearly seen that the MODE achieves better Pareto-optimal solutions
compared to the MOGA. Another comparison was made with respect to the actual processing time and function
calls for a given population size. As shown in Figure 15, the 2 methods were compared at population sizes of
150, 300, 500, 700, and 1000. For all of the population sizes, it can be clearly seen that the MOGA eventually
required more processing time than the MODE algorithm.
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Figure 13. Values of decision variables θon and θoff : a) versus objective function f1 , b) versus objective function f2 ,

and c) versus objective function f3 .
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Figure 15. Processing time comparison between the

MODE and MOGA algorithms.

4. Conclusions

The MODE algorithm was applied successfully to the multiobjective performance optimization of SRM drives.
The optimum firing angles, turn-on and turn-off, achieving the maximum average torque with a low torque
ripple and the maximum average torque per RMS current, were conducted on a 4-phase 4 kW motor drive and
various results were demonstrated. The investigation on the motoring operation of the SRM drive has shown
that the turn-on and turn-off angles have considerable effects on the criteria and that the turn-on and turn-off
angles can be optimized to obtain the maximum average torque, maximum average torque per RMS current,
and minimum torque ripple factor. This paper confirms the potential of the MODE to solve complex problems
like the multiobjective optimization of SRM drives. Finally, it is suggested that the developed MODE algorithm
can be used as an efficient alternative technique to solve multiobjective optimization engineering problems.
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Nomenclature
V Phase voltage
R Phase winding resistance
i Phase current
ϕ Flux linkage
dϕ
dt Rate of flux linkage
W ′ Coenergy
θ Rotor angular position
Te Instantaneous developed total torque
Tavg Average torque
τ Time period
ϕ(0) Flux linkage at time t = 0
Pcu Copper loss
Irms RMS current
KT Torque ripple factor
Te max Maximum value of instantaneous torque

Te min Minimum value of instantaneous torque
TP Average torque per RMS current
θopt
on , θopt

off Optimal control parameters
θon , θoff Turn-on and turn-off angles
ω Rotor speed
Iref Current reference
ωb Base rotor speed
Pr Rated power
SRM mc SRM measured characteristics
D Number of dimensions
NP Population size
CR Crossover constant
F Scaling factor
G Generation counter
NG Maximum generation
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