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1. Introduction
In recent years, with the rapid development of information 
and communication technology and driven by the industrial 
revolution, agriculture is transforming into precision 
agriculture and smart agriculture (Nie et al., 2022b, 2022c). 
At the same time, UAVs, as a control platform that combines 
many advantages such as data collection and imaging, 
provide many modern production methods and approaches 
to the agricultural field (Jiang et al., 2022), playing a role in 
improving accuracy, efficiency and reducing costs (Pereira 
et al., 2023). Therefore, UAV technology has a wide range 
of application prospects in the field of agriculture and 
can further promote the development of agricultural 
modernization (Rossi et al., 1994).

The introduction of UAV aerial survey technology in 
agriculture at this stage is a key component of precision 
agriculture (PA) (Mulla, 2013), which is usually applied 
to crop growth monitoring, health monitoring, disease 
detection, yield estimation, and weed management 
(Radoglou-Grammatikis et al., 2020). However, there are 
certain limitations of UAVs in the agricultural production 
and application process, especially their inability to obtain 
the required flight data in its entirety, which in turn leads 
to the challenge of missing data (Tsouros et al., 2019):

	 Hardware failure: The aerial photography system of the 
UAV includes cameras, sensors, and other hardware 
equipment, and its failure or malfunction after 
longer-term operation by extreme temperature, static 
electricity, and vibration may result in incomplete or 
unusable data being collected.

	 Terrain and other signal interference: crop growth 
terrain complex impedes the signal transmission of 
the UAV flight, resulting in its reception of the signal 
is limited or interrupted, and therefore may lead to 
missing data.

	 Flight environment restrictions: Most aerial surveys 
in the agricultural field are flown in low altitude areas, 
which can be subject to magnetic interference from 
the environment, and the control of the UAV can be 
disturbed and the collected data can be affected. Also, 
bad weather conditions may delay or interrupt the 
aerial survey work of the UAV.

UAV flight data is an important basis for judging the 
operational status and performance of the UAV. The absence 
of flight data may affect the execution of the mission, or 
cause the flight control system to fail to work properly 
and lead to misflight or crash. Completing missing data 
based on flight data is an important means of UAV safety, 
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stability and success rate of performing aerial survey tasks 
(Kim et al., 2019). Since the subsequent work requires 
3D reconstruction of the collected targets using remote 
sensing technology, in which the collected remote sensing 
images need to be fused with the corresponding flight 
data, it is very important to complete the missing flight 
data for us to achieve a complete collection of agricultural 
production information. We would like to choose a deep 
learning method on complex distribution in this part of 
the work, which can make accurate complements to the 
missing temporal data (Sarafanov et al., 2020; Zhang et al., 
2021).

For the current data missing completion problem, 
there are some widely used completion algorithms, 
their workflow and characteristics are as follows: 
K-NearestNeighbor (KNN) (Fu et al., 2019; Li and Ercisli, 
2023) is a data completion method based on distance 
similarity, its basic idea is to use similarity to find the 
nearest neighbors of the missing values, and then predict 
the missing values based on the data of the nearest 
neighbors. It is simple and easy to use, can cope with high 
dimensional and large data sets, but for sparser data, it 
is easy to have local similarity, which leads to inaccurate 
prediction of missing values. Generative Adversarial 
Imputation Network (GAIN) (Yoon et al., 2018) is a GAN-
based data complementation method, which works by 
using a generator to learn the potential feature distribution 
from the observed data, and introducing a hint matrix in 
the discriminator to let the discriminator better guide the 
generator to learn the real data distribution. It relies only 
on the observed data to perform interpolation operations, 
which can better improve the accuracy of the model, but 
has disadvantages such as convergence difficulties and 
training instability. Imputation using Chained Equations 
(MICE) (Hayati Rezvan et al., 2015) is a regression model-
based data complementation method, which works by 
filling in missing values with constants such as mean and 
median, making regression predictions for each variable 
containing missing values, and using the prediction model 
for the variables to obtain multiple sets of predicted values 
for multiple simulations and averaging them to obtain the 
complemented values. Its preprocessing is simple and can 
handle multiple missing values, while it is easy to configure 
and widely used, but it is highly dependent on the sample 
quality, and the noise present in the data set will greatly 
affect the results when there are too many missing values 
and more parameters fitted in the data set.

Among deep learning, generative adversarial network 
(GAN), as a generative model, is one of the most 
promising methods for complex distributions in recent 
years (Bousmalis et al., 2017). It uses generators and 
discriminators for game learning, i.e. it uses two neural 
networks, and one neural network is trained against the 

other in an adversarial process to obtain good results. In 
response to the sample incompleteness problem caused 
by the above limitations of UAV aerial survey (Yang et 
al., 2022), GAN is able to generate virtual samples from 
the direction of expanding the sample data, and expand 
the number of samples by feature extraction from the real 
samples. Back in 2019, PengXu et al. (2019) proposed a 
neural network-based GAN data augmentation method to 
synthesize fault data to solve the data imbalance problem 
in fault prediction of pipeline leaks in petrochemical 
systems. However, the basic GAN often suffers from 
training instability, gradient disappearance, pattern 
collapse, etc. So to solve these problems, derivative models 
of GAN have been proposed one after another, such as 
Conditional GAN (CGAN) (Pang and Liu, 2020) with 
certain constraints entered during sample generation, 
Generative Adversarial Imputation Network (GAIN) 
(Yoon et al., 2018) can automatically fill in the missing 
data, Deep Convolutional GAN (DCGAN) (Viola et 
al., 2021) employs a deep convolutional neural network, 
Wasserstein GAN (WGAN) (Arjovsky et al., 2017) 
employs wasserstein distance to portray the gap between 
the generated and real samples, InfoGAN (Chen et al., 
2016) introduces information bottlenecks, CycleGAN 
(Almahairi et al., 2018) applies a cyclic consistency loss, 
Self-Attention GAN (Zhang et al., 2019) introduces a self-
attentive mechanism, etc. In agricultural applications, 
regarding magnetized water fertilizer irrigation, Jing 
Nie et al. (2022a) combined PGD attack with CGAN to 
capture the distribution of real data more accurately with 
limited data samples and generate data for predicting 
liquid magnetization sequence data. Compared to the 
generator and discriminator of the basic GAN, where the 
inputs are only random samples and samples, respectively, 
the inputs of CGAN can have conditions attached to 
them. The input to the CGAN generator can be a random 
sample with some additional features of the sample, so 
that the desired generated sample can be generated more 
accurately. The discriminator is the input sample and the 
corresponding features, which are combined to determine 
the “truthfulness” of the sample.

In response to the fact that the temporal data generated 
by GAN is random and cannot capture the mapping 
of generated samples to temporal information, CGAN 
largely overcomes this drawback. However, even though 
CGAN introduces conditional information on the input 
samples, the input of the generator still has the problem 
of high randomness. To further improve this problem, this 
paper uses Variational Autoencoder (VAE) to integrate 
with CGAN, and the advantages of both complement 
each other. Both VAE and CGAN essentially perform 
optimization between distributions, while VAE tends to 
overwrite the original missing sample distribution by the 
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full sample distribution of the generated model (Osada 
et al., 2017). The generator of VAE is able to explore the 
approximate spatial distribution of the input sample data 
relatively efficiently, and its training efficiency is therefore 
higher than that of CGAN. So why do not we just use VAE? 
The shortcoming of VAE is that the samples generated by 
decoding are often “fuzzy” (Duan, 2023), and it happens 
that the discriminator of CGAN is needed to discriminate 
the authenticity of the samples and help VAE to improve 
the quality of the samples.

In this paper, the VAE-CGAN optimization model 
is proposed for the missing flight data problem of jujube 
garden aerial survey, using the encoder of VAE to replace 
the noise of traditional CGAN with initialization as 
well as correction; its decoder when reducing data can 
be seen as the process of generating samples, so it can 
be used as a generator of CGAN; the discriminator of 
CGAN is able to solve the problem of ambiguous samples 
generated by the decoder of VAE while training its own 
discriminative ability. In addition, the model incorporates 
quantile regression neural network (QRNN) as a regressor 
to complete the regression task in this study, and it can 
update the data period information by adjusting the 
confidence interval to reduce the burden for VAE-CGAN. 
The structure of VAE is described in detail in the paper, 
and a new structure is tried for the discriminator. In 
order to verify the superiority of the proposed model, the 
complementary model, which is widely used nowadays, 
is selected as a comparison in this paper, and the quality 
of the samples generated by the generator is evaluated by 
calculating the MSE and RMSE between the generated 
data and the real data.

The contributions of this paper are listed as follows:
	 Combining CGAN and VAE, and introducing 

regressors in the overall model architecture, a 
complementary model for missing UAV flight data is 
proposed.

	 A new discriminator structure was used to compare 
with the normative one and analyze the advantages 
and disadvantages of both.

	 The proposed model’s ability to generate samples and 
the model prediction results are discussed through 
experimental analysis of the widely used model.

2. Related work
2.1. Conditional generative adversarial network
The basic generative adversarial network (GAN) is 
composed of a generator and a discriminator. It performs 
the generation task of GAN by inputting a low-dimensional 
random vector to the generator to generate the desired 
high-dimensional samples. The generated new samples 
are input to the discriminator to score their truthfulness, 
and the obtained scalar values range from 0 to 1. The more 

truthful the sample is, the closer the score is to 1. This is 
the discriminative task of the GAN. The generator and 
discriminator are mutually opposing and constraining 
relationships. By iteratively adjusting the parameters of 
the generator and discriminator networks, the generator 
continuously self-corrects and optimizes itself from 
the feedback of the discriminator, and finally generates 
samples that better match the conditional samples, and 
the discriminatory ability of the discriminator gradually 
improves. The objective function for GAN optimization is:

min
𝐺𝐺

max
𝐷𝐷

𝑉𝑉(𝐷𝐷, 𝐺𝐺)  =  𝐸𝐸𝑥𝑥~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥)[log 𝐷𝐷(𝑥𝑥)]  +  𝐸𝐸𝑧𝑧~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑧𝑧) [log (1 −  𝐷𝐷(𝐺𝐺(𝑧𝑧)))]

min
𝐺𝐺

max
𝐷𝐷

𝑉𝑉(𝐷𝐷, 𝐺𝐺)  =  𝐸𝐸𝑥𝑥~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥)[log 𝐷𝐷(𝑥𝑥|𝑦𝑦)]  +  𝐸𝐸𝑧𝑧~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑧𝑧) [log (1 −  𝐷𝐷(𝐺𝐺(𝑧𝑧|𝑦𝑦)))]

𝐿𝐿𝜇𝜇,𝜎𝜎2  =  1
2 (𝜇𝜇(𝑖𝑖)

2 +  𝜎𝜎(𝑖𝑖)
2  −  log 𝜎𝜎(𝑖𝑖)

2  − 1)

𝐿𝐿𝜇𝜇,𝜎𝜎2

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  𝐿𝐿𝜇𝜇,𝜎𝜎2 +  𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  𝐿𝐿𝜇𝜇,𝜎𝜎2 +  𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  √1
𝑁𝑁 ∑(𝑥̂𝑥𝑖𝑖 −  𝑥𝑥𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1

    (1)

   In equation (1), x is the original sample and z is the 
random noise input to the generator, then G(z) represents 
the generated sample.

For the basic GAN, only a random vector, such as 
Gaussian noise, can be input, but the generated samples 
cannot be controlled. It is expected that the GAN can 
guide the generation of samples to improve the problem 
of GAN being too free, which is conditional generation. 
The structure of Conditional Generative Adversarial 
Network (CGAN) is shown in Figure 1. Not only the 
conditional variable y is introduced in the generator, 
because it is obviously not enough for the discriminator 
to score the input samples based on whether they are true 
or not, this will cause the generator to gradually ignore the 
conditions during the learning process, so the conditional 
variable y is also introduced in the discriminator, and 
finally it uses “whether sample x is true” and “whether the 
conditional variable y and sample x match” as the score 
evaluation criteria. Then the objective function of CGAN 
optimization becomes:min

𝐺𝐺
max

𝐷𝐷
𝑉𝑉(𝐷𝐷, 𝐺𝐺)  =  𝐸𝐸𝑥𝑥~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥)[log 𝐷𝐷(𝑥𝑥)]  +  𝐸𝐸𝑧𝑧~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑧𝑧) [log (1 −  𝐷𝐷(𝐺𝐺(𝑧𝑧)))]

min
𝐺𝐺

max
𝐷𝐷

𝑉𝑉(𝐷𝐷, 𝐺𝐺)  =  𝐸𝐸𝑥𝑥~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥)[log 𝐷𝐷(𝑥𝑥|𝑦𝑦)]  +  𝐸𝐸𝑧𝑧~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑧𝑧) [log (1 −  𝐷𝐷(𝐺𝐺(𝑧𝑧|𝑦𝑦)))]

𝐿𝐿𝜇𝜇,𝜎𝜎2  =  1
2 (𝜇𝜇(𝑖𝑖)

2 +  𝜎𝜎(𝑖𝑖)
2  −  log 𝜎𝜎(𝑖𝑖)

2  − 1)

𝐿𝐿𝜇𝜇,𝜎𝜎2

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  𝐿𝐿𝜇𝜇,𝜎𝜎2 +  𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  𝐿𝐿𝜇𝜇,𝜎𝜎2 +  𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  √1
𝑁𝑁 ∑(𝑥̂𝑥𝑖𝑖 −  𝑥𝑥𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1

  (2)

2.2. ProbSparse self-attention
Prediction of long sequences requires models with 
high predictive power, generally we think of using 
RNNs (Shipmon et al., 2017), most studies also choose 
LSTMs, GRUs or mix them with CNNs as the structure 
of generators and discriminators. Recent studies have 
shown that Transformer has the potential to improve 
predictive power, i.e. to efficiently capture the exact long-
range correlation coupling between output and input. 
Transformer, as a model based on the Encoder-Decoder 
framework, is similar to VAE. However, Transformer has 
some serious problems: higher quadratic time complexity 
as well as memory usage, and the quadratic computational 
complexity of the self-attention (SA) mechanism leads 
to a model with O(LQLK) time complexity. Therefore, in 
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this paper, ProbSparse Self-attention (PSA) is applied to 
VAE. PSA controls the computational complexity of SA 
from O(l2) to O(llogl) by sampling the difference between 
the mean distributions of the U = LKlnLQ dot product 
pair calculations, with l being the length of the processed 
time series, allowing it to accept longer inputs, and its 
computational complexity is greatly improved compared to 
traditional SA. In general, PSA improves the missing value 
interpolation by considering the global characteristics of 
missing temporal data while reducing the time complexity 
and computational storage.
2.3. Data preprocessing
The data also needs to be preprocessed before the 
experiments are formally conducted, with the raw flight 
data information exported from the ground station 
side. As time series data segments, data segments with 
equal time intervals need to be intercepted according to 
the characteristics of time-series data. Influenced by the 
limitation of UAV battery life, regional wind gusts, jujube 
garden aerial survey tasks and safe return, the statistics of 
flight data found that 100% of jujube garden aerial survey 
tasks were less than 25 min long, and 91% of the tasks were 
concentrated in 15 to 25 min; setting the 95% quantile as 
the maximum length, the value was calculated to be 19 
min, which was selected as the length of the time series 

data segment and carried out data preprocessing.
The specific operation steps are: firstly, judge the length 

of all data segments, and do the deletion process for the 
voyage whose duration exceeds 19 min, i.e. delete the data 
after the moment of more than 19 min; do the padding 
process for the sample of voyage whose duration is less 
than 19 min, i.e. perform the 0-filling operation for the 
empty segments of data whose duration is less than 19 
min, so that their duration reaches 19 min.

The purpose of the above data preprocessing practice is 
that when selecting the sample length as the interception 
criterion, the effect of model training needs to be taken 
into account while ensuring the integrity of the sample. If 
the selected criterion length is too long, too many zeros will 
be added when padding the shorter samples, which may 
lead to the model not being trained correctly or overfitting 
phenomenon, affecting the generalization ability of the 
model. On the contrary, if the selected standard length 
is too short, it will lead to a serious lack of sample 
information, which will also have a negative impact on 
the performance of the model (Li et al., 2022). Therefore, 
when selecting the criterion length, this paper takes into 
account the data distribution, model architecture and task 
requirements to determine the most appropriate sample 
length to fully utilize the data information to verify the 
model performance.

Figure 1. CGAN structure principle.
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3. Models architecture and methodology
3.1. Variational autoencoder and generator
The rationale for VAE’s ability to generate data similar to 
the original dataset lies in its desire to train a model x = 
G(z) that maps the original probability distribution to the 
probability distribution of the training set, i.e. it aims to 
perform a transformation between distributions so that it 
learns the probability distribution of the original dataset 
well. So VAE introduces the hidden variable z and assumes 
that P(z|x) is normally distributed. The resampling method 
was applied in the process of sampling, and the mean value 
calculation was done on the basis of the hidden variable z, 
while the variance calculation was done by sampling from 
the standard normal distribution, which was recovered 
to the original distribution by the mean and variance. 
Although the noise (i.e. variance) in the output through 
the neural network makes reconstruction more difficult, 
eventually the model is reconstructed as well as possible 
so that the variance is 0. The randomness of the model is 
thus gradually reduced, and the encoder degenerates so 
that only the mean value is obtained after sampling, and 
the noise loses its effect. So to prevent the noise from being 
zero and to ensure the generative power of the model, VAE 
makes P(z|x) align to the standard normal distribution and 
measures the KL dispersion between the specific normal 
distribution and the standard normal distribution as an 
additional loss, which consists of both mean calculation 
and variance calculation, expressed as Equation (3):

min
𝐺𝐺

max
𝐷𝐷

𝑉𝑉(𝐷𝐷, 𝐺𝐺)  =  𝐸𝐸𝑥𝑥~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥)[log 𝐷𝐷(𝑥𝑥)]  +  𝐸𝐸𝑧𝑧~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑧𝑧) [log (1 −  𝐷𝐷(𝐺𝐺(𝑧𝑧)))]

min
𝐺𝐺

max
𝐷𝐷

𝑉𝑉(𝐷𝐷, 𝐺𝐺)  =  𝐸𝐸𝑥𝑥~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥)[log 𝐷𝐷(𝑥𝑥|𝑦𝑦)]  +  𝐸𝐸𝑧𝑧~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑧𝑧) [log (1 −  𝐷𝐷(𝐺𝐺(𝑧𝑧|𝑦𝑦)))]

𝐿𝐿𝜇𝜇,𝜎𝜎2  =  1
2 (𝜇𝜇(𝑖𝑖)

2 +  𝜎𝜎(𝑖𝑖)
2  −  log 𝜎𝜎(𝑖𝑖)

2  − 1)

𝐿𝐿𝜇𝜇,𝜎𝜎2

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  𝐿𝐿𝜇𝜇,𝜎𝜎2 +  𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  𝐿𝐿𝜇𝜇,𝜎𝜎2 +  𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  √1
𝑁𝑁 ∑(𝑥̂𝑥𝑖𝑖 −  𝑥𝑥𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1

                (3)

Based on this model architecture, adding PSA to the 
encoder and decoder can capture the features in the timing 
data, and by training this model, the final generated timing 
data matrix can effectively solve the missing in the original 
data, and the internal structure of VAE is shown in Figure 2.
3.1.1. Encoder
The encoder in VAE compresses the original input 
temporal data matrix into a low-dimensional vector, and 
it obtains the hidden variable z as follows:

a. Set Batch_Size = m, randomly draw m samples 
{x1,...,xm} from the original sample set as the temporal data 
matrix, and select its corresponding mask matrix as {M1,... 
,Mm};

b. Input {x1,...,xm} into the encoder unit of the VAE and 
into the PSA layer to obtain

 the context vector as the representation;
c. The output of the previous step into the global 

average pooling layer can be directly implemented to 
reduce the dimensionality and obtain a vector;

d. The output of the previous step enters into two 
fully connected layers to obtain the mean and variance 

vectors respectively, and the specific normal distribution is 
determined by the mean and variance vectors;

e. After specifying the parameters of the normal 
distribution, the hidden variable z is obtained by sampling 
from that normal distribution.
3.1.2. Decoder
The decoder in VAE maps the low-dimensional vector z 
output from the encoder to the high-dimensional samples, 
and it obtains the complete temporal data as follows:

a. The hidden variable z obtained from the encoder is 
input to the decoder unit of VAE and the KL dispersion 
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 between the current specific normal distribution 
and the standard normal distribution is calculated;

b. The hidden variable z is guided by the data period 
information y. A reshape operation is performed to 
reconstruct the array structure to prevent data distortion 
and transform the multidimensional array form of the 
tensor into the form of a parametric shape;

c. The output of the previous step goes to the PSA layer 
to obtain the context vector as a representation;

d. The output of the previous step goes to the fully 
connected layer to obtain the complete time-series data 
matrix;

e. With the generated time series data, the mean square 
error loss LMSE between it and the input original series 
data is calculated; the total loss 
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, 
and the parameters of VAE are updated according to the 
loss function back propagation.
3.2. Discriminator structures
RNN is often used in processing time series data, and LSTM 
(Hochreiter and Schmidhuber, 1997) and GRU are used as 
its variants to solve its gradient vanishing problem to some 
extent (Wang et al., 2022). In this paper, LSTM is chosen in 
the structure of the discriminator because it is theoretically 
superior to GRU, although the network structure of GRU 
is simpler than it, but in fact the framework structure of 
the discriminator is not complicated and the simplification 
degree of part of the network structure is not required. 
While considering the data for time period dependence, 
the long-term nonlinear correlation cannot be ignored, so 
CNN is added to the structure of the discriminator, and 
the combined model based on CNN-LSTM enhances the 
discriminative ability of the discriminator.

In the following two discriminator structures, a single-
layer one-dimensional CNN with 3 × 3 convolutional 
kernel size and 64 convolutional kernels is chosen, and the 
number of neurons in the single-layer LSTM is 128 and 
256, respectively. The activation function is LeakyReLU, 
and the negative gradient parameter α is taken as 0.05. 
This setting can avoid the problem that the input is less 
than zero and thus the gradient is zero, which eventually 
leads to its weights not getting updated (i.e. dead neurons). 
The input real sample x and the generated sample 
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𝑥̂𝑥  are 
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processed through the previous network layers, and finally 
enter a fully connected layer containing only 1 neuron, 
where the input vector is subjected to a dimensionality 
reduction operation and the output dimension is set to 
1. A Sigmoid activation function is required to restrict 
the final output to a value between 0 and 1. The hidden 
state of the time series data is then compressed into a one-
dimensional value by a fully connected layer and mapped 
to the (0,1) interval by a Sigmoid activation function, 
which represents the discriminator’s “score” for its input 
samples.
3.2.1. Normal structure
The structure of the discriminator, which is generally more 
common in CGAN, is shown in Figure 3. The true sample 
x, the generated sample 
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𝑥̂𝑥 , and the data cycle information 

y pass through their respective networks, with the true 
sample x and the generated sample  
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𝑥̂𝑥  passing through a 
two-layer CNN-LSTM neural network, and the data cycle 
information y, which is only temporally relevant, passing 
through an LSTM neural network, and these two networks 
process the features through their respective embedding 
layers, and then the intrinsic properties of the features 
captured by these two embedding layers are all input to 
another LSTM neural network to obtain a score to measure 
“whether sample x is true”. The intrinsic properties of the 
features captured by both embedding layers are then fed 
into the other LSTM neural network to obtain a score 
to measure “whether sample x is true” and “whether the 
conditional variables y and sample x match”.

Figure 2. VAE internal structure.
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3.2.2. Proposed structure
In this paper, we propose to use a less common structure 
of CGAN, as shown in Figure 4. The true sample x, the 
generated sample 
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𝑥̂𝑥 are first passed through a CNN-LSTM 
neural network, which outputs two separate pieces of 
information, one for measuring “whether sample x is true” 
and the other for the features obtained from these samples 
through the embedding layer, and then these features and 
the data cycle information y are are then fed into the LSTM 
neural network and a score is output to measure “whether 
the condition variable y matches the sample x”.

This structure is theoretically more reasonable than 
the common structure because it can clearly know the 
distribution of the two measures “whether sample x is true” 
and “whether the condition variable y matches sample x” in 
the score, whereas the common structure does not clearly 
give the reason for the score by the final. For example, if 
the discriminator scores low, it does not know whether the 
sample is not true enough or the condition variable does 
not match enough.

In general, the advantage of this CGAN discriminator 
structure is that it can consider both the authenticity of 
the generated samples and the degree of matching with 
the condition variables, rather than just judging the 
authenticity of the samples. This structure of CNN-LSTM 
neural network can extract the features of the samples 
and transform these features into a more semantically 
informative representation through the embedding layer. 
This allows the discriminator to have a stronger semantic 
understanding, thus improving the match between 
the generated samples and the condition variables. In 
addition, this structure can also take into account the 
time-period information in the data and better reflect the 
characteristics of time-series data. Therefore, compared 
with the conventional CGAN discriminator structure, this 
structure can better match the condition variables while 
ensuring the authenticity of the generated samples, thus 
improving the performance of the generated model.
3.3. Overall model architecture
The essential difference between VAE and CGAN 
determines the different roles they assume in the overall 
model, and the difference lies in the loss function. VAE 
applies the pointwise loss function, which does not consider 
the correlation between samples, so a typical feature of 
VAE is that the pointwise loss function is often detached 

from the data stream shape surface, and the lack of global 
similarity causes the generated samples “fuzzy”. While 
CGAN is the distribution matching loss, it discriminator 
of the reconstruction loss calculates the distance between 
the probability stream shape between the generated samples 
and the original samples, which is closer to the popular 
surface, and the generated samples will be clearer, even 
with additional conditions, the distribution matching still 
has some difficulties, such as the generation of pattern 
collapse. Pointwise loss function of VAE can compensate 
this problem, and its encoder is used to do initialization 
or to do correction, while its decoder is to reduce the 
spatial distribution of the low-dimensional manifold to the 
original data, which functions similarly to the generator 
of CGAN. From this perspective, it seems that the input 
of the generator (i.e. decoder) is no longer random noise. 
Therefore, a reasonable combination of VAE and CGAN 
makes the model accurate and efficient.

Although we hope that the decoder output 
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𝑥̂𝑥  of VAE 
should be as close as possible to the original x, i.e. the 
smaller the loss, the better, the decoded samples are often 
difficult to reach zero loss, and the smaller the loss does not 
mean that the samples are more realistic, so a discriminator 
with “conditions” is needed to discriminate the real degree 
of the samples. For the prediction of time series data, the 
time continuity is often defaulted, however, in unsupervised 
learning, if the time dependence of the sample is ignored, it 
is easy to make a judgment error. For example, the presence 
of large angle maneuvers in a flight mission leads to abrupt 
changes in parameters, and if only the temporal continuity of 
the data is learned, it is likely that the originally correct data 
will be misjudged as incorrect data. Using the data period 
information as the condition information of CGAN, in a 
sense, transforms the unsupervised learning into supervised 
learning, which not only guides the decoder to establish 
the sample-time-dependent relationship when generating 
samples, and better learns the distribution of physical and 
chemical property parameters in the time interval where 
it is located, but also reduces the misjudgment rate of the 
discriminator. This is because the discriminator not only has 
to discriminate the authenticity of the generated samples 
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𝑥̂𝑥
, but also has to check whether the time series data match 
the data period information y, effectively avoiding the 
occurrence of misclassification.

Figure 3. Normal structure.
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By combining CGAN and VAE, this paper embeds a 
regressor in the overall framework so that the model has 
the ability to handle regression problems and accomplish 
the task of completing missing data for the flight task, while 
being able to guarantee the quality of the generated samples 
and reduce the burden for the training of discriminators 
and generators. The regressor uses a quantile regression 
neural network (QRNN) with three fully-connected 
layers, which has three major advantages, firstly, in terms 
of training speed, as QRNN uses convolutional operations 
and gating structure to reduce the number of repetitive 
computations and time, so it can be faster and more stable 
than traditional recurrent neural networks (RNN) or 
LSTM (Nie et al., 2021). Secondly, the gating structure in 
QRNN can ignore useless information and select useful 
information for updating the state vector; finally, in terms 
of generalization ability, QRNN can learn the intrinsic 
characteristics of data by using fully connected layers, 
which can better adapt to different types and sizes of data 
sets.

Thus, the role of this regressor in the model is to 
correspond the generated samples 
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𝑥̂𝑥  to the conditional 
variables y with a certain confidence level, to drive the 
generated samples to fall within a certain confidence 
interval, to relax the requirements of the discriminator 
and the generator, and to establish a mapping relationship 
that can be further updated by iteratively updating the 
conditional variables y and adjusting the confidence 
interval to improve the quality of the generated samples 
and the discriminator’s ability to discriminate samples. The 
mapping relationship established can be further updated 
by iteratively updating the condition variable y and 
adjusting the confidence interval to improve the quality of 
samples generated by the generator and the ability of the 
discriminator to discriminate samples. Finally, the overall 
model architecture is shown in Figure 5.

4. Experimental methods and results
4.1. Dataset
In order to evaluate the trend prediction performance of 
the algorithm proposed in this paper, the Mavic3 UAV 
from DJI was selected as the platform for mounting 
the panoramic camera, and its vertical and horizontal 
accuracy was ±0.5 m when the satellite positioning was 
working normally; the ONE X2 panoramic camera from 

Insta was mounted under the platform as the jujube tree 
image acquisition equipment, and its weight was 149 g, as 
shown in Figure 6. The area of this aerial survey mission 
was selected from the standardized jujube palm orchards 
under the jurisdiction and part of the 224th Regiment of 
the Production and Construction Corps, 14th Division, 
Kunyu City, Xinjiang Uygur Autonomous Region, China 
(37⁰2’~37⁰21’N, 79⁰15’~79⁰20’E), as shown in Figure 7. It 
is located at the northern foothills of Kunlun Mountains, 
in the southwest of Tarim Basin in Hotan Region, and 
belongs to the Taklamakan Desert hinterland, where the 
topography and landscape are dominated by sand dunes 
are dominant, and the gusts are strong.

In the aerial survey mission of jujube tree image 
acquisition, there are mission preparation phase, flight 
mission phase and data postprocessing phase. In the 
preparation phase, the flight route is designed according 
to the task area of the jujube garden and the camera 
parameters are set according to the environment; in the 
flight mission phase, it includes carrying the UAV device 
and taking off, flying according to the route that meets the 
actual sampling requirements, and returning with a safe 
descent route; in the postprocessing phase, the panoramic 
images with time-series information collected by the 
panoramic camera are downloaded, and the data from this 
flight log in the UAV sensor are downloaded. The two data 
are used for follow-up work.

In the flight mission phase, to realize the image 
acquisition of jujube trees, the UAV needs to climb to the 
center of the jujube tree canopy height to keep hovering, 
and fix the height for traverse and yaw adjustment to the 
middle of the jujube tree row, then fly along the jujube 
tree row in a straight line to the end and traverse to the 
adjacent jujube tree row, repeat the above actions until the 
aerial survey mission is completed or the power is low, and 
finally return safely around the surrounding obstacles. The 
mission is representative, and the flight route is shown in 
Figure 8.

The flight data comes from GPS, inertial measurement 
unit (IMU) and barometer sensor, and the sensor data 
mainly contains longitude, latitude, altitude, yaw angle, 
pitch angle, acceleration and other information. In this 
paper, we mainly choose the position information with the 
characteristics of time-series trend change as the research 
object, so we extract four parameters of longitude, 

Figure 4. Proposed structure.
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Figure 5. Overall model architecture.

Figure 6. Aerial survey operation drone physical picture.
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latitude, altitude information and heading angle as the 
characteristic data, among which longitude is converted 
into the east-west deviation from the takeoff point and 
latitude is converted into the north-south deviation from 
the takeoff point to reflect the flight trajectory intuitively.

The characteristics of different parameter data sets 
are influenced by the aerial survey task, the UAV has low 
acceleration and large distance span in the horizontal 
direction, so the latitude and longitude data show gentle 

changes with large amplitude; the UAV keeps orientation 
between jujube tree rows but needs to turn drastically to 
change rows at the end, so the heading angle data show 
intermittent and large sudden changes; because the jujube 
trees are low in height and the surrounding terrain is flat, 
the height data show irregular and small changes.

In the experiment, 2400 data segments were selected 
for testing in this paper, with 600 data segments for 
each parameter. Before conducting the experiment, we 

Figure 7. Standardized orchards in southern Xinjiang.

Figure 8. UAV mission route map.
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preprocessed them. Then, the first 450 data segments for 
each parameter were selected as training samples, the last 
50 were selected as validation set, and the last 100 were 
selected as test set. The total duration of each data segment 
was preprocessed to a uniform 19 min and made to sample 
the sensor every 10 s, so that the length of each data 
segment was 114 points. In this way, we can obtain a large 
amount of data to analyze and study our experiments.
4.2. Methods
The experimental hardware is an NVIDIA GeForce 
RTX 2080 with 32 GB of RAM, the software system 
environment is Windows 10, and the software languages 
and deep learning frameworks are Python (version 3.7.11) 
and Pytorch (version 1.9.0).

In this paper, an optimization model with VAE-CGAN 
as the basic structure is built to address the problem of 
missing UAV flight data complement, and the model has 
the following special features:
	 The model combines CGAN and VAE, focusing on the 

VAE decoder as a CGAN generator and combining it 
with the VAE encoder as a new generator, the main 
part of its training signal is provided by the VAE 
reconstruction error target, so its core is a measure 
of the similarity of the two probability distributions, 
compared to the original single CGAN generator with 
a random strategy.

	 Model joint training of VAE-CGAN with element-
based reconstruction metrics replaced by feature-
based discriminators, since sample similarity can be 
measured by discriminators of CGAN, this paper 
proposes the use of a new structure of discriminators, 
which is more theoretically sound.

	 The model embeds a regressor in addition to VAE-
CGAN as a further optimization, which not only 
dominates the implementation of the regression 
prediction task, but also alleviates the training 
difficulty of VAE-CGAN with its assistance. In 
addition, the computational complexity is reduced 
by using ProbSparse Self-attention in the model, and 
these factors can theoretically improve the accuracy of 
prediction results as well as the speed of training.

To this end, this paper hopes to explore these 
characteristics separately through whole experiments on 
different attribute datasets, and to discuss and analyze the 
following specific experiments were designed:
	 The widely used complementation models are 

selected for performance comparison with the model 
designed in this paper, including K-NearestNeighbor 
(KNN) (Fu et al., 2019; Li and Ercisli, 2023), generic 
adversarial imputation nets (GAIN), and multiple 
Imputation using Chained Equations (MICE) (Hayati 
Rezvan et al., 2015).

	 Verify the gap between the generated data and the 
real value, design suitable performance evaluation 

indexes, evaluate the prediction results of each model, 
and analyze the prediction results.

4.3. Generated samples quality
Generally, in order to verify the merits of the generated 
results, the commonly used performance evaluation 
metrics are MAE, MAPE, MSE, and RMSE. Due to the 
existence of the actual value of zero in the dataset, this will 
lead to the inability to calculate MAPE, and also due to the 
low sensitivity of MAE to outliers, only the absolute value of 
the error is considered, and the magnitude of the change of 
the error is not considered. Therefore, in this paper, Mean 
Square Error (MSE) and Root Mean Square Error (RMSE) 
are chosen as the evaluation indicators. MSE is the squared 
difference between the predicted and true values of the 
model and calculates their average value, which is more 
sensitive to large errors, which means that MSE is more 
sensitive to data with outliers, and it considers ‘the smaller 
the MSE, the higher the accuracy of the model prediction’. 
The MSE is calculated as shown in Equation (4).
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RMSE is the open square of the mean of the square of 
the average difference between the predicted and true 
values of the model. The calculation process is similar to 
MSE, but uses the square root approach to eliminate the 
magnitude problem. Replacing the units of MSE with the 
same units as the original target variable makes the error 
quantification more intuitive and meaningful, and easier 
to interpret in actual numerical comparisons. The smaller 
the value of RMSE, the closer the prediction result. The 
smaller the value of RMSE, the closer the average distance 
between the prediction result and the true value, and the 
higher the prediction accuracy of the model. The RMSE 
is calculated as shown in Equation (5).
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𝑥̂𝑥  represent the original and predicted 
generated values, respectively, and n is the number of 
samples.
4.4. Prediction results
In this paper, we compare the generated results of five 
models, KNN (Chao and Li, 2022), GAIN, MICE, VAE-
CGAN, and VAE-CGAN optimization model. Select 
complete sequence data from the self-constructed dataset 
and perform complete random deletion processing 
according to varying degrees of sample missing rates. The 
reason for this processing is that the type of data missing 
in the real environment is Missing Completely At Random 
(MCAR), which means that data missing in the dataset 
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is completely random and independent of the missing 
variable itself and other variables. Since the actual self-
constructed datasets have a minimum missing rate of 5% 
and a maximum of 30% of values, where more than 85% of 
the sample data are missing at less than 20%, the missing 
rates are set to 5%, 10%, 15%, 20%, and 30%. Data sets 
for each parameter with different missing rates were data 
generated by the five models mentioned above, and MAE 
and RMSE were calculated between them and the original 
data set, and the final experimental results are shown in 
Tables 1-4.

The following conclusions can be obtained by analyzing 
the experimental results:
	 The accuracy of each complementation model shows 

an overall increasing trend with the increase of the 
missing proportion, which indicates that the missing 
proportion of data is one of the important factors 
affecting the accuracy of the complementation, among 
which the MICE model has a lower accuracy under a 
large missing rate.

	 The performance of the same method varies among 
data sets with different characteristics, which indicates 
that there is a relationship between the performance 
of the model and the changing characteristics of the 
data set.

	 For the problem of missing flight data completion 

in aerial survey tasks, the VAE-CGAN-based model 
proposed in this paper outperforms other models in 
terms of accuracy, generalization and robustness for 
different types of data sets and missing rates.

5. Conclusion and future work
This paper explores a method that can use incomplete 
samples for trend prediction based on the generative 
model of VAE-CGAN. When machine learning is applied 
to agriculture, the first problem that needs attention is the 
difficulty of collecting samples, which are affected by the 
complex environment, whether they are collected as text 
samples or image samples, there are missing sample data 
and a small number of complete samples. The method 
proposed in this paper is studied for jujube garden UAV 
aerial survey flight data, and the missing temporal data 
samples are complemented to obtain high quality complete 
samples, and the regression task of trend prediction is 
further completed as the optimization link of missing 
value complementation. The proposed complementation 
model in this paper provides a reliable solution to the 
problem of missing UAV flight data, which is important 
to effectively guarantee the successful completion of UAV 
aerial survey tasks.

In the application scenario of missing UAV flight data 
completion, due to the huge flight data and high time 

Table 1. MSE, RMSE between longitude generated data and original data.

Miss-ing 
rate

KNN GAIN MICE VAE-CGAN VAE-CGAN-
QRNN

MSE RMSE MSE RMSE MSE RMSE MSE RMSE MSE RMSE
5% 0.512 0.716 0.424 0.651 0.432 0.657 0.412 0.642 0.408 0.639
10% 0.551 0.742 0.451 0.672 0.462 0.680 0.433 0.658 0.43 0.656
15% 0.593 0.770 0.526 0.725 0.528 0.727 0.491 0.701 0.487 0.698
20% 0.631 0.794 0.591 0.769 0.602 0.776 0.557 0.746 0.552 0.743
30% 0.671 0.819 0.628 0.792 0.662 0.814 0.598 0.773 0.594 0.771

Table 2. MSE, RMSE between latitude generated data and original data.

Miss-
ing rate

KNN GAIN MICE VAE-CGAN VAE-CGAN-
QRNN

MSE RMSE MSE RMSE MSE RMSE MSE RMSE MSE RMSE
5% 0.517 0.719 0.427 0.653 0.435 0.660 0.417 0.646 0.413 0.643
10% 0.556 0.746 0.458 0.677 0.467 0.683 0.438 0.662 0.435 0.660
15% 0.599 0.774 0.529 0.727 0.535 0.731 0.497 0.705 0.494 0.703
20% 0.638 0.799 0.596 0.772 0.607 0.779 0.563 0.750 0.558 0.747
30% 0.679 0.824 0.632 0.795 0.668 0.817 0.61 0.781 0.604 0.777



LING et al. / Turk J Agric For

758

complexity, the model cannot well meet the real-time 
requirements with limited computational performance, 
so the design of computationally lightweight missing data 
completion algorithms becomes one of the important 
research directions in the future. In addition, because 
the UAV as a whole, many parameters of flight data are 
correlated, and if the correlation between different types of 
data can be combined will lead to a greater improvement 
in prediction accuracy, however, the existing algorithms 
usually have problems such as dimensional disaster, 
excessive volume of algorithms and underfitting when 

dealing with spatio-temporal high-dimensional data with 
correlation, which will also become a key problem to be 
solved in future work.
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Table 3. MSE, RMSE between altitude generated data and original data.

Miss-
ing rate

KNN GAIN MICE VAE-CGAN VAE-CGAN-
QRNN

MSE RMSE MSE RMSE MSE RMSE MSE RMSE MSE RMSE
5% 0.393 0.627 0.398 0.631 0.41 0.640 0.334 0.578 0.332 0.576
10% 0.464 0.681 0.419 0.647 0.436 0.660 0.337 0.581 0.336 0.580
15% 0.532 0.729 0.501 0.708 0.506 0.711 0.471 0.686 0.468 0.684
20% 0.604 0.777 0.559 0.748 0.573 0.757 0.504 0.710 0.498 0.706
30% 0.641 0.801 0.637 0.798 0.649 0.806 0.602 0.776 0.598 0.773

Table 4. MSE, RMSE between heading angle generated data and original data.

Miss-
ing rate

KNN GAIN MICE VAE-CGAN VAE-CGAN-
QRNN

MSE RMSE MSE RMSE MSE RMSE MSE RMSE MSE RMSE
5% 0.562 0.750 0.443 0.666 0.463 0.680 0.431 0.657 0.429 0.655
10% 0.602 0.776 0.47 0.686 0.496 0.704 0.454 0.674 0.475 0.689
15% 0.645 0.803 0.546 0.739 0.538 0.733 0.513 0.716 0.502 0.709
20% 0.684 0.827 0.612 0.782 0.633 0.796 0.578 0.760 0.574 0.758
30% 0.711 0.843 0.648 0.805 0.699 0.836 0.619 0.787 0.616 0.785
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