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The minimal genus of an embedded surface of
non-negative square in a rational surface

Daniel Ruberman

1. Introduction

The long—standlng conjecture of Thom on the minimal genus of an embedded surface
in CP? carrying a given homology class was resolved in the fall of 1994 by Kronheimer-
Mrowka [KM94] and Morgan—Szabo-Taubes (to appear). Upon hearing the argument
used in [KM94], I saw how to extend that proof to all rational surfaces, provided that the
self-intersection of the homology class in question is non-negative. This note contains that
extension. I subsequently learned that the paper of Morgan-Szabo-Taubes will include
a more general result applying to any Kahler surface with b?,_ = 1. Their method is less
computational than that presented here.

For the purposes of the paper a rational surface will be a 4-manifold diffeomorphic

to 5% x 52 or to CPz#nCP and will be denoted by X. We will make no notational
distinction between an embedded surface in X and the homology class which it carries.
Choose a basis {So, S1,...,S,} for the homology of X,. Here Sy is the complex line
(w1th its usual orlentatlon) in CP? and the other S; are the exceptional curves in the

CP’ ’s, oriented so that —S; is a complex curve. Denote by H the Poincaré dual of S0,
and by E; the Poincaré dual of —S;, so that E; - S; = 1. These classes form a basis of
H3(X), so we may write (in homology) & = ¥ a;S;, and will denote by |S| the class

2 lailSi.

Theorem 1.1. Let X be a rational surface with canonical class K x, and let 3 be an
embedded surface with self-intersection £ - > 0. Then the genus 9(X) satisfies

29-2>Kx-|[Z|+%-% 1)
If ¥ - =0, then inequality (1) holds if, in addition Kx - |X| > 0.

Corollary 1.2. A complex curve in X minimizes the genus in its homology class.

This work was done during a visit to the Mathematical Institute in Oxford, which was supported by
grant #24833 from the EPSRC. I would like to thank Peter Kronheimer for explaining the Seiberg-Witten
invariants to me and for keeping me informed about his work, and Benoit Gérard for a careful reading of
this paper.
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Proof of Corollary: A complex curve in X,,, other than one of the exceptional curves
—8;, must have positive intersection with Sy and all of the —S;. So the coefficients all
are non-negative, and |X| = X. For classes of positive square, the corollary thus follows
directly from the adjunction formula, which states that equality holds in (1) for ¥ a
complex curve. For ¥ of square 0, the adjunction formula again implies that (apart from
a few cases where ¥ is a rational curve), the inequality Kx - |£| > 0 holds, so that again
Y is genus-minimizing,. O

Because the manifolds S? x S? or CPz#@2 admit orientation reversing diffeomor-
phisms, the theorem applies as well to classes of negative self intersection. As a corollary,
we thus get the minimal genus for any homology class in those manifolds:

Corollary 1.3. The minimal genus of a surface in S? x S? carrying the homology class
(a,b) in the obvious basis, with ab # 0, is (la| — 1)(|b| — 1). The minimal genus of a
surface in CPz#@2 homologous to agSo + @151, assuming |ag| > |a1|, is given by
(laol = 1)(laol =2) _ las|(las} +1)
2 2
If lag| < |ai|, then the genus is given by the same formula with the roles of the a; reversed.

The statements about S2 x S? are proved via the diffeomorphism of $2 x Sz#ﬁ2
with CP2#2@2. In S? x 52, the classes (a,0) and (0,b) are represented by embedded
spheres, so the corollary determines the minimal genus in any homology class. A similar
remark applies to the missing case in the corollary, i.e. the classes n(Sy + S;) are all
represented by embedded spheres. We do not know in general what the minimal genus is
for classes of square 0 in X,,.

2. Basic results

Our proof is a straightforward extension of the method of Kronheimer-Mrowka, which
is in turn based on the new 4-manifold invariants derived from the Seiberg-Witten equa-
tion [Wit94]. We extract the basics of those invariants from the paper [KM94], to which
we refer the reader for additional details.

Suppose now that X is a 4-manifold diffeomorphic to CPz#n@2, and that X has
been equipped with a Riemannian metric g. Let L be a complex line bundle on X which
is the dual of Kx, so that ¢c;(L) = 3H — E = 3H —}_ E; in the notation above. Let wgy be
a self-dual harmonic 2-form, normalized so that the cohomology class [w,] which it carries
lies in the same component of the positive cone in H2(X,R) as the hyperplane class H.
Let W C H?(X) be the ‘wall’ defined by the condition = U ¢;(L) = 0. If the metric g
satisfies the genericity condition that [wy] ¢ W, then Kronheimer-Mrowka define n(g)
as the number of points (counted modulo 2) in the 0-dimensional solution space to the
perturbed Seiberg-Witten equations. If g, is a path of metrics with gg, g1 generic, so that
the corresponding path [wg,] is transverse to W, then n(g) changes by the intersection
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number of W and [wg,]. Finally, for X a rational surface, they calculate that n(g) = 1
when ¢;(L) U [wg] is negative.

3. Proof of the theorem

Suppose first that ¥ is a surface in X,, with ¥ -3 > 0, for which the inequality 1
fails to hold. In brief, ¥ is a counterexample to theorem 1.1. Express [X] as ;- ; a:5;,
and notice that if any of the a; is negative, then there is another counterexample X’
with a; = —a;. For, there is an orientation preserving diffeomorphism ¢ : X — X with
©+(Si) = —85;, and . (S;) = S; for i # j. Let ¥’ = ¢(X); then it is readily seen to be a
counterexample as well. So we may as well assume that all the a; > 0. We also make the
remark, following [KM, Lemma 7.7] that if ¥ is a counterexample to theorem 1.1, then
the homology class r¥ (for any positive r) also contains a counterexample.

With these preliminary observations in hand, suppose that ¥ is a counterexample,

with 3 - X = m > 0, and form the class S=%+ Z?:,:il S; in X,,#mé?"’. Evidently
T has the same genus as ¥, and self-intersection 0. Choose a sequence of metrics gg
with increasingly long cylinders Y X [~R, R], where Y = S x ¥ is the boundary of the
tubular neighborhood of ¥. Normalize the corresponding harmonic forms wg so that the
[wR] UH =1.

Lemma 3.1. Suppose that ¥ -X > 0, or that ¥-X =0 and Kx -X > 0. If X is a
counterexample, then there is a counterezample ¥’ in the class r[X], (r > 1) so that
applying the above construction to X', then R sufficiently large implies that ¢1(L) U [wg]

is negative. (Here L= —K #m@z),

Proof. In homology, ¥ may be written as Y., a;S;; recall that we have assumed that
all the a; > 0. Because ¥ has non-negative square, we must have that ag > 1. Also,
[wr] = H + Y™ 2, E;, where the coefficient 1 of H is due to our normalization. Since
wgr Uwpg > 0, we must have that Em? < 1. Now

wrlUci(L) = [wgr] -E+[wr]UB-ao)H + [wr]U En:(ai - 1)E;

i=1

= [wrl-Z+(B-a0)— Y zifa;i—1)
=1

The argument in Lemma 10 of [KM94] shows that [wg) - £ — 0 as R — 0o. So it suffices
to show that the conditions a3 — Y"1 ;a2 >0 and 3, , z? < 1 imply that

=1

(3—a0) = > _=i(ai — 1)
i=1
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is negative. To approach this, maximize the above expression (as a function of z1,... ,z,)
with the constraint Y .., zZ = 1, in the hopes that it will be negative. The maximum
value is readily found to be

Assuming, as we may by taking a multiple of ¥, that ay > 3, this maximum is negative if

n n
(a0—3)2 >n+2a?—22ai

ie., if
n n
a3—2a3—600+22ai>"—9 (%)
i=1 i=1

Unfortunately it is not always true that (x) holds, even if ag is very large. (Take, for
example n = ag —1,a; = ag — 2, and the other a; = 2). However, if the a; are all replaced
by ra;, then the left-hand side of (*) becomes

n n

r?(ad — Z a?) +r(—6ag + 2 Zai)

i=1 i=1
So if either - X =aZ - Y " a2 >0,or E-E=0and Kx -X =-3ap+ Y ; ;a; >0,
then(x) will hold for some r > 1. So if ¥ were a counterexample with positive square, or
with 0 square and for which E?zl a; > 3ag, let ¥’ be a counterexample in the homology
class r[¥], where r is chosen so that

(3 —rag) + in(rai -1)<0
for all {z;} satisfying }_ 2 < 1. O

Proof of Theorem 1.1: Suppose that ¥ - X > 0, or that £ -3 =0 and Kx - [X| > 0.
Assume, perhaps replacing 3 by some large positive multiple, that ¥ is a counterexample
in the homology class agSo + Y a;S;, chosen so that all the a; > 0 and that lemma 3.1
applies to ¥. Starting from the fact that the invariant n(g) = 1 for any metric g such
that ¢1(L) U [wy] < 0, Kronheimer-Mrowka show that

ci(L) - > —(29—2)
But

n+m

a(l)- = al)S+al) > S
i=n+1
= -Kx-2-%.%
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So
20—2>Kx-X+X-%

This leaves only the possible exception that ¥ - ¥ = 0, and that Kx - £ = 0. In this
case, we must also suppose that X is non-trivial in homology. The content of inequality 1
in this instance is merely that ¥ is not represented by an embedded sphere. But if
it were, we proceed by doing surgery on X, resulting in a definite manifold X’. The
condition that Kx - ¥ = 0 means that ¥ is orthogonal to the characteristic class 3Sy +
> i>1Si. Thus Hy(X') has a characteristic element of square less (in absolute value) than

its rank, which readily implies that the intersection form is non-standard, contradicting
Donaldson’s theorem [Don87, DK90]. O

The condition that there exist a ‘short’ characteristic element, as in the last paragraph
of the proof, is precisely the ingredient necessary to use the monopole equations in a
simplified proof of Donaldson’s theorem.
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