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ON SOME BOUNDS FOR THE SOLUTIONS OF THE
SEMI-DISCRETIZED TIME-DEPENDENT
GINZBURG-LANDAU EQUATIONS

Erhan Coskun

Abstract

We study the two-dimensional system of Time-Dependent Ginzburg-Landau
Equations(TDGL) for modeling a thin film of superconductor subject to a uniform
magnetic field. We discretize the TDGL for the space variables using bond variables
and staggered grid partitioning technique. By investigating the temporal evolution
of semi-discrete Helmholtz enery functional and that of Semi-discretized TDGL,
we provide bounds for some observable physical quantities of interest such as su-
perelectron density, supercurrent density, charge density, electric field, and induced
magnetic field.

1. Introduction

Both steady and time-dependent Ginzburg-Landau equations are being extensively
studied for modeling superconductors of various characteristics as a result of the recent
discovery of High 7, superconductivity. The new era marked by the discovery of A. Bed-
norz and K. A. Muller in 1986 attracts more attention from various scientific communities
as the new compounds with higher transition temperatures are being reported.

Theoretical and numerical studies about superconductivity, in general, and Ginzburg-
Landau model, in particular, falls far behind the physical experimental studies. We refer
to [1],12],[3],[4],[6], and [7] for recent numerical and theoretical studies on steady and
time-dependent Ginzburg-Landau model. In what follows, we mention recent studies on
the mathematical aspect of the TDGL relevant to the subject of this paper.

Dul5] illustrated that the original TDGL with the prescribed boundary conditions
are not well-posed and identified possible choices of extra conditions one can impose,
better known as gauge fizing, to have a well-posed problem. In a so-called zero potential
gauge, he gave a proof of global existence and uniqueness of strong solutions in two and

AMS Subject Classification: 65F05, 65N22.
Key Words: Superconductivity, Ginzburg-Landau Model, Natural Boundary Conditions, Semi-
discrete Approximation.

25



COSKUN

three dimesional bounded domains and provided some bounds for order parameter, in-
duced magnetic field and charge density over a finite time interval. Kwong and Kaper [8§]
considered two dimensional steady GL and defined a new gauge in which the equations for
the two nonzero components of the vector potential are only weakly coupled through the
order parameter. Also, in[8] discrete GL equations with quasi-periodic boundary condi-
tions are derived using staggered grid discretization, a technique well known in numerical
fluid mechanics, and some properties of solutions of the steady GL are investigated.

In this paper, we consider the two dimensional TDGL for modelling a finite size
rectangular thin fitm superconductor subject to a uniform applied field normal to the
plane of the film. The problem then leads to the use of natural boundary conditions.
Among the gauge choices discussed in [5], the zero potential gauge (see Section 3.1} is
used. This choice of gauge eliminates the scalar electric potential from the system, thus
leads to a convenient form for the framework at which the TDGL is investigated in this
study. Another reason is that the TDGL can be viewed as a gradient flow with respect
to Helmholtz energy functional in this gauge, see Section 3.2.

We discretize the equations only for the space variables by using the nonstandard
discretization technique employed in [8] and use bond variables so that the Semi-Discrete
TDGL will also be gauge invariant. The bond variables don’t alter the boundary con-
ditions for the vector potential, but the conditions for the order parameter had to be
modified as discussed in Section 2.3. Throughout the paper, the resulting Semi-Discrete
TDGL will be referred to as SDTDGL.

We prove that the semi-discrete Helmholtz energy functional is a decreasing func-
tion with respect to the time variable ¢. To the best of the author’s knowledge, the analog
of this result did not appear in the literature for the continuous energy functional. We
extend the well known property of order parameter|8] for steady GL to SDTDGL. A sim-
ilar result is presented in [5] for TDGL where the bound holds almost everywhere(outside
of a set of measure zero). Furthermore, we use the boundedness of energy functional and
that of order parameter in connection with the natural boundary conditions to prove a
series of new bounds for some physical quantities of interest. The continuous analogs of
two of these bounds are presented in [5] over a finite time interval. We also provide a
bound in I3 norm for the derivative of order parameter with respect to time variable ¢.
As far as we know, this bound and those of supercurrent density and electric field have
no analogs for TDGL yet. Unlike the ones in [5], the bounds presented in this study hold
vt > 0.

The paper is organized as follows: In Section 2.1 we introduce bond variables
into the Helmholtz energy functional. In Section 2.2 we discretize the functional for the
space variables. In Section 3.1 we introduce the zero potential gauge, and formulate
SDTDGL in Section 3.2. Finally, in Section 3.3 we show that the semi-discrete Helmholtz
energy functional is a decreasing function of time and present some useful bounds for
various physical quantities of interest. The bounds depends only on initial data, physical
parameters, and size of the domain.
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2. Discrete Energy Functional

2.1. Energy Functional with Bonds Variables

For the purpose of this study, we only present the nondimensionalized form of
energy functional. The various scales used to non-dimensionalize the functional (or
TDGL) can be found in [2]. We note that to obtain the values of variables corresponding
to the physical domain, one has to scale back the variables. Helmholtz energy functional
(modulo constant) in nondimensionalized form can be given as [2]

6. A) = [ (<P gt 1 (5 -ia )l + 1V xA-HP) a1

where the order parameter ¥ is assumed to be complez scalar-valued function such that
|¥|? represents the local superelectron density, the vector potential A is a real three-
dimensional vector-valued function, H is the applied magnetic field, k is the Ginzburg-
Landau parameter, and €2 is the domain. For the problem considered in this study, the
vector potential has only two non-zero components, namely

A =(4,B,0)T

and
H=(0,0,H)"

where H > 0 is the strength of the applied magnetic field and 2 is taken to be a rectangle
of size L, x L, for any positive real numbers L, L, .

We are interested in solutions of TDGL, namely, minimizers of the functional (2.1),
with the following so-called natural boundary conditions,

(VxA)xn=Hxn (2.2)

and
<% — iA) U.n=0, (2.3)

on I') where I' denotes the boundary of 2 and n the unit outer normal vector to I'.
Here, the first equation expresses the continuity of the normal component of the magnetic
field, and the second expresses the fact that the normal component of the supercurrent
vanishes, that is, no current flows through the boundary of the material.

Next we introduce the bond variables into the functional (2.1). These are intro-
duced (see [8]) to preserve the gauge invariance property of the discrete form of both the
energy functional and that of the corresponding system.
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Let us rewrite (2.1) in a slightly different form
1
Q

+/ <|%(aw — kiA)U? + [%(ay — kiB)U|? + (8,B — 8,A - H)2> dady (2.4)
Q

The bond variables are (see, [8])
W(z,y) = e* ) ACHI gy ik [* B,
We note that
|8 (W* )| = |(0; — kiA)¥],
|0,(V*®)| = |(8, — kiB)¥|. (2.5)

Using (2.5), the functional (2.4) can be rewritten as
1
09, 4,8) = [ (=¥ + 5 10f*)dzdy
Q
1 1
+/ (Igam(w*\lf)ﬁ + [an(v*\lf)lz + (8:B — 8,A — H)2> dxdy. (2.6)
Q

The bond variables don’t alter the boundary conditions for A or B. However, the
boundary conditions for the order parameter ¥ change and become

(W*¥),, (V*¥),.n=0, (2.7)

2.2. Discrete Energy Functional

We use (N, +2) x (N, +2) grid points, where the points (0, ), (N, + 1,7), (4,0),
and (i,Ny +1), for i =1,...,N,, and j = 1,..., N, are used as fictitious boundary
points, half a mesh size off the domain Q. The mesh size ir the z- and y- directions
then becomes

where L, and L, are the dimensions of the corresponding physical domain in the z- and
y- directions, respectively.

We partition the computational domain in four different ways, giving rise to a
staggered grid in Q. This is a practice employed in [8]. The various evaluation points
are shown in Figure 1. As a result of this setup, the normal component of the induced

magnetic field, H, := B, — A, is evaluated at the center of {2 ..
ij
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Figure 1. (Left) Evaluation points for ¥(o), A(¢), B(e), Hn(®). (Right) The domains 2
(Solid Frame), 27,07, Q7" (Dashed Frames).

Approximating integrals in (2.6) by the value of the function at the center of the
cell times the area of the cell, and the first order partial derivatives by centered differences,
we obtain the following discrete form of the energy functional

1
gd(\IlvA’B) = Z(_|\I}‘2 + il‘m‘l)hlhy (2'8)
grid
v —wul|? |e—ve|]? |B--B Al-A 2
- —H| | hyh,.
o (S [ - y

The arrows are used to represent the neighboring points in the appropriate direction.
Here, we mention that (see [8]) the discrete functional (2.8) is a second-order
approximation to the continuous functional (2.1) because the derivatives are approximated
by the central differences and the integrals are approximated by the midpoint rule; both
of these approximations are of second order.
This functional is invariant under gauge transformation discussed in Section 3.1.

3. Formulation and Properties of SDTDGL
3.1. Zero Potential Gauge
TDGL, in its general form, is not well-posed since it lacks uniqueness. Various

valid gauge choices that can be used to have a well-posed problem is discussed in [5]. The
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original TDGL is a nonlinear system, G(¥, A, ®), for the complex-valued order parameter
v, vector-valued function A and scalar electric potential ®. An important property of
this system is that of gauge invariance. That is, given a function ¥,

G(V,A, D) =G(¥,A, ),

where 8
T = We'X, A=A+Vy and 5:4’—5%.
Given a solution (¥, A, ®), the zero potential gauge is defined as[5]
Ox
ot
and at ¢t = 0,Ax = —divA in Q with Vx.n = —A.n on I', boundary of Q. With this
choice of gauge, electric potential is eliminated from the system. In this gauge SDTDGL
can be viewed as a gradient flow with the energy functional.

=&

3.2. SDTDGL as a Gradient Flow

The time-dependent version of the GL in zero potential gauge are analogous to that
of a gradient flow in which the direction of steepest descent of a function at any point
is opposite to the direction of the gradient vector at that point. In our case, as the free
energy tends to a minimum, the variation of (¥, 4, B) with respect to t should be in the
opposite direction of the gradient of the energy functional. Writing the complex-valued
order parameter ¥ as ¥ = ¥, + (¥, and introducing a multiplicative factor 1 /2 for
convenience, the argument above in the zero potential gauge can be formulated as

ov 1 /090G, .0Gy 0G4

5 = 3 (8—\111 28—‘112> = T (3.1)
04 _ 106 o5 _ 106, )
ot 2 0A° ot 20B° ’

Computing the variation of the energy functional with respect to ¥*, A, B, we can rewrite
the above system explicitly as

oV hohy [ eiAkhs ‘\i QW 4 g—iAkh, ij N ¢iB'Ehy gl _ 9@ 4 o—iBkhy 1

ot k2 h2 h2

+ hyhy N(¥), (3.3)
dA B-~B+B'- B~ Al-24+4A'\ n,
— = —h, - — ~YN(A,¥), :
at h ( Rz hy p VAT (34)

B A-A+AT— AN B_2B+B\ &,
) _hy<,4 +A : +B>__N(B"I,), 55)

ot hy ha k
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where
N(¥) = (1-[T]*)g,

N(A,¥) = || sin(h kA — arg(¥*¥)),
N(B,¥) = [¥*¥'|sin(hykB — arg(¥*¥)).

—~~ o~
w e
~N

We assume that the material is initially in perfect superconducting state, with zero
external magnetic field. An external field is then suddenly turned on. This assumption
serves only for the purpose of providing specific bounds for the quantities of interest.
Certainly, the results hold for any type of initial conditions and the bounds depend only
on the initial conditions, some physical parameters, and the size of the domain. The
initial conditions then become

\Ill(xayaO) = 17
\1’2(1’,%0) = 07
A(z,y,0) = B(z,y,0) =0 Y(z,y) € Q. (3.9)

The solution corresponding to these initial conditions simulates how the magnetic field
penetrates the material.
3.3. Some Results about the Solution to SDTDGL

We first note that the discrete form of the natural boundary conditions (2.2),(2.7),
and (??) can be written in the following form.

, B-B
U= pletmB A=Al —(H- —)hy  (top), (3.10)
T
_ @l,—ikhyB ot _B—B
v=y'e , A=A"+(H Yhy  (bottom), (3.11)
T
U ="Ue *h=4 B=B_(H+ Al 'A)h (left) (3.12)
= ’ - h T ) :
Yy
_ S ikho A _5 AT - A :
U=ye , B=B+(H+ ; Yhe  (right). (3.13)
Y

We start with the following useful lemma.

Lemma 3.1 Let (U(t), A(t), B(t) ) be the solution of SDTDGL under a uniform magnetic
field, i.e, H =c¢ > 0 . Then the following identities hold:

J — eibheAg 5T T — ethh=A g o
> ( =>(

) (3.14)

h2 ot

grid grid
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Ul _ etkhy By 8\1,*T W eikhyqujl o+
> )—— =)

= , (3.15)
2 2

poer h2 ot “ h2 ot

A'—A B-B oA A— Al BN—Bl! 94
3 - ) => - Y=, (3.16)
grid hy hm ot grid hy hz ot

B-B A'— A 0B B—B AN— 4. 0B
> v TR e (3.17)
grid z v grid z y

Here we give only the proof of (3.14); the proofs of the remaining identities will
follow similarly.

Proof. Using the boundary conditions (3.12) and (3.13), we proceed as follows

\ff R L ‘17 _ etkha Ay 8‘17*
> 3«

- hZ ot _ h2 ot
grid 1<i<Ng
1<j<Ny
\I_}—eikh“‘A\I/ OT* \I—}—eikh’"A\I/ 3\1?*
= 2 nz ot 2 | 12 ot
i=0 1<i<Ng
1<j<N, 1<j<Ny

\I,_eikh,XE oU* T _ eikha A 5+
= > + D (

= h2 ot — h2 ot
1<j<N, 1<G<N,
B Z (\I,_eikthE o™
1<i<Ng hi ot
1K<,
B Z(\Ij _ eikho A ‘\Ij ou*
= o .
grid hm ot
O

Next, we present a result concerning the time evolution of the energy functional

Theorem 3.1 Let’s consider the energy functional Gq (2.8) of the solution of the time-
dependent GL equations, discretized with respect to the spatial variables. Then

1. if H 1is constant then Gg is decreasing as a function of t > 0 if and only if not all

the partial derivatives %, %‘%, and % are identically zero on the grid points of
the domain .
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2. If, in particular, the initial conditions (3.9) are used, we also have —%LzLy <
Ga(t) < (H* - Y)L,L, Vt > 0, where L, and L, are the dimensions of the
physical domain in the z- and y- directions, respectively.

Proof. 1. — Assume that not all the partial derivatives in the statement of the
theorem are identically zero. We now differentiate G; with respect to t. A lengthy
computation gives

1 094 _ gy OW*
= = —14 PP T ——
Shohy ot~ 2TLHITD)
grid
N -mi (\If _ e—ikhIA\I_;) N (‘I’ _ e—ikhyB\I,T o+
k2 h2 h2 ot
LR (@—eikhwf*\p)a\f* N Ul — ik By g+
k2 h2 ot h2 ot
DA
+ in(h kA — arg(¥*¥))=— 5t (3.18)
+ kh \IIT\I! |sin(hykB — arg(¥* \I/T))%I:

+i E—B_AT—A gé+_1_ AT—A_E—B 3B
hy \ hs hy at ' h, hy hy ot
L1 (A-4 B-B\oal 1 (B-B Al-4)0B
hy hy hy ot ' hy \ h, hy ot

We use the notation R(c) to denote the real part of a complex number c¢. Using (3.14) -
(3.17) in (3.18) we get

agd o+
= 2hzh .
v (14T o (3.19)
grid
1T a 2\p+e—ikh,A\Ij Ple—ikhyB _2\1,+eikhy31\1,1 U+
5 )+ ( w2 ) 5
LB B — B\+Bl AT—2A+A1)8A
hy hy ot
Lo s (hmkA—arg(\If*\f/))%
ot
+1(AT A— AN+ A B—2B+B)aB
h hy hy ot
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1 dB
— | OO si kB — o)) =—.

Finally, using (3.3), (3.4) and (3.5) in (3.19) we get
2 N 04 2 . 9B 2
ot ot
(«<=) : Trivial

2. This follows easily from the initial conditions

0G4 ov
T~ ahe 2 [ o

grid

< 0.

\Ill(xiayﬁo) = 17
‘1’2($i,yj,0) = A(xlvyjao) = B(quy],O) = Oa

fori=1,...,N;, j=1,...,N, and part 1 of this theorem. O

We now state our result for the order parameter ¥, as stated before square of
its magnitude, |¥|?, represents local superelectron density. This result is true for the
SDTDGL and holds for all £ x (0,00) unlike its analog presented for TDGL in [5] which
holds over 2 x (0,T)a.e. for a given T > 0.

Theorem 3.2 Let (V(t), A(t), B(t)) be the solution of the SDTDGL. Then |¥(t)| <

1 Vte RT. Here ¥(t) = ¥(z;,y;,t),1 <i< N, 1< j<N,.

Proof. Assume that the conclusion of the theorem is false. Let ¢, € RT be the first

point such that |¥(ty)| > 1, and let P be a grid point where ¥(¢y) reaches a maximum.
Since (¥(t), A(t)) and (¥(t)e'X, A(t) + Vx) determine the same electromagnetic

state of the material for any differentiable function x defined on €2, we can choose x that

will render ¥ real at all the grid points. More precisely, following [8], we define

Y= { —arg(¥(t)) if V(t)#0

0 otherwise.

Then
C(6) = W = [B(e)]ereralrO)eioral¥0) = |y (p)

at all the grid points. Using the assumption above and taking the real part of equation
(3.3) under this gauge transformation we get

o¢ 1 iAkh,y - —iAkhgy 7
< 2 _ z —_ z
05 G| = g (RO T aceme g
1 i —i
+ gy (RETIC =204 R C)
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(1= ¢

< (€ ¢+ 0
(= T_
+ (@ =0
(1=

< 0,

which leads to a contradiction.

Some bounds in I norm for the observable physical quantities: electric field,
supercurrent density and magnetic field are provided in Theorem 3.3. Also, a counterpart
of the bound for V x A is presented|5] for the corresponding TDGL, but again this bound
holds over a finite interval for the time variable. As far as we know, the other two bounds
given in the following theorem have no counterparts for TDGL.

First we note that in zero potential gauge, the electric field E, supercurrent density
J, and the induced magnetic field H are defined as

E:%‘%, J=Vx(VxA), H=VxA. (3.20)
For the problem considered in this study, we have
OA OB
E(t) = ( —,—,0 3.21
o = (5. 50). (3.21)
J(t) = (Ayy — Bay, Bzo — Ayz,0), (3.22)
H(t) = (0,0,B, — 4,). (3.23)

Also, charge density is given by V - E(t). First, we give the following lemma.

Lemma 3.2 Let A(t), and B(t) be the z-,and y- components of the vector potential A
in SDTDGL with constant H > 0 and natural boundary conditions. Then the following
identities hold:

- 2
B-B Al_-4A BNM—Bl  4- Al 2
z(hx_ h.ﬂ>_z< . _hy_@, (3.24)

Y

grid grid
= 2
B-B A'-4 B—B— AN - A- 2
Z( — = —H) :Z( — - —H> . (3.25)
grid z v grid z Y

Proof. We give only the proof of (3.24). The proof of (3.25) is similar. Note that in
the staggered grid setup, the boundary conditions for A and B in (3.12), (3.13) can be
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written as
B(i+1,Ny) = B(1,Ny)  A(i,Ny) — AG, Ny —1) _ H, (3.26)
hg hy
B(i+1,0)— B(:,0) A(i,1) — A(
(i+1,0) - B(:,0)  A(i,1) — AG,0) _ L i=1,....N,. (3.27)
hz hy
Then by (3.26) and (3.27), we have
. 2
5 B—B_AT—A_H>
grid hx hy
JCRn <B(i+ Lj) = BG,5) _Alhj+1) — AG,J) _ H>2
== ha hy
& (B(i +1,7-1)-B@j-1) A@,j) - AGi—1) H>2
i=1j=1 o hy
N (B (141, N - B(i,N,) A(i,Ny) — A(3,N, — 1) )2
N _ - H
=1
N, 1 3 2
(Bz~|—10 B(3, 0)_A(z,1)—A(2,0)_H>
i=1 hy
N _ Bl e 2
-y <B B A- - A H) _
grid v
O

Theorem 3.3 Let A(t) = (A(t), B(¢),0) be the vector potential satisfying SDTDGL with
the associated initial and the natural boundary conditions. Then there ezist non-negative

constants cy,cz and cs3, depending only on the initial conditions, the parameters k,H,
and the size of Q0 such that

@) IEQ@) l2< e,
(@) [ I@) ll2< e,

(121) || H(t) [2< ez VE>0.

Proof. (i) Note that as a result of both parts of Theorem 3.1., we have

Z| |2 < k*H?N,, , (3.28)
grid
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Zl |2 < K*H? Ny, (3.29)
grid

- 2

B-B AT-A )
> T R H) <H ny,w >0, (3.30)
grid z

where N, = N, x N,. Here we point out that the square root of the expressions on
the left hand side of (3.28) and (3.29) can be thought of as I, norms of the generalized
derivative of ¥ with respect to z- and y-, respectively. In this sense, these inequalities
by themselves are important. By using Lemma 3.2.,

= 2
B-B A -4 BN_ Bl A—_ Al 2
Z(hz—fw-ﬂ)—2< )

grid grid
B\ Bl A-Al ?
grid I v
Bl—B~ Al-4A 2
=2 < o w T H )
grid z Y
< H?>N,, Vt>0. (3.31)

Then adding up the first and the last summation in (3.31), we have

~ 2
B-B A'_A B—BN Al_4 2
- —H _ < 2H2N, .
S (B a) oy (B A n) soen, o

grid grid
¥t > 0. On the other hand, using the inequality
(a+b)?%<2(a®+b%) Va,beR (3.33)

we get

Z(1§—B+Bl—B\ AT — 24+ Al

2
- < 4H®N,, Vt>0. (3.34)
he hy,

grid

Similarly, using the identity (3.25) and following the same procedures as above, we get

Z(Z—A+AT—A\ B-2B+B

2
— < 4H*N,, Vt>O0. .35
hy hz ) — Y = (3 3 )

grid
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Now, we square both sides of (3.4) and (3.5) and add them up over the grid points. Using
the inequality (3.33) and Theorem 3.2., we have

> (%) <2y

grid grid

- 2
B-B+B'—B>~ Al —244 4!
hy hy,
h - o 7\ 2
+2(2) Y (|\1/*\1/| sin(hgkA — arg(\I/*lIf)))
grid
h2
< 2N, (4H?RhZ + k—g) =c;; VE>0.
In particular, if L, = Ly = L and N, = N, = N then c;; becomes
1
c11 = 2L (4H? + ﬁ)’ (3.36)

Likewise, the use of (3.35) together with a similar procedure yields

) (68_1:)2 < e, (3.37)

grid
where c12 is obtained by changing the role of h, and hy, in ¢;; . In the particular case
mentioned above, c;2 becomes equal to ¢;;. Finally, we have
1/2

0A 0B
LB = | 7+ (57| <e=(enew)” w20 (333)

grid

(ii) Combining (3.34) and (3.35), we have

RIGIHEDY

grid

[Z—A+AT—A\ B-2B+B
+ —
hy he

N 2
B—B+B'—BN AT -—24+ Al

ha hy

2

< 8H®N,,

= || J(t) |2< 2V2H(N,y) /2 = ¢, Vit > 0.
(iii) First we observe that Theorem 3.1. (ii) together with the Holder’s inequality imply

that
3 _ AT _
Z B-B 3 A g
ha hy

grid
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1/2

- 2
B-B A'-A
= Z - -H (Nzy)1/2
grid hw hy

< (HNiy)' 2 (Nay)'?

= Ny H
or,

N, Ny =
1 B-B A'-4A
— <2H Vt>0 .
Nsz( b )_ >0, 5.39

i.e, the average magnetic field is less than or equal to twice the strength of the applied
field at any given time. This, of course, is an expected result from the physical point of
view.

From Theorem (ii), we have

B-B Al-4 ?

grid Y

— 2 =

B-B Al-4 B-B Al-4 ,
_Z< T >—2HZ( T h )+ZH
grid grid grid
< H?Ngy.

This and (3.39) give

_ 2 -
B-B AT—-4A B-B AT-4A
- < 2H - < 4H?N,
Z( he hy ) - Z( hy hy )—- y

grid grid

— [ H() =) T x A(t) o< e = 2H /N

ey VE>0.

0

Next, we provide a bound for the charge density and show that V- J(t) =0 Vt >0 for
SDTDGL. The analog of the latter for the TDGL is obviously true.

Theorem 3.4 Under the same hypothesis as Theorem 3.3,
(i) V-J#)=0 Vt>0.

(ii) There exists a nonnegative constant ¢ such that |V -E(t)| <c Vt > 0.
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Proof. (i) We first note that the last two SDTDGL, (3.4) and (3.5), can be written as
follows:

1 0A hht—hh 1

—=———+—N(4,7 3.40
hohy Ot Ry R A, (3.40)
1 0B  hh—hh 1
— = —N(B, V¥ 41
hohy 90 - Ry R, N BT (341)
(3.42)
where,
B-B Al-A
hh = - . 3.43
W h (3.43)
Then
hh' — hh hh— hh
J(t) = (Jl,Jz,O) = 5 ,0 (344)
hy hy
Thus, approximating the spatial derivatives by backward differences we have
Ji—Jy - J}
VIt =2 42222 g ve>o. (3.45)

he hy

(ii) We differentiate (3.40) with respect to z and (3.41) with respect to y. Then, we
approximate the spatial derivatives by backward differences and add up the resulting
equations. Using part (i) of this theorem, we obtain

— n v _ l
IV E(t)] = %(N(A,\If)th(A,\I/))+%(N(B,w) hyN(B,q,) )
< E(E‘F h_y) =c.

Also, we note that the average supercurrent density, i.e,

J(t)aver = % Z J()

v grid

(ley 2 N®), ]‘vlz_y ZJz(t),(J) =0.

Finally, we provide a bound in I norm for the time derivative of the order
parameter W(t). Of course, one can easily derive a bound for this quantity using only
Theorem 3.2 and (3.3). But by using Theorem 3.1 (ii), Theorem 3.2, (3.3), and natural
boundary conditions, we can give a smaller bound.

I
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Theorem 3.5 Let (¥(t), A(t), B(t)) be the solution of the SDTDGL. Then there exists

a nonnegative constant ¢ such that
||| |||2<c vt > 0.
Proof. Let us consider the following inequality
b -wy vl —VY
> (I el v I2) < H2N,, (3.46)
x Yy

(3.47)

and the first SDTDGL, i.e.,

1oV 1 (W 20+ W*E  Viel— 204 Vel
-~ = N(T). 3.48
hohy 0 K2 ( Rz - 0z TN (3.48)
The inequality (3.46) and the definition of W imply that
T -wu o2 ¥ - WU W\I/ Wy - v \1/ 1\

Now, let us consider the boundary conditions for ¥, i.e,
Y(Ne +1,5) — ¥(Na, j)W(Ne, j) = 0, (3.51)
U(i, Ny + 1) — U(i, Ny)V(i,Ny) =0, ( )

fori=1...N,, j=1...N,.
By using (3.50) and (3.51), we have

grid J=11i=1
Ny N, . . . . .
_ Z|\P(ZJ)—W(Z—1,J)‘P(l—1,J)|2
j=11i=1 khe
Ny . . . .o ..
+ |\II(Z+17.7)_W(Z J)\IJ( .7)| _ l\II(Z+1>.7)_W<Z’J)\II(7'a])|2
. kh, 8 kh,
iZN, i=o
N W,
= Z| T 2. (3.54)
grid
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Then by using (3.33), (3.49), and (3.54) we have

WO —20 + W W*E — o U+ WO
Z| |ZS2Z<| I+

khy khy khy

|2> < 4H?N,,. (3.55)
grid grid

In a similar way, from (3.52), (3.53), and (3.33), we have

2

grid

2

Viwl - 20 4 vyl
- < 4H?Ngy,. (3.56)

kh,,

Now, we take a close look at the equation (3.48). By Theorem 3.2, the nonlinear term,
N) = (1- |3 (3.57)

is bounded in absolute value for all ¢ > 0, more specifically

2
N <—= Vt>0. 3.58
N < 2o e (5.59
Then using (3.58), (3.48), and the inequality
(a+b+c) <3(@®+b+c?) for abceR (3.59)
we have
— - 2
oul* _ 3 [, |Ww 20 + W*¥ o | Viwl — 2w 4 Vet Ln )
ot| — k2" khy g” khy 9
(3.60)
Summing up (3.60) over the grid points and using (3.55) and (3.56), we have
ov|? 12H? 4
5| < (B + Gan ). (361)

grid
In particular, if L, = L, = L and N, = Ny = N, so that h, = hy := A, then the
inequality (3.61) after taking square roots of both sides reduces to

o 6H2 A2
| ’g‘ o< 2Ly/ =5+ 5 vt>0. (3.62)
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ZAMANA BAGII\{IL; YARI-AYRIK GINZBURG-LANDAU
DENKLEMLERININ COZUMU ICIN BAZI SINIRLAR

Ozet

Bu galismada diizgiin bir magnetik alan etkisi altinda bulunan ince film geklindeki
bir siiperiletkeni modelleyen iki boyutlu zamana bagimli Ginzburg-Landau den-
klem sistemi incelenmektedir. Bu sistem, bag degiskenleri ve ¢apraz 1zgara teknigi
ile yer degigkenleri i¢in ayriklagtirilmig ve daha sonra yar ayrik Helmholtz enerji
fonksiyoneli ile SDTDGL sisteminin zamana gére degigimi incelenerek, siiperakim,
siiperelektron ve yiik yogunlugu ile magnetik alan ve elektrik alani gibi gozlenebilir
fiziksel nicelikler igin simirlar elde edilmistir.
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