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DIFFERENCE METHOD FOR A SINGULARLY

PERTURBED INITIAL VALUE PROBLEM

G.M. Amiraliyev

Abstract

In this paper we construct a completely exponentially fitted finite difference
scheme for the initial value problem with small parameter by first and second
derivatives. We prove the first order uniform convergence of the scheme in the
sense of discrete maximum norm. Numerical results are presented.

1. Introduction

Singularly perturbed problems for differential equations arise very frequently in
applications and have been extensively studied in recent years. It is known that these
problems depend on a small positive parameter ε in such a way that the solution exhibits
a multiscale character, i.e. there are thin transition layers where the solution varies
rapidly, while away from layers it behaves regularly and varies slowly [9], [10], [11]. So
the treatment of singularly perturbed problems presents severe difficulties that have to be
addressed to ensure accurate numerical solutions [7], [8], [12]. In this paper, we restrict
our attention to the numerical solution by using finite-difference approximation of linear
second order singularly perturbed problem of the form

Lu ≡ ε2u′′ + εa(t)u′ + b(t)u = f(t), 0 < t ≤ T, (1)

u(0) = A, (2)

u′(0) = B/ε. (3)

Here ε is a small positive parameter, A and B are given constans, a(t) ≥ α > 0, b(t) ≥
β > 0, f(t) are sufficiently smooth functions in the [0, T ] . The solution u(t) of problem
(1)-(3) has in general an initial layer near t = 0 for small values of ε (see Section 2).

Singularly perturbed initial value problems arise in many fields of application-for
instance, fluid mechanics [9], electrical networks [8], chemical reactions [14], control theory
[9], [10] and other physical models. Various mathematical aspects of problems of this type,
in particular of (1)-(3) have considered in [7]-[11].
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It is known that, the use of classical difference methods for solving such problem
may give rise to difficulties when the singular perturbation parameter ε is small [7],
[8]. Therefore, it is important to develop suitable numerical methods to these problems.
Several uniform difference methods for problems with initial layers have been proposed
in [4]-[7]. To our knowledge, the only reference to a uniformly convergent scheme for the
second order differential equations, which reduce for ε = 0 to zero-order equations is [5],
but this scheme correspond to the particular case when the second initial condition is
regular and furthermore only is O(τ1/4) accurate uniformly in ε , where τ is the mesh
size.

The proposed, in present paper, difference scheme as well its method of construction
differ from those in [5] and the scheme has uniform O(τ ) accuracy. The difference
scheme is constructed by the method integral identities with the use exponential basis
functions and interpolating quadrature rules with the weight and remainder terms in
integral form [1], [2], [3], which in mentioned papers this technique was applied to the
another mathematical models.

In Section 2, the asymptotic estimations of the problem (1)-(3) are established.
The difference scheme constructed on the uniform mesh for numerical solution (1)-(3) is
presented in Section 3 and in Section 4 we prove O(τ ) uniform convergence of the scheme.
Some numerical examples confirming the theory are given in the Section 5.

We shall use the indexless notation of [13] for mesh functions.

2. The Continuous Problem

Lemma 2.1. Let u(t) be the solution of the problem (1)-(3) and a ∈ C[0, T ], b, f ∈
C1[0, T ] . Then there exist a positive constant C such that

|u(K)(t)| ≤ Cε−K

{
δ∗ +

(∫ t

0

(f2(ζ) + f ′2(ζ))dζ
)1/2

}
,

(∫ t

0

|u(K)(ζ)|dζ
)1/2

≤ Cε−
K
2

{
δ∗ +

(∫ t

0

(f2(ζ) + f ′2(ζ))dζ
)1/2

}
, K = 0, 1, 2 (4)

where δ2
∗ = |B2 + b(0)A2 − 2f(0)A| + f2(0). Throughout in the paper c, ci, C, Ci (i =

0, 1, . . .) denote the positive constants independent of ε (also τ , in our following discus-
sion about numerical solution).
Proof. Multiplying the Eq. (1) by 2u′(t), we obtain

[ε2u′2 + b(t)u2 − 2f(t)u]′ + 2εa(t)u′2 = b′(t)u2 − 2f ′(t)u.

Integrating this from 0 to t , we have

ε2u′2(t) + b(t)u2(t) − 2f(t)u(t) + 2εα
∫ t

0

u′2(ζ)dζ ≤ B2 + b(0)A2 − 2f(0)A
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+
∫ t

0

|b′(ζ)||u(ζ)|2dζ + 2
∫ t

0

|f ′(ζ)||u(ζ)|dζ

and

ε2u′2(t) + βu2(t) − 1/µf2(t) − µu2(t) + 2εα
∫ t

0

u′2(ζ)dζ ≤ B2 + b(0)A2 − 2f(0)A

+
∫ t

0

[(|b′(ζ)|+ 1)u2(ζ) + f ′2(ζ)]dζ, µ > 0.

The choice µ < β yields inequality of the form

ε2u′2(t) + u2(t) + ε

∫ t

0

u′2(ζ)dζ ≤ C0

{
δ2
∗ +

∫ t

0

[u2(ζ) + f2(ζ) + f ′2(ζ)]dζ
}
. (5)

From (5), by Gronwall’s inequality, we obtain

ε2u′2(t)+u2(t)+ε

∫ t

0

u′2(ζ)dζ ≤ C0δ
2
∗ exp(C0t)+C0

∫ t

0

df2(ζ)+f ′2(ζ)e exp(C0(t−ζ))dζ.

Therefore, (4) holds for K = 0, 1. Validity of the (4) for K = 2 already is an immediate
consequence of (1). Lemma 2.1 is proved. 2

Lemma 2.2. Suppose u(t) is the solution of (1)-(3) and a ∈ C1[0, T ], b, f ∈ C3[0, T ] .
Then

|u(K)(t)| ≤ C
(

1 + ε1−K + ε−Ke−
c0t
ε

)
, K = 0, 1, 2. (6)

Proof. The solution of the problem (1)-(3) has the following construction

u(t) = u0(t) + v(t) +Rε(t), (7)

where u0(t) = f(t)/b(t) is the solution of the “reduced” problem, and v(t), Rε(t) satisfy
the following problems respectively

Lv = 0,
v(0) = A− u0(0), (8)
v′(0) = B/ε− u′0(0),

LRε(t) = ψε(t) ≡ −ε2u′′0 − εa(t)u′0,
Rε(0) = 0, (9)
R′ε(0) = 0.
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Now, we prove that
|v(K)(t)| ≤ Cε−Ke−

c0t
ε , K = 0, 1, 2. (10)

From the identity
Lv.(v′ + λε−1v) = 0,

where λ is an arbitrary positive constant, it is easy to get

{ε2v′2 + bv2 + 2λεv′v + λav2}′ = −(2aε− 2λε)v′2 − (2ε−1λb− b′ − λa′)v2. (11)

For the function
δ(t) = ε2v′2 + bv2 + 2λεv′v + λav2

it follows:

δ(t) ≤ ε2v′2 + bv2 + λε2v′2 + λv2 + λav2 ≤ ε2(1 + λ)v′2 + (b∗ + λ + λa∗)v2, (12)

where b∗ = max[0,T ] b(t), a∗ = max[0,T ] a(t).
On the other hand

δ(t) ≥ ε2v′2 + (b+ λa)v2 − λε2a−1v′2 − λav2 = ε2(1− λa−1)v′2 + bv2,

from which, choosing λ < α it is clear that

δ(t) ≥ c1(ε2v′2 + v2), c1 > 0. (13)

For the right-hand side of the equality (11), we have

2ε(a− λ)v′2 + ε−1(2λb− εb′ − ελa′)v2 ≥ 2ε(α− λ)v′2 + ε−1(2λβ − εb∗ − ελa∗)v2,

where b
∗

= max[0,T ] b
′(t), a∗ = max[0,T ] a

′(t).
For λ < α and 2λβ − εb∗ − ελa∗ > 0, taking into account (12), this means that

2ε(a− λ)v′2 + ε−1(2λb− εb∗ − ελa∗)v2 ≥ c2ε−1δ, (14)

where c2 can be chosen independently of ε(
0 < c2 ≤ min

{
2(α− λ)

1 + λ
,

2λβ − εβ∗ − ελa∗
b∗ + λ+ λa∗

})
.

From (11), taking into account (14) we get inequality of the form

δ′(t) ≤ −c2ε−1δ(t).

Therefore
δ(t) ≤ δ(0) exp(−c2t/ε)
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from which by (13), estimate (10) for K = 0, 1, follows immediately with c0 = c2/2. The
case K = 2 now directly follows from (81 ).

Next, applying Lemma 1.1 for the problem (9) we have

|R(K)
ε (t)| ≤ Cε1−K, K = 0, 1, 2. (15)

Now, (6) follows directly from (7) by using estimates (10), (15). Thus Lemma 2.2 is
proved. 2

Corollary 2.1. ||u(K)(t)||L1(0,T ) ≤ C(1 + ε1−K), K = 0, 1, 2 .

Remark 2.1. Let the condition (3) has the form u′(0) = B and let b(0)A − f(0) = 0,
in Lemma 2.2. Then

|u(K)(t)| ≤ C
(

1 + ε1−Ke−
c0t
ε

)
, K = 0, 1.

Validity of this inequality follows from (7), if taking into account that in this case v(0) = 0
and the function v(t) satisfies the estimate

|v(t)| ≤ Cε1−Ke−
c0t
ε .

3. Construction of the Difference Scheme

We shall assume that a2(t)− 4b(t) > 0 for all t ∈ [0, T ] .
In what follows, we denote by ωτ the uniform mesh on [0, T ] :

ωτ = {tj = jτ, j = 1, 2, . . . ,M − 1; Mτ = T}, ωτ = ωτ ∪ {t = 0, T}.

The difference scheme we shall construct as following from the identity

ξ−1
j τ−1

∫ T

0

Lu.ϕj(t)dt = ξ−1
j τ−1

∫ T

0

f(t)ϕj (t)dt (j = 1, 2, . . . ,M − 1), (16)

where basis functions {ϕj(t)}M−1
j=1 have the form

ϕj(t) =


eλ1,j(t−tj−1)−eλ2,j(t−tj−1)

eλ1,jτ−eλ2,jτ
≡ ϕ(1)

j (t), tj−1 < t < tj
e−λ2,j (tj+1−t)−e−λ1,j (tj+1−t)

e−λ2,j τ−eλ1,j τ
≡ ϕ(2)

j (t), tj < t < tj+1

0, t 6∈ (tj−1, tj+1)

λ1,j = 0.5ε−1[aj +
√
a2
j − 4bj], λ2,j = 0.5ε−1[aj −

√
a2
j − 4bj],
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ξj = τ−1

∫ tj+1

tj−1

ϕj(t)dt =
2τ−1(λ1,j − λ2,j)

λ1,jλ2,jsh(λ1,j − λ2,j)τ/2
sh(λ1jτ/2).sh(λ2jτ/2).

We note that functions ϕ
(1)
i (t) and ϕ

(2)
i (t) are the solutions of the following

problems, respectively,

ε2ϕ′′ − ajεϕ′ + bjϕ = 0, tj−1 < t < tj,

ϕ(tj−1) = 0, ϕ(tj) = 1, (17)

ε2ϕ′′ − ajεϕ′ + bjϕ = 0, tj < t < tj+1,

ϕ(tj) = 1, ϕ(tj+1) = 0. (18)

The relation (16) can be rewritten as

ξ−1
j

[
−ε2τ−1

∫ tj+1

tj−1

ϕ′j(t)u
′(t)dt+ εajτ

−1

∫ tj+1

tj−1

ϕj(t)u′(t)dt+ bjτ
−1

∫ tj+1

tj−1

ϕj(t)u(t)dt

]
= fj − Rj (19)

with

Rj = ξ−1
j ετ−1

∫ tj+1

tj−1

[a(t)− a(tj)]ϕj(t)u′(t)dt + ξ−1
j τ−1

∫ tj+1

tj−1

[b(t)− b(tj)]ϕj(t)u(t)dt

+ξ−1
j τ−1

∫ tj+1

tj−1

[f(tj)− f(t)]ϕj(t)dt. (20)

Using the formulas (2.1), (2.2) from [1] on each intervals (tj−1, tj) and (tj , tj+1),
and taking into account (17), (18) we have the following precise relation

ε2τ−1

∫ tj+1

tj−1

u′′(t)ϕj(t)dt+ εajτ
−1

∫ tj+1

tj−1

ϕj(t)u′(t)dt+ bjτ
−1

∫ tj+1

tj−1

ϕj(t)u(t)dt

= ε2utt,j + εaj(ξ1jut,j + ξ2jut,j) + bjξjuj + bjµ1jut,j + bjµ2jut,j

= ε2{1 + 0.5τε−1aj(ξ2,j − ξ1,j) + 0.5τε−2bj(µ2j − µ1j)}utt,j
+εaj(ξj + ε−1a−1

j bjµj)ut0,j + bjξjuj

where

ξ1j = τ−1

∫ tj

tj−1

ϕ
(1)
j (t)dt, ξ2j = τ−1

∫ tj+1

tj

ϕ
(2)
j (t)dt,

µ1j = τ−1

∫ tj

tj−1

(t− tj)ϕ(1)
j (t)dt, µ2j = τ−1

∫ tj+1

tj

(t− tj)ϕ(2)
j (t)d, µj = µ1j + µ2j,
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uj = u(tj), ut,j = (uj − uj−1)/τ, ut,j = (uj+1 − uj)/τ, ut0,j = (uj+1 − uj−1)/(2τ ),

utt,j = (uj+1 − 2uj + uj−1)/τ2.

Simple calculation shows that

1 + 0.5τε−1aj(ξ2,j − ξ1,j) + 0.5τε−2bj(µ2j − µ1j) = 0.5τ (λ1,j − λ2,j)
ch((λ1,j + λ2,j)τ/2)
sh((λ1,j − λ2,j)τ/2)

,

ξj + ε−1a−1
j bjµj =

(λ1,j − λ2,j)sh((λ1,j + λ2,j)τ/2)
(λ1,j + λ2,j)sh((λ1,j − λ2,j)τ/2)

.

Further returning to the (19), we obtain the identity

luj ≡ ε2θ1,jutt,j + εajθ2,jut0,j + bjuj = fj −Rj, j = 1, 2, . . . ,M − 1 (21)

where

θ1,j =
τ2

4
λ1,jλ2,j

ch((λ1,j + λ2,j)τ/2)
sh(λ1,jτ/2).sh(λ2,jτ/2)

≡ bjτ
2

4ε2
(1 + cth(λ1jτ/2).cth(λ2jτ/2)), (22)

θ2,j =
τ

2
λ1,jλ2,j

λ1,j + λ2,j

sh((λ1,j + λ2,j)τ/2)
sh(λ1,jτ/2).sh(λ2,jτ/2)

≡ bjτ

2ajε
(cth(λ1jτ/2) + cth(λ2jτ/2)), (23)

Now, it remains to define an approximation for the initial condition (3). Here we
start with the identity ∫ t1

t0

Luϕ0(t)dt =
∫ t1

t0

f(t)ϕ0(t)dt,

where

ϕ0(t) =

{
e−λ2,0(t1−t)−e−λ1,0(t1−t)

e−λ2,0τ−e−λ1,0τ
, t ∈ (t0, t1),

0, t 6∈ (t0, t1)

By argument similar to those as in the proof of (21), we have

ε2θ0ut,0 − εB + I0(b0A − f0) + r = 0, (24)

where

I0 =
∫ t1

0

ϕ0(t)dt = ε2b−1
0 [λ1,0(1 − e−λ2,0τ )− λ2,0(1− e−λ1,0τ )]/(e−λ2,0τ − e−λ1,0τ),

θ0 = 1 + ε−1a0

∫ t1

0

ϕ0(t)dt+ ε−2b0

∫ t1

0

tϕ0(t)dt

=
τ (λ1,0 − λ2,0)

2sh((λ1,0 − λ2,0)τ/2)
e(λ1,0+λ2,0)τ/2, (25)
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r =
∫ t1

0

[f(0)− f(t)]ϕ0(t)dt+ ε

∫ t1

0

[a(t)− a(0)]u′(t)ϕ0(t)dt

+
∫ t1

0

[b(t)− b(0)]u(t)ϕ0(t)dt. (26)

Neglecting Rj and r in (21) and (24), we may propose the difference scheme for
(1)-(3) as follows

ly ≡ ε2θ1ytt + εaθ2yt0 + by = f, t ∈ ωτ , (27)

y(0) = A, (28)

ε2θ0yt,0 − εB + I0(b0A− f0) = 0, (29)

where θ1, θ2, θ0 are given by (22), (23), (25) respectively.

4. Uniform Error Estimates

Let z = y − u . Then for the error of the difference scheme (27)-(29) we get

lz = R, t ∈ ωτ , (30)

z(0) = 0, (31)

ε2θ0zt,0 = r, (32)

where R and r are defined by (20) and (26).

Lemma 4.1. Let z be the solution (30)-(32). Then the estimate

∆0|zt,j|+ |zj+1 + zj | ≤ C{∆0|zt,0|+ max
1≤i≤M−1

|Ri|+ τ

M−2∑
i=1

|Rt,i|} (33)

holds for j = 0, 1, . . . ,M − 1 , where ∆0 = max(ε, τ) .
Proof. Multiplying (30) by zt0 and taking into consideration the relations

θ1zttzt0 =
1
2
θ1(z2

t )t =
1
2

(θ1z
2
t )t −

1
2
θ1tz

2
t
,

bzzt0 =
1
8
b((ẑ + z)2)t −

τ2

8
b(z2

t )t

=
1
8

(b(ẑ + z)2)t −
τ2

8
(bz2

t )t −
1
8
bt(z + z̆)2 +

τ2

8
btz

2
t

we have

1
2
ε2(pz2

t )t + εθ2az
2
t◦ +

1
8

(b(ẑ + z)2)t =
1
2
ε2qz2

t
+

1
8
bt(z + z̆)2 + Rzt0 , (34)
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where

p = θ1 −
τ2

4ε2
b, q = θ1t −

τ2

4ε2
bt, ẑ = z(tj+1), z̆ = z(tj−1).

Multiplying (34) by 2τ and summing up it with respect to j (from 1 to s) and
taking into account

2τ
s∑
j=1

Rjzt0,j = Rs(zs+1 + zs) −R1(z1 + z0)− τ
s−1∑
j=1

Rt,j(zj+1 + zj)

we obtain

ε2psz
2
t,s + 2ετ

s∑
j=1

θ2jajz
2
t0,j +

1
4
bs(zs+1 + zs)2

= ε2p0z
2
t,0 +

1
4
b0(z1 + z0)2 − R1(z1 + z0) + Rs(zs+1 + zs)

+ τ

s∑
j=1

{
ε2qjz

2
t,j

+
1
4
bt,j(zj + zj−1)2

}
−τ

s−1∑
j=1

Rt,j(zj+1 + zj) for s≤M−1.(35)

It is easy to verify that

0 < c0 ≤ p ≤ c1, |q| ≤ C0, when τ ≤ ε, (36)

c0τ
2 ≤ ε2p ≤ c1τ2, ε2|q| ≤ C0τ

2 when τ ≥ ε. (37)

Now, from the relation (35), using (36), (37), we have the following inequality

δs ≤ δ∗ + τ
s∑
j=1

{djδj−1 + ρj}, s ≤M − 1, (38)

where

δj = ε2pjz
2
t,j +

1
4
bj(zj+1 + zj)2,

δ∗ = c0δ0 + C max
1≤j≤M−1

|Rj|2, c0 > 1,

|ρj | ≤ C|Rtj| |zj+1 + zj | for j = 1, . . . , s− 1 and ρs = 0,

0 ≤ dj ≤ c for j = 1, 2, . . . , s.

From (38), by difference analogue of integral inequality, we have

δs ≤ δ∗ exp

[
τ

s∑
i=1

di

]
+ τ

s∑
i=1

|ρi| exp

τ s∑
j=i+1

dj


≤ C

(
∆2

0z
2
t,0 + |z1|2 + max

1≤j≤M−1
|Rj|2 + τ

s−1∑
i=1

|Rt,i||zi+1 + zi|
)
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which leads to (33). Thus the Lemma is proved. 2

Lemma 4.2. Let R and r be defined as in (20) and (26) respectively. Then

∆0|zt,0| ≤ Cτ,

||R||C(ωτ) ≤ Cτ,

τ
M−2∑
i=1

|Rt,i| ≤ Cτ.

The proof evidently from explicit expressions for R and r , using (6).
Finally, we give the main result of this paper:

Theorem 4.1. Suppose u is the solution (1)-(3), yj is the solution (27)-(29). Then

max
1≤j≤M

|yj − uj| ≤ Cτ. (39)

Proof. Because
zj+1 = (zj+1 + zj)/2 + (τztj)/2

we have
|zj+1| ≤ |zj+1 + zj|/2 + ∆0|ztj|/2.

Now, (39) immediately follows from Lemma 4.1 and Lemma 4.2. 2

5. Numerical Results

Example 1. Consider the following problem:

ε2u′′ + 2ε(t+ 2)u′ + (t2 + 4t+ 3 + ε)u = f(t), 0 < t ≤ 1,

u(0) = 1,

u′(0) = 1/ε+ 1− ε,
where f(t) is chosen so that the exact solution is

u(t) = t(1− ε) + e−
t(t+2)

2ε

{
2− e− 2t

ε

}
.

Due to uniformly boundness of b(k)(t), f(k)(t)(k = 0, 1, 2) in ε , the scheme (27)-
(29) is applicable to implement and some of values of E = maxωτ |y − u| are given in
Table 1.
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Table 1.

ε 0.5 10−2 10−4 10−6

τ

0.1 2.004 E-2 5.069 E-2 6.205 E-2 7.036 E-2
0.05 8.421 E-4 5.259 E-3 1.278 E-2 1.301 E-2
0.02 7.201 E-5 3.440 E-4 7.101 E-4 7.212 E-4

Example 2. Now consider the following problem

ε2u′′ + ε3et
2
u′ + (2− t)u = t2et,

u(0) = 1, u′(0) = 1/ε.

We have chosen to use an asymptotic approximation as our exact solution

uA(t) =
t2et

2− t + 3e−
t
ε − 2e−

2t
ε .

The computational results for EA = maxωτ |y − uA| are presented in Table 2.

Table 2.

ε 10−2 10−4 10−6

τ
0.1 9.350 E-2 8.241 E-2 8.035 E-2
0.05 8.402 E-2 7.391 E-3 7.420 E-3
0.02 3.047 E-2 2.489 E-3 2.471 E-3

The results show that the convergence rate of the considered schemes is essentially
in accord with theoretical analysis.
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