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A Class of Monoids Embeddable in a Group

Ebru Keyman

Abstract

In this paper, we develop a new method to show that a monoid, given by a
certain kind of presentation, embeds in a group. A mathematical device called the

diamond condition was used in [5] to prove that the singular braid monoid SBn

embeds. Motivated by this, we consider monoid presentations which have the basic
properties of the presentation of the singular braid monoid. In the same way as

in [5], we prove that the monoid embeds. The proof of the diamond condition is

completely geometric in [5], but here we prove it by using elementary algebraic

properties.

Key Words: Embedding, monoid presentation, group presentation, geometric
braids.

§1. Introduction

Every monoid can be presented by a set of generators X = {xi | i ∈ Ω} and a set
of relations R = {ui = vi | i ∈ Ω′}, where Ω,Ω′ are some indexing sets and and ui, vi

are words in the free monoid F+(X) on X. The monoid presentation will be denoted by

[X | R]. Two words w,w′ ∈ F+(X) are the same element of M if there is a sequence
of words, w ≡ wo, w1, . . . , wt ≡ w′ where wi is obtained from wi−1, i = 1, . . . , t, by a
substitution of the form auib ↔ avib for some defining relation ui = vi ∈ R. We call
this an elementary substitution. If a monoid M is given by the presentation [X | R] then
the group of M is defined to be the quotient group F (X)/N(R), where F (X) is the free
group on X and N(R) is the smallest normal subgroup of F (X) containing the elements

g−1uiv
−1
i g where g ∈ F (X) and ui = vi ∈ R. We denote the group of M by G(M) and

we use < X | R > to show that the presentation is a group presentation. The natural
map from a monoid M to its group is not in general an injection even if left and right
cancellations hold, (see for example [1] and [4]).
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Proposition 1 If a monoid M embeds in a group G then it embeds in its group G(M).
In other words, if there is an injection M ↪→ G, then there is a commutative diagram

G(M)
↗ ↓

M ↪→ G

and M → G(M) is injective. 2

Lemma 2 Let G be a group given by the presentation < X | R > and let u, v ∈ F (X)
be such that u =G v. Then v can be obtained from u by applying a finite sequence of
elementary substitutions and the introduction or deletion of cancelling pairs of generators
axx−1b↔ ab↔ ax−1xb. 2

Theorem 3 If a monoid M given by a presentation P = [A ∪B | R] where
A = {a1, . . . , an},
B = {b1, . . . , bm} and R = R1 ∪R2 ∪R3 ∪R4 satisfies:

R1 consists of relations of the form u = v, u, v ∈ F+(A).

R2 = {aiui = uiai = 1 | for some ui ∈ F+(A), for all i = 1, . . . , n}.
R3 consists of relations of the form ubj = bku for some j, k = 1, . . . , m and u ∈ F+(A).
R4 consists of relations of the form bjbk = bkbj for some j, k = 1, . . . , m;
then M embeds in a group.

This is the main theorem of this paper. First let us notice that no bj has a right or a
left inverse. If B = ∅ thenM is given by the presentation [A | R1∪R2] and it is a group.
In short, we consider a presentation where invertable generators can have any relation
among each other but the non-invertable generators are subject to relations R3 and R4.
The proof of the theorem will follow some definitions and observations.

In the set-up of the theorem, let X = A ∪ B and consider the monoid M̄ which is
presented by [X ∪ B̄ | R ∪ R′] where B̄ = {b̄j | j = 1, . . . , m} and R′ consists of the
following relations:
ub̄j = b̄ku if ubj = bku ∈ R

b̄jbk = bk b̄j if bjbk = bkbj ∈ R

b̄j b̄k = b̄k b̄j if bjbk = bkbj ∈ R.

Observe that M is contained in M̄ as a submonoid since, if two words x, y in the
alphabet of X are equal in M̄, then there is a sequence of elementary substitutions from
x to y. But for each of the substitution, we use a relation u = v which is in R because
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any word in the extra relations of M̄ contains a letter which is not in X. Therefore x = y
in M.

Let x ≡ x1x2 ∈ M̄, where ≡ shows letter by letter equality or, in other words, equality
in the free monoid. Then we say that there is an elementary expansion from x to y in

M̄ if y .= x1bib̄ix2 or y .= x1b̄ibix2 for some bi, where .= shows equality in M̄. We denote
this by x y. Equivalently, we say that there is an elementary collapse from y to x and

write y x.
We say that x expands to y and write x↗ y if y is obtained from x by a finite sequence

of elementary expansions. We also say that y collapses to x and write y ↘ x if there is a
finite sequence of elementary collapses from y to x. If ∼ denotes the equivalence relation
generated by x y then by lemma 2, G(M) ∼= M̄/∼, where b̄i ∈ M̄ is identified with

b−1
i ∈ G(M) by the isomorphism. An element y ∈ M̄ is said to be irreducible if there is

no x such that y x.

Theorem 4 (Diamond condition) Let x, y, z ∈ M̄ such that x y z. Then either

x
.= z or there is an element w ∈ M̄ such that x w z.

Proof Let y ≡ x1bib̄ix2 and x ≡ x1x2. Suppose that y .= y′ ≡ z1bj b̄jz2 and z ≡ z1z2.

We will observe how x1bib̄ix2 is transformed into z1bj b̄jz2 through elementary sub-

stitutions and keep track of the inserted pair bib̄i throughout the transformation. To
make life easy we will write the inserted pair bib̄i in bold bib̄i and their images under
the elementary substitutions will also be written in bold. So, for example, if we apply
the substitution ubi ↔ bju we will write ubi ↔ bju. Let φ = φr . . . φ1 be the chain of

elementary substitutions which take x1bib̄ix2 to z1bj b̄jz2. The pair bj b̄j may or may not
be bold. We will study this in three cases below. Let φb be the transformation φ, where
φk is replaced by the identity transformation if φk is a substitution of a subword which

contains b or b̄ (with some indices of course). This makes sense since all the defining

relations of the monoid which involve elements of B are of the form ub = bu or ub̄ = b̄u,

where u ∈ F+(A) or is a single bj or b̄j. Replacing b by 1 will give the trivial substitution.

Case 1: y′ ≡ z1bjb̄jz2. Then clearly φb(x) = z1z2 and hence x .= z.

Case 2: y′ ≡ z1b̄jbjz2. The bj (which is in roman typeset rather than bold to indicate

that it is not the image of the bold bi under φ) must appear in y as well possibly with

a different index, say j1, and hence y ≡ x11s1x12bib̄ix21s2x22, where {s1, s2} = {bj1 , 1}.
Without loss of generality, let us assume that s2 = bj1 . (Indeed, this has to be the case

and can be observed by the fact that bb̄ 6 .= b̄b but this is not relevant to our argument.)
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So y ≡ x1bib̄ix21bj1x22 and similarly x ≡ x1x21bj1x22, where x2 ≡ x21bj1x22. Also the

bold bi in y must appear in y′, say y′ ≡ z11bi1z12b̄jbjz2 and hence z ≡ z11bi1z12z2 with

z1 ≡ z11bi1z12. If φ(y) = y′, then φb(x) = z11z12bjz2.

Claim: z11z12bjz2
.= z11bi1z12z2.

Let us duplicate the bold pair by expanding y to w ≡ x1bib̄ibib̄ix21bj1x22. We assume

that the middle b̄ibi is the inserted pair. Define φ1(w) as follows. Follow every elementary

substitution which involves the old b̄ (b) in φ by the same substitution applied to the new

b (b̄). To see that this is possible, it is enough to look at the relations of the presentation

and observe that in w all the bold letters are adjacent. So φ1(w) = z11bi1b̄i1z12bjb̄jbjz2.

On the other hand, let φ2(w) be the transformation where the inserted pair b̄ibi follows

the old b̄. Then we get φ2(w) = z11bi1z12b̄jbjb̄jbjz2.

w
.= z11bi1b̄i1z12bjb̄jbjz2

.= z11bi1z12b̄jbjb̄jbjz2

⇓ ⇓ ⇓
y

.= z11z12bjb̄jbjz2
.= z11bi1z12b̄jbjz2

⇓ ⇓ ⇓
x

.= z11z12bjz2
.= z11bi1z12z2.

The collapses give the same word by the first case and this proves case 2.

Case 3: Let y′ ≡ z1bjb̄jz2. Then we have y ≡ x11s1x12s2x13bib̄ix21s3x22s4x23 and

y′ ≡ z11t1z12t2z13bj b̄jz21t3z22t4z23, where {s1, s2, s3, s4} = {b, b̄, 1, 1} and

{t1, t2, t3, t4} = {b, b̄, 1, 1}. Then x ≡ x1x2 ≡ x11s1x12s2x13x21s3x22s4x23 and
z ≡ z1z2 ≡ z11t1z12t2z13z21t3z22t4z23:

y ≡ x11s1x12s2x13bib̄ix21s3x22s4x23
.= z11t1z12t2z13bj b̄jz21t3z22t4z23 ≡ y′

⇓ ⇓ ⇓ ⇓
x ≡ x11s1x12s2x13x21s3x22s4x23 z11t1z12t2z13z21t3z22t4z23 ≡ z

↓ φb ↓ (φ−1)b

z11z12z13bjb̄jz21z22z23 x11x12x13bib̄ix21x22x23

⇓ ⇓

z11z12z13z21z22z23
(φb)−1

b→ x11x12x13x21x22x23

So we have x z11z12z13z21z22z23
.= x11x12x13x21x22x23 z. This proves the final

case. Note that the only other possibilities are y′ ≡ z1b̄jbjz2 or y′ ≡ z1b̄jbjz2 which are

equivalent to second and third cases respectively. Also y ≡ x1b̄ibix2 is just the symmetric
of the cases above and does not make any difference in the proof. 2
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Proposition 5 Let x, y, z ∈ M̄, where x, z are words in the alphabet of X only. If there

is a sequence x y z then x =
M
z.

Proof Every element ofM is irreducible so there is no y′ such that x y′. Therefore
by the diamond condition x

.= z in M̄. Since M injects into M̄ the equality is true in
M. 2

Proof of Theorem 3 Let G be the group of M. If u, v ∈ M are equal in G then
by lemma 2 there exists a sequence u = uo ↗ u1 ↘ u2 ↗ . . .↘ uk = v. Note that the
first step is always an expansion and the last always a collapse since u, v are irreducible.
Every expansion/collapse is a sequence of elementary expansions/collapses. Consider

uo ↗ u1 ↘ u2 where uo ↗ u1 is given by uo = xo x1 . . . xko = u1 and u1 ↘ u2

is given by u1 = yo y1 . . . yk1 . So we have an intermediate stage xko−1 u1

y1. Since M̄ is diamond, we can either replace xko−1 by y1 or we can replace xko−1

u1 y1 by xko−1 u′1 y1. In both cases the length of the expansion and the
collapse reduces by one. Applying this procedure finitely many times we will obtain a

new sequence u = vo v1 v2 . . . vl = v. Now since u ∈ M by the above
proposition, u =M v1 =M . . . =M v. This is exactly what we want to prove, i.e. u =M v.
2

Application

Baez [2] and Birman [3] introduced the singular braid monoid SBn . In [6], we study
some properties of a larger class of monoids, which we call the geometric singular braids.
Geometric singular braids form a monoid which admits a presentation satisfying the
conditions of theorem 3 and therefore they embed in a group. This result helps us
to imagine the “inverses” of singular points as geometric objects. Consider the braid
diagrams on n-strings including singular points of any order k ≤ n. We can perform an
operation on these diagrams by putting two diagrams α and β side by side, joining the
initial points of β to the final points of α to obtain the diagram αβ. There is a natural
equivalence on the diagrams corresponding to the isotopies of R3 fixing the end points
and leaving the diagram unchanged in a small planar neighbourhood of a singular point.
We call the equivalence class of diagrams geometric braids. With the above operation
geometric braids form a monoid which is denoted by MBn. Note that the monoid SBn
is a submonoid of MBn.

We can present MBn with generators A = {σi, σ−1
i , i = 1, · · · , n− 1}

B = {µi,k(π), i = 1, · · · , n− 1, i+ k ≤ n+ 1, π ∈ Sk}. Here, σ±1
i correspond to positive

and negative crossings of the i, i+1 strings as in classical braids and µi,k(π) is the singular
point where i, i+ 1, · · · , i+ k − 1 strings intersect with permutation π. For example the
braid in the figure is µ1,3(π)σ2µ1,2(ρ), where π = (13) and ρ = (12). The relations are
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w u
Figure 1. A geometric braid diagram on 3 strings

R1 ∪R2 ∪R3 ∪R4 where:

R1 =
{

σiσj = σjσi if | i− j |> 1
σiσjσi = σjσiσj if | i− j |= 1

}
.

These are the classical braid relations and correspond to the isotopies away from the
singular points.

R2 =
{
σiσ
−1
i = σ−1

i σi = 1, i = 1, · · · , n− 1
}
.

R3 consist of relations of the form
µi,k(π)σj = σjµi,k(π) if i + k < j + 1 or j + 1 < i,

µi,k(π)δi,k = δi,kµi−1,k(π) where δi,k = σi−1σi · · ·σi+k−2 and 1 < i ≤ n− k + 1,

µi,k(π)δ′i,k = δ′i,kµi+1,k(π) where δ′i,k = σi+k−1 · · ·σi and 1 ≤ i ≤ n − k,

µi,k(π)∆i,k = ∆i,kµi,k(π′) where ∆i,k = δi+1,k−1 · · · δi+1,1 and

π′ =
(

1 · · · k − 1 k
k + 1− ak · · · k + 1− a2 k + 1− a1

)
if π =

(
1 2 · · · k
a1 a2 · · · ak

)
.

The first of these relations is the commutation of a crossing with a singular point if
they are on disjoint strings. The next two are moving an arc over or under a singular
point and the last one is a twist around a singular point. Note that the permutation of
the singular point changes only in the last relation, because in this case we are rotating
the point 180 degrees so we read the permutation from upside down. R4 indicates that
the singular points on disjoint strings commute.

R4 = {µi,k(π)µj,l(ρ) = µj,l(ρ)µi,k(π) if j + 1 > i + k or i+ 1 > j + l}.
This monoid clearly satisfies the condition of Theorem 3 and hence embeds in a

group. Let GBn =< A ∪ B | Ri, i = 1, 2, 3, 4} be the group of geometric braids. This
group does not have a real geometric meaning since the cancellation of a singular point
is not an isotopy. But because of the embedding we can visualize an element of the
group by a diagram denoting the inverse of a singular point with say a white blob while
denoting the singular point by a black blob. The inverses have the same geometry as the
singular points. Moreover, by putting restrictions on the types of crossings we can obtain
submonoids and subgroups of the geometric braid monoid and group, respectively.
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