Characterizations of Artinian and Noetherian Gamma-Rings in Terms of Fuzzy Ideals

MEHMET ALİ ÖZTÜRK
MUSTAFA UÇKUN
YOUNG BAE JUN

Follow this and additional works at: https://journals.tubitak.gov.tr/math

Part of the Mathematics Commons

Recommended Citation

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for inclusion in Turkish Journal of Mathematics by an authorized editor of TÜBİTAK Academic Journals. For more information, please contact academic.publications@tubitak.gov.tr.
Characterizations of Artinian and Noetherian Gamma-Rings in Terms of Fuzzy Ideals

Mehmet Ali Öztürk, Mustafa Uckun and Young Bae Jun

Abstract

Using fuzzy ideals, characterizations of Noetherian Γ-rings are given, and a condition for a Γ-ring to be Artinian is also given.

Key words and phrases: (Artinian, Noetherian) Γ-ring, fuzzy left (right) ideal, Γ-residue class ring.

1. Introduction

The notion of a fuzzy set in a set was introduced by L. A. Zadeh [6], and since then this concept has been applied to various algebraic structures. N. Nobusawa [5] introduced the notion of a Γ-ring, a concept more general than a ring. W. E. Barnes [1] weakened slightly the conditions in the definition of Γ-ring in the sense of Nobusawa. W. E. Barnes [1], S. Kyuno [3] and J. Luh [4] studied the structure of Γ-rings and obtained various generalizations analogous to corresponding parts in ring theory. Y. B. Jun and C. Y. Lee [2] applied the concept of fuzzy sets to the theory of Γ-rings. In this paper, using fuzzy ideals, we discuss characterizations of Noetherian Γ-rings, and we give a condition for a Γ-ring to be Artinian.

2000 Mathematics Subject Classification: 16P99, 03E72.
2. Preliminaries

Let M and Γ be two abelian groups. If for all $x, y, z \in M$ and all $\alpha, \beta \in \Gamma$ the conditions

- $x\alpha y \in M$,
- $(x + y)\alpha z = x\alpha z + y\alpha z$, $x(\alpha + \beta)z = x\alpha z + x\beta z$, $x\alpha(y + z) = x\alpha y + x\alpha z$,
- $(x\alpha y)\beta z = x\alpha(y\beta z)$

are satisfied, then we call M a Γ-ring. By a right (resp. left) ideal of a Γ-ring M we mean an additive subgroup U of M such that $U\Gamma \subseteq U$ (resp. $MU \subseteq U$). If U is both a right and a left ideal, then we say that U is an ideal of M. Let U be an ideal of a Γ-ring M. If for each $a + U$, $b + U$ in the factor group M/U, and each $\gamma \in \Gamma$, we define $(a + U)\gamma(b + U) = a\gamma b + U$, then M/U is a Γ-ring which is called the Γ-residue class ring of M with respect to U (see [3]). For any subsets A and B of a Γ-ring M, by $A \subseteq B$ we exclude the possibility that $A = B$. A Γ-ring M is said to satisfy the left (right) ascending chain condition of left (right) ideals (or to be left (right) Noetherian) if every strictly increasing sequence $U_1 \subset U_2 \subset U_3 \subset \cdots$ of left (right) ideals of M is of finite length. A Γ-ring M is said to satisfy the left (right) descending chain condition of left (right) ideals (or to be left (right) Artinian) if every strictly decreasing sequence $V_1 \supset V_2 \supset V_3 \supset \cdots$ of left (right) ideals of M is of finite length. A Γ-ring M is said to be left (resp. right) Noetherian if M satisfies the left (right) ascending chain condition on left (resp. right) ideals. M is said to be Noetherian if M is both left and right Noetherian. A Γ-ring M is left (resp. right) Artinian if M satisfies the left (right) descending chain condition on left (resp. right) ideals. M is said to be Artinian if M is both left and right Artinian.

We now review some fuzzy logic concepts. A fuzzy set μ in a Γ-ring M is called a fuzzy left (resp. right) ideal of M ([2]) if it satisfies

(FI1) $\mu(x - y) \geq \min\{\mu(x), \mu(y)\}$

(FI2) $\mu(x\gamma y) \geq \mu(y)$ (resp. $\mu(x\gamma y) \geq \mu(x)$)

for all $x, y \in M$ and $\gamma \in \Gamma$. A fuzzy set μ in a Γ-ring M is called a fuzzy ideal of M if μ is both a fuzzy left and a fuzzy right ideal of M. We note from [2] that if μ is a fuzzy
left (right) ideal of a \(\Gamma\)-ring \(M\) then \(\mu(0) \geq \mu(x)\) for all \(x \in M\), and \(\mu\) is a fuzzy ideal of a \(\Gamma\)-ring \(M\) if and only if it satisfies (FI1) and

(FI3) \(\mu(x\gamma y) \geq \max\{\mu(x), \mu(y)\}\) for all \(x, y \in M\) and \(\gamma \in \Gamma\).

3. Main results

Theorem 3.1. Let \(U\) be an ideal of a \(\Gamma\)-ring \(M\). If \(\mu\) is a fuzzy left (right) ideal of \(M\), then the fuzzy set \(\tilde{\mu}\) of \(M/U\) defined by

\[
\tilde{\mu}(a + U) = \sup_{x \in U} \mu(a + x)
\]

is a fuzzy left (right) ideal of the \(\Gamma\)-residue class ring \(M/U\) of \(M\) with respect to \(U\).

Proof. Let \(a, b \in M\) be such that \(a + U = b + U\). Then \(b = a + y\) for some \(y \in U\), and so

\[
\tilde{\mu}(b + U) = \sup_{x \in U} \mu(b + x) = \sup_{x \in U} \mu(a + y + x) = \sup_{x + y = z \in U} \mu(a + z) = \tilde{\mu}(a + U).
\]

Hence \(\tilde{\mu}\) is well-defined. For any \(x + U, y + U \in M/U\) and \(\gamma \in \Gamma\), we have

\[
\tilde{\mu}((x + U) - (y + U)) = \tilde{\mu}((x - y) + U) = \sup_{z \in U} \mu((x - y) + z)
\]

\[
= \sup_{z = u - v \in U} \mu((x - y) + (u - v))
\]

\[
= \sup_{u, v \in U} \mu((x + u) - (y + v))
\]

\[
\geq \sup_{u, v \in U} \min\{\mu(x + u), \mu(y + v)\}
\]

\[
= \min\left\{\sup_{u \in U} \mu(x + u), \sup_{v \in U} \mu(y + v)\right\}
\]

\[
= \min\left\{\tilde{\mu}(x + U), \tilde{\mu}(y + U)\right\}
\]

and

\[
\tilde{\mu}((x + U)\gamma(y + U)) = \tilde{\mu}(x\gamma y + U) = \sup_{z \in U} \mu(x\gamma y + z)
\]

\[
\geq \sup_{z \in U} \mu(x\gamma y + x\gamma z)\quad\text{because} \quad x\gamma z \in U
\]

\[
= \sup_{z \in U} \mu(x\gamma(y + z)) \geq \sup_{z \in U} \mu(y + z)
\]

\[
= \tilde{\mu}(y + U).
\]
Similarly, \(\bar{\mu}(x + U)\gamma(y + U) \geq \bar{\mu}(x + U) \). Hence \(\bar{\mu} \) is a fuzzy left (right) ideal of \(M/U \).

\[\square \]

Theorem 3.2. Let \(U \) be an ideal of a \(\Gamma \)-ring \(M \). Then there is a one-to-one correspondence between the set of fuzzy left ideals \(\mu \) of \(M \) such that \(\mu(0) = \mu(u) \) for all \(u \in U \) and the set of all fuzzy left ideals \(\bar{\mu} \) of \(M/U \).

Proof. Let \(\mu \) be a fuzzy left ideal of \(M \). Using Theorem 3.1, we find that \(\bar{\mu} \) defined by \(\bar{\mu}(a + U) = \sup_{x \in U} \mu(a + x) \) is a fuzzy left ideal of \(M/U \). Since \(\mu(0) = \mu(u) \) for all \(u \in U \), we get

\[\mu(a + u) \geq \min\{\mu(a), \mu(u)\} = \mu(a). \]

Again, \(\mu(a) = \mu(a + u - u) \geq \min\{\mu(a + u), \mu(u)\} = \mu(a + u) \). Hence \(\mu(a + u) = \mu(a) \) for all \(u \in U \), that is, \(\bar{\mu}(a + U) = \mu(a) \). Therefore the correspondence \(\mu \mapsto \bar{\mu} \) is injective. Now let \(\bar{\mu} \) be any fuzzy left ideal of \(M/U \) and define a fuzzy set \(\mu \) in \(M \) by \(\mu(a) = \bar{\mu}(a + U) \) for all \(a \in M \). For every \(x, y \in M \) and \(\gamma \in \Gamma \), we have

\[\mu(x - y) = \bar{\mu}((x - y) + U) = \bar{\mu}((x + U) - (y + U)) \geq \min\{\bar{\mu}(x + U), \bar{\mu}(y + U)\} = \min\{\mu(x), \mu(y)\}, \]

and \(\mu(x\gamma) = \bar{\mu}(x\gamma + U) = \bar{\mu}(x + U)\gamma(y + U) \geq \bar{\mu}(y + U) = \mu(y) \). Thus \(\mu \) is a fuzzy left ideal of \(M \). Note that \(\mu(z) = \bar{\mu}(z + U) = \bar{\mu}(U) \) for all \(z \in U \), which shows that \(\mu(z) = \mu(0) \) for all \(z \in U \). This completes the proof. \(\square \)

Theorem 3.3. If every fuzzy left ideal of a \(\Gamma \)-ring \(M \) has finite number of values, then \(M \) is left Artinian.

Proof. Suppose that every fuzzy left ideal of a \(\Gamma \)-ring \(M \) has finite number of values and \(M \) is not left Artinian. Then there exists strictly descending chain \(U_0 \supset U_1 \supset U_2 \supset \cdots \) of left ideals of \(M \). Define a fuzzy set \(\mu \) in \(M \) by

\[\mu(x) = \begin{cases} \frac{n}{n+1} & \text{if } x \in U_n \setminus U_{n+1}, \ n = 0, 1, 2, \cdots, \\ 1 & \text{if } x \in \bigcap_{n=0}^{\infty} U_n, \end{cases} \]

where \(U_0 \) stands for \(M \). Let us prove that \(\mu(x - y) \geq \min\{\mu(x), \mu(y)\} \) for all \(x, y \in M \). Let \(x, y \in M \). Then \(x - y \in U_n \setminus U_{n+1} \) for some \(n \) (\(n = 0, 1, 2, \cdots \)), and so either \(x \notin U_{n+1} \)

202
or \(y \notin U_{n+1} \). So for definiteness, let \(y \in U_k \setminus U_{k+1} \) for \(k \leq n \). It follows that

\[
\mu(x - y) = \frac{n}{n+1} \geq \frac{k}{k+1} \geq \min\{\mu(x), \mu(y)\}.
\]

Next, let us show that \(\mu(x \gamma y) \geq \mu(y) \) for all \(x, y \in M \) and \(\gamma \in \Gamma \). There exists a non-negative integer \(n \) such that \(x \gamma y \in U_n \setminus U_{n+1} \). Then \(y \notin U_{n+1} \), and hence \(y \in U_k \setminus U_{k+1} \) for \(k \leq n \). Hence

\[
\mu(x \gamma y) = \frac{n}{n+1} \geq \frac{k}{k+1} = \mu(y).
\]

Therefore \(\mu \) is a fuzzy left ideal of \(M \) and \(\mu \) has infinite number of different values. This contradiction proves that \(M \) is a left Artinian \(\Gamma \)-ring. \(\square \)

Theorem 3.4. A \(\Gamma \)-ring \(M \) is left Noetherian if and only if the set of values of any fuzzy left ideal of \(M \) is a well ordered subset of \([0, 1]\).

Proof. Suppose that \(\mu \) is a fuzzy left ideal of \(M \) whose set of values is not a well ordered subset of \([0, 1]\). Then there exists a strictly decreasing sequence \(\{\lambda_n\} \) such that \(\mu(x_n) = \lambda_n \). Denote by \(U_n \) the set \(\{x \in M \mid \mu(x) \geq \lambda_n\} \). Then \(U_1 \subset U_2 \subset U_3 \subset \cdots \) is a strictly ascending chain of left ideals of \(M \), which contradicts that \(M \) is left Noetherian.

Conversely, assume that the set of values of any fuzzy left ideal of \(M \) is a well ordered subset of \([0, 1]\) and \(M \) is not a left Noetherian \(\Gamma \)-ring. Then there exists a strictly ascending chain

\[
U_1 \subset U_2 \subset U_3 \subset \cdots
\]

(3.1)

of left ideals of \(M \). Note that \(U := \bigcup_{i \in \mathbb{N}} U_i \) is a left ideal of \(M \), where \(\mathbb{N} \) is the set of all natural numbers. Define a fuzzy set \(\mu \) in \(M \) by

\[
\mu(x) = \begin{cases}
0 & \text{if } x \notin U_i, \\
\frac{1}{k} & \text{where } k = \min\{i \in \mathbb{N} \mid x \in U_i\}.
\end{cases}
\]

It can be easily seen that \(\mu \) is a fuzzy left ideal of \(M \). Since the chain (3.1) is not terminating, \(\mu \) has a strictly descending sequence of values, contradicting that the value set of any fuzzy left ideal is well ordered. Consequently, \(M \) is left Noetherian. \(\square \)
Lemma 3.5. ([2, Theorem 3]) A fuzzy set μ in a Γ-ring M is a fuzzy left (right) ideal of M if and only if for every $\lambda \in [0, 1]$, the set $U(\mu; \lambda) := \{ x \in M \mid \mu(x) \geq \lambda \}$ is a left (right) ideal of M when it is nonempty.

Lemma 3.6. Let $S = \{ \lambda_n \in (0, 1) \mid n \in \mathbb{N} \} \cup \{ 0 \}$, where $\lambda_i > \lambda_j$ whenever $i < j$. Let $\{ U_n \mid n \in \mathbb{N} \}$ be a family of left ideals of a Γ-ring M such that $U_1 \subset U_2 \subset U_3 \subset \cdots$. Then a fuzzy set μ in M defined by

$$
\mu(x) = \begin{cases}
\lambda_1 & \text{if } x \in U_1, \\
\lambda_n & \text{if } x \in U_n \setminus U_{n-1}, \ n = 2, 3, \cdots, \\
0 & \text{if } x \in M \setminus \bigcup_{n=1}^{\infty} U_n,
\end{cases}
$$

is a fuzzy left ideal of M.

Proof. Using Lemma 3.5, the proof is straightforward.

Theorem 3.7. Let $S = \{ \lambda_1, \lambda_2, \cdots, \lambda_n, \cdots \} \cup \{ 0 \}$ where $\{ \lambda_n \}$ is a fixed sequence, strictly decreasing to 0 and $0 < \lambda_n < 1$. Then a Γ-ring M is left Noetherian if and only if for each fuzzy left ideal μ of M, $\text{Im}(\mu) \subset S$ implies that there exists $n_0 \in \mathbb{N}$ such that $\text{Im}(\mu) \subset \{ \lambda_1, \lambda_2, \cdots, \lambda_{n_0} \} \cup \{ 0 \}$.

Proof. If M is left Noetherian, then $\text{Im}(\mu)$ is a well ordered subset of $[0, 1]$ by Theorem 3.4 and so the condition is necessary by noticing that a set is well ordered if and only if it does not contain any infinite descending sequence. Conversely, if possible let M be not left Noetherian. Then there exists a strictly ascending chain of left ideals of M $U_1 \subset U_2 \subset U_3 \subset \cdots$. Define a fuzzy set μ in M by

$$
\mu(x) = \begin{cases}
\lambda_1 & \text{if } x \in U_1, \\
\lambda_n & \text{if } x \in U_n \setminus U_{n-1}, \ n = 2, 3, \cdots, \\
0 & \text{if } x \in M \setminus \bigcup_{n=1}^{\infty} U_n,
\end{cases}
$$

Then, by Lemma 3.6, μ is a fuzzy left ideal of M. This contradicts our assumption. Hence M is left Noetherian.

References

M. A. ÖZTÜRK
Department of Mathematics
Faculty of Arts and Sciences
Cumhuriyet University
58140-Sivas-TURKEY
e-mail: maozturk@cumhuriyet.edu.tr

M. UCKUN
Department of Mathematics
Faculty of Arts and Sciences
Inönü University
44069-Malatya-TURKEY
e-mail: muckun@inonu.edu.tr

Y. B. JUN
Department of Mathematics Education
Gyeongsang National University
Chinju 660-701-KOREA
e-mail: ybjun@nongae.gsu.ac.kr

Received 27.07.2001