

Turkish Journal of Botany

Volume 48 | Number 5

Article 6

9-25-2024

A new species of Nigrospora (Apiosporaceae) in Corylus heterophylla in China

JING WANG

ZHONG-XUAN LIU

WEI YU

CHAO KANG

YI HUA YANG

Follow this and additional works at: https://journals.tubitak.gov.tr/botany

Part of the Botany Commons

Recommended Citation

WANG, JING; LIU, ZHONG-XUAN; YU, WEI; KANG, CHAO; and YANG, YI HUA (2024) "A new species of Nigrospora (Apiosporaceae) in Corylus heterophylla in China," *Turkish Journal of Botany*: Vol. 48: No. 5, Article 6. https://doi.org/10.55730/1300-008X.2815 Available at: https://journals.tubitak.gov.tr/botany/vol48/iss5/6

This work is licensed under a Creative Commons Attribution 4.0 International License. This Research Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for inclusion in Turkish Journal of Botany by an authorized editor of TÜBİTAK Academic Journals. For more information, please contact pinar.dundar@tubitak.gov.tr.

Turkish Journal of Botany

http://journals.tubitak.gov.tr/botany/

Turk J Bot (2024) 48: 274-282 © TÜBİTAK doi:10.55730/1300-008X.2815

A new species of Nigrospora (Apiosporaceae) in Corylus heterophylla in China

Jing WANG^(D), Zhong Xuan LIU^(D), Wei YU^(D), Chao KANG^(D), Yi Hua YANG^{*}^(D)

Guizhou Institute of Biology, Guizhou Academy of Sciences, 1 Longjiang Lane, Guiyang, China

Received: 05.04.2024	•	Accepted/Published Online: 21.08.2024	•	Final Version: 25.09.2024	
----------------------	---	---------------------------------------	---	---------------------------	--

Abstract: Corylus heterophylla, the majestic hazelnut tree, stands as one of the esteemed quartets of grand nuts reigning across the landscapes of temperate Asia, Europe, and North America. However, its relationship with endophytic fungi remains thinly explored. This study successfully identified a new species designated as Nigrospora coryli through conjoint analysis of morphology and systematics. The genetic regions examined encompassed ITS, TUB2, and TEF1-a. The detailed morphological description, colour photographs of Macro- and microcharacters are presented.

Key words: Isolate, taxonomy, endophytes, phylogeny

1. Introduction

Nigrospora, a fungal species belonging to the genus within the Ascomycota, Sordariomycetes, Xylariales, and Apiosporaceae, exhibits a diverse range of hosts and can be encountered in various ecological roles, including as endophytes, saprobes, and pathogens (Mason 1927, Wu et al. 2009, Thalavaipandian 2011, Sun et al. 2014, Uzor et al. 2015, Wang et al. 2017, Lee et al. 2019, Tripathi & Joshi 2019, Ukwatta et al. 2019, Oh et al. 2020, Ola et al. 2021, Huang 2021, Lee et al. 2023). The genus Nigrospora contains a variety of species, characterized by black conidia and coniangia (Zimmerman et al. 1902). The distinctive features of these fungi include dark-colored conidia and mycelium, hence the name "Nigrospora" with "Nigro" indicating black (Zimmerman 1902). According to Index Fungorum records, only 46 taxa and 43 species have been recognized since the establishment of Nigrospora (https://www.indexfungorum.org/Names/Names.asp, last accessed Jan. 2024). Zimmerman (1902) established Nigrospora Zimm for N. panici. Following morphological investigations, various new species were identified and published, namely N. canescens, N. aerophila, N. musae, N. gorlenkoana, N. oryzae, N. padwickii, N. panici, N. sacchari, and N. vietnamensis. In 2017, a phylogenetic analysis that employed internal transcribed spacers (ITS), the large subunit (LSU), a fragment of beta-tubulin (TUB2), and the translation elongation factor 1-alpha (TEF1-a) confirmed the classification of Nigrospora within the family Apiosporaceae of the order Xylariales. Additionally, it identified a novel species, Nigrospora vesicularis, as an

Hazelnuts, one of the world's four major nuts, boast a wealth of nutrients, including abundant proteins, vitamin E, folic acid, eight essential amino acids for the human body, and resveratrol (Yu 2019, Li et al. 2008). The genus Corylus, within the Fagale and Betulaceae, encompasses approximately 20 species globally. Wild Corylus species predominantly thrive in temperate regions across Asia, Europe, and North America, with major hazelnut production occurring in countries such as Türkiye, Italy, Spain, the United States, and Portugal (Özenç & Bender - Özenç 2014). In China, nine wild Corylus species exist, namely C. heterophylla Fisch. ex Trautv. var. sutchuenensis Franch., C. wangii Hu., C. ferox Wall., C. yunnanensis (Franchet) A. Camus, C. fargesii Schneid., C. chinensis Franch., C. mandshurica Maxim., C. heterophylla Fisch., and C. wulingensis Q. X. Liu et C. M. Zhang. Ectomycorrhizal fungi establish symbiotic relationships with Corylus species, enhancing the trees' absorption of soil minerals and water, elevating photosynthetic rates, and bolstering stress resistance, thereby fostering the growth and development of Corylus species (Mamoun & Olivier 1993). Furthermore, numerous studies indicate that endophytic fungi can generate a diverse array of

endophyte isolated from an unidentified host plant (Wang et al., 2017). de Queiroz Brito et al. (2023) contributed three new species-Nigrospora endophytica, Nigrospora manihoticola, and Nigrospora pernambucoensis-isolated as endophytes from the stem of Manihot esculenta. These findings further underscore the significance of Nigrospora in the realm of endophytic fungi.

^{*} Correspondence: guizhoufungi@163.com

bioactive secondary metabolites, playing a pivotal role in promoting mycorrhizal formation (Long et al. 2007, Li et al. 2017).

Endophytic fungi, abundant in resources and diverse metabolites with unique chemical structures, exhibit notable antibacterial activity, making them valuable reservoirs for discovering novel antibiotics (Porras et al. 2020). Fan (2012) isolated 8 strains of endophytic fungi from hazelnut bark, which were preliminarily identified Penicillium, Fusarium, Neurospora, Gibberella, as Cladosporium, Hypocrea and Paraphaeosphaeria by morphological identification. Yang et al. (2019) discovered a substantial number of endophytic fungi within the roots of Corylus avellana. Küngas et al. (2020) used high-throughput sequencing techniques to compare the diversity and community structure of fungi residing in the leaves, branches, and trunks of Corylus avellana, revealing a rich abundance of endophytic fungi. Mohammadi Ballakuti et al. (2022) identified 18 endophytic fungi able to produce taxane compounds from the stem, leaves, and inflorescences of Corylus avellana. Fungal metabolites play a pivotal role in stimulating host growth, enhancing development, and fortifying resistance against both biotic and abiotic stresses (Brundrett 2006). Nigrospora, when cocultured with plants, produces metabolites that significantly inhibit various plant pathogens such as Gloeosporium musarum, Penicillium citri, Fusarium oxysporum, Fusarium gramani, Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Plasmodium falciparum, Mycobacterium tuberculosis, and others (Luo et al. 2017; Shang et al.2012; Trisuwan et al. 2009; Wu et al. 2018; Kornsakulkarn et al. 2018; Masayasu et al. 1997; Wang et al. 2013; Ding et al. 2020; Ukwatta et al. 2019). This makes Nigrospora a promising candidate in agricultural plant protection and fungicide development research, showcasing high development potential.

2. Materials and methods

2.1. Sampling and fungal isolation

Samples of healthy and vibrant *Corylus heterophylla* stems were collected from the Mycorrhizal Seedling Cultivation Center at the Guizhou Provincial Institute of Biology in 2023. Fungal endophytes were isolated through the methodologies outlined by Sun et al. (2011) and de Queiroz Brito et al. (2023). Collected fragments underwent sterilization steps: 75% ethanol for 30 s, rinsing in sterile water, 5% NaClO for 30 s, rinsing again, and another 75% ethanol treatment for 30 s, followed by three rinses. Fragments were then dried with sterilized paper and plated on Potato Dextrose Agar (PDA). Cultures are meticulously maintained in PDA and sterile distilled water at the Guizhou Institute of Biology, Guizhou Academy of Sciences.

2.2. Morphological characterization

After 3 days of growth, a hyphal tip was collected and transferred onto PDA, where it was incubated at 25 °C in darkness for 7 days, following the methodology outlined by Brito et al. (2020). Conidia and hyphae were observed and captured using a Nikon H550S light microscope. The characterization of colony and microscopic structures adhered to the methods described by Rayner (1970) and Wang et al. (2017).

2.3. DNA extraction, PCR amplification

DNA extraction and PCR protocols followed Guo et al. (2000) and Wang et al. (2015). ITS5(GGAAGTAAAAGT CGTAACAAGG)+ITS4(TCCTCCGCTTATTGATATGC), 526F(GTCGTYGTYATYGGHCAYGT)+EF2(GGARGTA CCAGTSATCATGTT) and T1(AACATGCGTGAGATTG TAAGT)+BT2B(ACCCTCAGTGTAGTGACCCTTGGC) were used to amplify the ITS, tef1-α (Carbone & Kohn 1999, O'Donnell et al. 1998) and tub2 (Glass & Donaldson 1995).

2.4. Phylogenetic analysis

Sequences of *Nigrospora* and related genera (outgroup) were obtained from Wang et al. (2017), and incorporated into new sequences (Table 1). For alignment, we used the online MAFFT v7 with the L-INS-I strategy (Katoh and Toh 2008). Manual adjustments were made using BioEdit v.7.1.3.0 to ensure alignment accuracy (Hall 1999).

The best model test and phylogenetic tree were investigated in the MEGA X software (Kumar et al. 2018). The most likely tree generated was visualized in FigTree v1.3.1. Nodes with ML-BP \geq 75% were considered significantly supported for monophyly.

3. Taxonomy

Nigrospora coryli J. Wang & Y.H. Yang, sp. nov. (Figure 1) MycoBank no: MB852554

Etymology:—isolated from *Corylus heterophylla* stems. Typification:—CHINA. Guizhou Province, Guiyang

City, in Mycorrhizal Seedling Cultivation Center at the Guizhou Provincial Institute of Biology, isolated from the stem of *Corylus heterophylla* as an endophyte, May 2023, W18, holotype.

Description:—Hyphae 1.4–9 μ m diam, hyaline to pale brown, smooth, septate, branched. Conidiophores similar to vegetative hyphae, short, rare, predominantly reduced to conidiogenous cells. Conidiogenous cells globose to subglobose, 6.0–9.5 × 5.5–9.5 μ m (av. 7.71 × 7.25 μ m), pale brown, smooth, monoblastic, determinate. Conidia globose or subglobose, 13–20.5 μ m diam (av. = 15.91 ± 1.72 μ m), acrogenous, smooth, solitary, shiny, aseptate, black; ellipsoidal, 13.5–17.5 × 11.5–14 μ m (av. = 16.00 ± 1.34 × 13.09 ± 0.94).

Culture characteristics:—On PDA, colonies flat, loose, floccose, surface and reverse creamy white, reaching 7 cm diam in 4 d at 25 °C.

Species	Accession numbers	Host	ITS	tub2	tef1-a
Nigrospora anhuiensis	YL-2024a	Rice	OP677969	PP103614	PP103590
N. aurantiaca	CGMCC 3.18130* = LC 7302	Nelumbo sp. (leaf)	KX986064	KY019465	KY019295
N. aurantiaca	LC 7034	Musa paradisiaca	KX986093	KY019598	KY019394
N. bambusae	CGMCC $3.18327^* =$	Bamboo (leaf)	KY385307	KY385319	KY385313
N. bambusae	LC 7244	Bamboo (leaf)	KY385306	KY385320	KY385314
N. camelliae-sinensis	CGMCC 3.18125* = LC 3500	Camellia sinensis	KX985986	KY019460	KY019293
N. camelliae-sinensis	LC 6304	Camellia sinensis	KX986045	KY019566	KY019370
N. coryli	W18	Corylus heterophylla	PP218065	PP320372	PP461302
N. cooperae	SFC20230324-M03	Heteropogon sp.	OQ726361	OQ735179	OQ735196
N. cooperae	BRIP 72408b	Heteropogon sp.	OP035047	OP039537	OP039538
N. cooperae	BRIP 72440a	Heteropogon sp.	NR185745	OP039540	OP039539
N. covidalis	CGMCC 3.20538	Lithocarpus sp.	NR177177	OK431479	OK431485
N. covidalis	SFC20230324-M04	Lithocarpus sp.	OQ726371	OQ735180	OQ735197
N. chinensis	LC 2696	Lindera aggregata	KX985947	KY019474	KY019424
N. chinensis	LC 3085	Camellia sinensis	KX985970	KY019497	KY019427
N. endophytica	ARM973	Manihot esculenta	OM265233	OP572420	OP572416
N. endophytica	ARM687	Manihot esculenta	OM265226	OP572418	OP572415
N. falsivesicularis	CGMCC3.19678	Saccharum officinarum	MN215778	MN329942	MN264017
N. ficuum	ZHKUCC 22-0143	Ficus sp.	OR164911	OR166318	-
N. globospora	LC15839	Petasites hybridus	OK335212	OK431482	OK431488
N. globospora	CGMCC3.20539	Petasites hybridus	OK335211	OK431481	OK431487
N. gorlenkoana	CBS 480.73*	Vitis vinifera	KX986048	KY019456	KY019420
N. guilinensis	LC 7301	Nelumbo sp. (stem)	KX986063	KY019608	KY019404
N. guangdongensis	CFCC 53917	Cuninghamia lanceolate	NR174814	MT024495	MT024493
N. guangdongensis	Tly068	Cuninghamia lanceolate	MT017510	MT024496	MT024494
N. guilinensis	CGMCC 3.18124* = LC 3481	Camellia sinensis	KX985983	KY019459	KY019292
N. hainanensis	CGMCC 3.18129* = LC 7030	<i>Musa paradisiaca</i> (leaf)	KX986091	KY019464	KY019415
N. hainanensis	LC 6979	<i>Musa paradisiaca</i> (leaf)	KX986079	KY019586	KY019416
N . lacticolonia	CGMCC 3.18123* = LC 3324	Camellia sinensis	KX985978	KY019458	KY019291
N . lacticolonia	LC 7009	<i>Musa paradisiaca</i> (leaf)	KX986087	KY019594	KY019454
N. macarangae	ZHKUCC23-0003	-	PP091035	PP646185	PP646182
N. magnoliae	MFLUCC 19-0112	Magnolia liliifera	NR172443	MW438334	-
N. musae	CBS 319.34*	<i>iviusa paradisiaca</i> (fruit)	KX986076	KY019455	KY019419
N. musae	LC 6385	Camellia sinensis	KX986042	KY019567	KY019371
N. oryzae	LC6759	Oryza sativa	KX986054	KY019572	KY019374
N. oryzae	LC 6760	Oryza sativa	KX986055	KY019573	KY019375
N. oryzae	LC 6761	Oryza sativa	KX986056	KY019574	KY019376
N. oryzae	LC 2693	Neolitsea sp.	KX985944	KY019471	KY019299
N. oryzae	LC 2695	Rubus reflexus	KX985946	KY019473	KY019301

Table 1. Taxa and collections are used for multigene phylogenetic analyses in this study. Sequences produced in the present study are inbold. The other sequences are from Wang et al. (2017) and new species published in the last five years.

Table 1. (Continued.)

N. oryzae	LC 2699	Hamamelis mollis	KX985949	KY019476	KY019303
N. osmanthi	CGMCC 3.18126* = LC 4350	Osmanthus sp	KX986010	KY019461	KY019421
N. osmanthi	LC 4487	Hedera nepalensis	KX986017	KY019540	KY019438
N. pernambucoensis	SCUA-Saf-N16	Arthrocaulon macrostachyum	PP256498	PP263820	PP263806
N. philosophiae-doctoris	CGMCC 3.20540	Disporum sessile	NR177178	OK431484	OK431489
N. pyriformis	CGMCC 3.18122* = LC 2045	Citrus sinensis	KX985940	KY019457	KY019290
N. pyriformis	LC 2688	Lindera aggregata	KX985941	KY019468	KY019297
N. pyriformis	LC 3099	Camellia sinensis	KX985971	KY019498	KY019322
N. rubi	CGMCC 3.18326* = LC 2698	Rubus sp.	KX985948	KY019475	KY019302
N. saccharicola	LC12057	Saccharum officinarum	MN215789	MN329952	MN264028
N. sacchari-officinarum	CGMCC 3.19335	Saccharum officinarum	NR165926	MN329954	MN264030
N. singularis	LC12068	Saccharum officinarum	MN215794	MN329957	MN264033
N. sphaerica	LC 7294	Nelumbo sp. (leaf)	KX985932	KY019602	KY019397
N. sphaerica	LC 7295	Nelumbo sp. (leaf)	KX985933	KY019603	KY019398
N. sphaerica	LC 7298	Nelumbo sp. (leaf)	KX985937	KY019606	KY019401
N. sphaerica	LC 4372	Rhododendron arboreum	KX986012	KY019535	KY019351
N. sphaerica	LC 4447	Unknown host plant	KX98601	KY019537	KY019352
N. sphaerica	LC 5901	Submerged wood	KX986034	KY019556	KY019361
N. sp.	LC 2725	Symplocos zizyphoides	KX985960	KY019487	KY019313
N. sp.	LC 4566	Lithocarpus sp.	KX986022	KY019545	KY019354
N. sp.	LC 6704	Camellia sinensis	KX986047	KY019571	KY019373
N. stoneae	BRIP 75022a	Cyperus aromaticus	OR608744	OR604067	OR604065
N. vesicularifera	MFLUCC:22-0014	Litchi chinensis	ON211313	ON622465	ON622464
N. vesicularis	LC 0322	Unknown host plant	KX985939	KY019467	KY019296
N. vesicularis	CGMCC 3.18128* = LC 7010	<i>Musa paradisiaca</i> (leaf)	KX986088	KY019463	KY019294
N. zimmermanii	CBS 167.26	Unknown	KY385308	KY385318	KY385312
N. zimmermanii	CBS 290.62*	Saccharum officinarum (leaf)	KY385309	KY385317	KY385311
N. zimmermanii	CBS 984.69	Saccharum officinarum (leaf)	KY385310	KY385322	KY385316
Arthrinium vietnamensis	IMI 99670*	Citrus sinensis	KX986096	KY019466	-

Habitat and Distribution:—*Nigrospora coryli* was discovered as an endophyte within the stem of *Corylus heterophylla* at Mycorrhizal Seedling Cultivation Center in Guizhou, China.

Notes:—Strain of *N. coryli* forms a distinct clade in concatenated gene trees with well-support and closely related to *N. chinensis* (Figure 2). The species can be distinguished from each other through the morphology of

Figure 1. *Nigrospora coryli* (from ex-lype strain W18). a-b. Upper surface and reverse overview of culture 7 d after inoculation on PDA medium. c–e. conidiogenous cells giving rise to conidia; f–g. conidia. -Scale bars: c–g = 10 um.

their hyphae and conidia. Specifically, *N. chinensis* exhibits finer hyphae only 2–5 μ m diam, as well as smaller spores measuring 10–14.5 × 7.5–14 μ m (Wang et al. 2017).

4. Discussion

Nigrospora exhibit a versatile range of roles, functioning as saprobes, endophytes, and pathogens. Nigrospora has no host specificity, having already been isolated from *Castanopsis, Camellia, Citrus, Chenopodium, Guarea, Lindera, Napolea, Manihot, Musa, Nopalea, Oxalis, Rosa, Rubus, Saccharum* and so on (Wang et al. 2017; Raza et al. 2019; Chen et al. 2020; Conforto et al. 2019; Santos et al. 2021; Brito et al. 2020). This diversity in ecological niches suggests the potential for varied interactions with different host organisms, impacting plant health and ecosystem dynamics. In this paper, a new strain of *Nigrospora* was isolated from the healthy and vigorous stems of *Corylus heterophylla*. The strain was clustered with *N.chinensis* in phylogeny and then clustered with *N. magnoliae, N. globospora, N. camellinensis, N. singularis,* and *N.pyriformis*. As endophytic fungus, *N.chinensis*, *N. magnoliae*, *N. cameliae-sinensis* were respectively isolated from Geodorum densiflorum labium (Rahayu et al. 2021), Magnolia (Silva et al. 2021), Lumnitzera littorea (*Huang* et al. 2021). It is similar to *N.saccharicola and N. gorlenkoana* in morphology, but The Conidia of *N. saccharicola* was smaller, $9.5-13.5 \times 11-17.5$ um at ellipsoidal, and the Conidia of *N. gorlenkoana* was pale brown to black.

The continuous discovery of new *Nigrospora* species, along with research advancements in understanding their ecology and bioactivity, underscores the dynamic nature of fungal diversity and the importance of ongoing scientific exploration. These findings not only expand our knowledge of fungal biodiversity but also pave the way for innovative applications in agriculture and biotechnology. Besides, the study of endophytic fungi needs to go through a long process, from the discovery of endophytic fungi, classification, culture, and analysis of metabolites, to the relationship between endophytic fungi and hosts.

WANG et al. / Turk J Bot

Figure 2. Multilocus phylogenetic tree based on the combined ITS, tub2, and tef1- α sequences alignment generated from a Maximum likelihood phylogenetic analysis.

5. Conclusion

This article introduces a newly discovered species, *Nigrospora coryli*, and documents a new host record for *Nigrospora* on a global scale. The defining characteristic of Nigrospora coryli is its creamy white colonies, both on the surface and reverse, which exhibit rapid growth on PDA. The hyphae measure 1.49 μ m in diameter, and the conidia are either spherical or ellipsoidal in shape. The research results will provide a valuable reference for the isolation,

References

- Brito AC, de Mello JF, Câmara MP, Vieira JC, Michereff SJ et al. (2020). Diversity and pathogenicity of Botryosphaeriaceae species associated with black root rot and stem cutting dry rot in *Manihot esculenta* in Brazil. European Journal of Plant Pathology 157: 583-598. https://doi.org/10.1007/s10658-020-02024-7
- Brundrett MC (2006). Understanding the Roles of Multifunctional Mycorrhizal and Endophytic Fungi. In: Schulz, B.J.E., Boyle, C.J.C., Sieber, T.N. (eds) Microbial Root Endophytes. Soil Biology vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33526-9_16
- Carbone I, Kohn LM (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91: 553-556. https://doi.org/10.1080/00275514.1999.12061051
- Chen X, Zhang CY, Yang H, Yang M, Cernava T (2020). First report of leaf spot on *Chenopodium album* caused by *Nigrospora pyriformis* in China. Plant Disease 104 (6): 1872-1873. https:// doi.org/10.1094/PDIS-07-19-1369-PDN
- de Queiroz Brito AC, de Mello JF, de Almeida Souza AE, dos Santos Nascimento S, de Souza-Motta CM et al. (2023). Richness of *Nigrospora* spp. (Apiosporaceae) in *Manihot esculenta* in Brazil and the description of three new species. Mycological Progress 22: 37. https://doi.org/10.1007/s11557-023-01887-4
- Ding W, Wu Z, Qin C, Xie J, Chen M et al. (2020). A new phenolic acid derivative from an insect-derived fungus *Nigrospora sphaerica* (Strain No. ZMT05). Chemistry of Natural Compounds 56: 842-844. https://doi.org/10.1007/s10600-020-03165-1
- Fan SL (2012). Selection of functional endophytes in hazelnut species (dissertation, Heilongjiang University). Master.
- Glass NL, Donaldson GC (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61: 1323-1330. https://doi.org/10.1128/ aem.61.4.1323-1330.1995
- Guo LD, Hyde KD, Liew EC (2000). Identification of endophytic fungi from *Livistona chinensis* based on morphology and rDNA sequences. The New phytologist 147 (3): 617-630. https://doi. org/10.1046/j.1469-8137.2000.00716.x

identification, and interaction of endophytic fungi in hazelnuts.

Acknowledgments

This work was financed by the Project of Science and Technology Programs of Guizhou Province [ZK(2022)283], [(2024)171], [(2023)204], the Project of Central Government Financial Fund for Forest Reform and Development [Gui(2024)TG12].

- Hall TA (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT[J]. Nucleic Acids Symposium Series 41 (41): 95-98.
- Huang D, Nong X, Zhang Y, Xu W, Sun L et al. (2021). Two new 2,5-diketopiperazine derivatives from mangrove-derived endophytic fungus *Nigrospora camelliae-sinensis* S30. Natural Product Research 36: 3651-3656. https://doi.org/10.1080/1478 6419.2021.1878168
- Katoh K, Toh H (2008). Recent developments in the MAFFT multiple sequence alignment program. Briefings in bioinformatics 9 (4): 286-98. https://doi.org/10.1093/bib/bbn013
- Kornsakulkarn J, Choowong W, Rachtawee P, Boonyuen N, Kongthong S et al. (2018). Bioactive hydroanthraquinones from endophytic fungus *Nigrospora sp.* BCC 47789. Phytochemistry Letters 24: 46-50.
- Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution 35 (6): 1547-1549. https://doi.org/10.1093/molbev/msy096
- Küngas K, Mohammad B, Põldmaa K (2020). Host tree organ is the primary driver of endophytic fungal community structure in a hemiboreal forest. FEMS Microbiology Ecology 96: fiz199. https://doi.org/10.1093/femsec/fiz199
- Lee DJ, Lee JS, Lee HB, Choi Y (2019). Four Endophytic Ascomycetes New to Korea: Cladosporium anthropophilum, C. pseudocladosporioides, Daldinia eschscholtzii, and Nigrospora chinensis. The Korean Journal of Mycology 47 (3): 187-197. https://doi.org/10.4489/KJM.20190023
- Lee W, Kim D, Perera RH, Kim JS, Cho Y et al. (2023). Diversity of *Nigrospora* (Xylariales, Apiosporaceae) species identified in Korean macroalgae including five unrecorded species. Mycobiology 51: 401-409. https://doi.org/10.1080/12298093.2 023.2283272
- Li S C, Qiao P, Liu SS, Chen J, Guo SX (2017). Research progress in the molecular systematics and symbiotic mechanism of *Tuber* (Tuberaceae, Ascomycota). Mycosystema 36 (2): 131-144 (in chinese).

- Li YH, Shang LQ, Zhang WD, Yang K (2008). Feasibility analysis of the introduction of hybrid hazelnut in the southern region of Mudanjiang. Journal of Heilongjiang Vocational Institute of Ecological Engineering 21 (3): 15-16 (in Chinese).
- Long LK, Yao Q, Ai YC, Zhu HH (2007). Advance in researches on bacteria associated with arbuscular mycorrhizal fungi. Shengtai Xuebao/ Acta Ecologica Sinica 27: 5345-5351 (in Chinese).
- Luo H, Zhou Q, Deng Y, Deng Z, Qing Z et al. (2017). Antifungal activity of the extract and the active substances of endophytic *Nigrospora sp.* from the traditional Chinese medicinal plant *Stephania kwangsiensis*. Natural Product Communications 12. https://doi.org/10.1177/1934578X1701201219
- Mamoun M, Olivier JM (1993). Competition between *Tuber melanosporum* and other ectomycorrhizal fungi under two irrigation regimes. Plant and Soil 149: 211-218. https://doi. org/10.1007/bf00016611
- Masayasu T, Fukushima T, Tsujino Y, Fujimori T (1997). *Nigrosporins* A and B, new phytotoxic and antibacterial metabolites produced by a fungus *Nigrospora oryzae*. Bioscience, biotechnology, and biochemistry 61 (11): 1848-1852. https://doi.org/10.1271/ bbb.61.1848
- Mason EW (1927). On species of the genus *Nigrospora* Zinuuermann recorded on monocotyledons. Transactions of The British Mycological Society 12: 152-165. https://doi.org/10.1016/ S0007-1536(27)80011-2
- Mohammadi Ballakuti N, Ghanati F, Zare-Maivan H, Alipour M, Moghaddam M et al. (2022). Taxoid profile in endophytic fungi isolated from *Corylus avellana*, introduces potential source for the production of Taxol in semi-synthetic approaches. Scientific Reports 12: 9390. https://doi.org/10.1038/s41598-022-13602-6
- O'Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998). Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences of the United States of America 95 (5): 2044-2049. https://doi.org/10.1073/PNAS.95.5.2044
- Oh S, Yang JH, Woo J, Oh S, Hur J (2020). Diversity and Distribution Patterns of Endolichenic Fungi in Jeju Island, South Korea. Sustainability 12: 3769. https://doi.org/10.3390/su12093769
- Ola AR, Lapailaka T, Wogo HE, Henuk JB, Simamora AV et al. (2021). Bioactive secondary metabolites from the mangrove endophytic fungi *Nigrospora oryzae*. Indonesian Journal of Chemistry. https://doi.org/10.22146/ijc.63129
- Porras G, Chassagne F, Lyles JT, Marquez L, Dettweiler M et al. (2020). Ethnobotany and the role of plant natural products in antibiotic drug discovery. Chemical Reviews 121 (6): 3495-3560. https://doi.org/10.1021/acs.chemrev.0c00922
- Özenç N, Bender Özenç D (2014). Effect of iron fertilization on nut traits and nutrient composition of 'Tombul' hazelnut (*Corylus avellana* L.) and its potential value for human nutrition. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science 64: 633-643. https://doi.org/10.1080/09064710.2014.949298

- Rahayu ND, Sukarno N, Listiyowati S, Sandra E (2021). Flower endophytic fungi of *Geodorum densiflorum* endangered orchid. https://doi.org/10.1088/1755-1315/948/1/012037
- Rayner RW (1970). A mycological colour chart. cmi & british mycological society kew.
- Raza M, Zhang Z, Hyde KD, Diao Y, Cai L (2019). Culturable plant pathogenic fungi associated with sugarcane in southern China. Fungal Diversity 99: 1-104. https://doi.org/10.1007/ s13225-019-00434-5
- Santos DV, da Silva R, Aguilera P, da Silva GA, Bezerra JL et al. (2021). First occurrence of *Nigrospora lacticolonia* Mei Wang & L. Cai (Xylariales, Ascomycota) in the Neotropical Region. Check List 17 (5): 1243-1248. https://doi.org/10.15560/17.5.1243
- Shang Z, Li X, Li C, Wang B (2012). Diverse secondary metabolites produced by marine-derived fungus *Nigrospora sp.* MA75 on various culture media. Chemistry & Biodiversity 9 (7): 1338-1348. https://doi.org/10.1002/cbdv.201100216
- Silva NID, Maharachchikumbura S, Thambugala K, Bhat DJ, Hyde KD (2021). Morpho-molecular taxonomic studies reveal a high number of endophytic fungi from *Magnolia candolli* and *M. garrettii* in China and Thailand. mycosphere, 12 (1), 163–237. https://doi.org/10.5943/mycosphere/12/1/3
- Sun X, Xu Y, Cao F, Xu R, Zhang X et al. (2014). Isoechinulin-type alkaloids from a soft coral-derived fungus *Nigrospora oryzae*. Chemistry of Natural Compounds 50: 1153-1155. https://doi. org/10.1007/s10600-014-1189-0
- Thalavaipandian A (2011). Diversity of fungal endophytes in medicinal plants of Courtallam hills, Western Ghats, India. Mycosphere 2: 575-582. https://doi.org/10.5943/ MYCOSPHERE/2/5/7
- Tripathi M, Joshi Y (2019). Endolichenic Fungi: A Case Study from Uttarakhand. In: Endolichenic Fungi: Present and Future Trends. Springer, Singapore. https://doi.org/10.1007/978-981-13-7268-1_6
- Trisuwan K, Rukachaisirikul V, Sukpondma Y, Preedanon S, Phongpaichit S et al. (2009). Pyrone derivatives from the marine-derived fungus *Nigrospora* sp. PSU-F18. Phytochemistry 70 (4): 554-557. https://doi.org/10.1016/j. phytochem.2009.01.008
- Ukwatta KM, Lawrence JL, Wijayarathna CD (2019). The study of antimicrobial, anti-cancer, anti-inflammatory and α-glucosidase inhibitory activities of Nigronapthaphenyl, isolated from an extract of *Nigrospora sphaerica*. Mycology 10: 222-228. https://doi.org/10.1080/21501203.2019.1620892
- Uzor PF, Ebrahim W, Osadebe PO, Nwodo JN, Okoye FB et al. (2015). Metabolites from *Combretum dolichopetalum* and its associated endophytic fungus *Nigrospora oryzae*-Evidence for a metabolic partnership. Fitoterapia 105: 147-150. https://doi. org/10.1016/j.fitote.2015.06.018
- Wang C, Wang J, Huang Y, Chen H, Li Y et al. (2013). Antimycobacterial activity of marine fungus-derived 4-deoxybostrycin and nigrosporin. Molecules 18, 1728-1740. https://doi.org/10.3390/molecules18021728

- Wang M, Liu F, Crous PW, Cai L (2017). Phylogenetic reassessment of *Nigrospora*: Ubiquitous endophytes, plant and human pathogens. Persoonia : Molecular Phylogeny and Evolution of Fungi 39, 118-142. https://doi.org/10.3767/persoonia.2017.39.06
- Wang X, Buyck B, Verbeken A, Hansen K (2015). Revisiting the morphology and phylogeny of *Lactifluus* with three new lineages from southern China. Mycologia 107 (5): 941-958. https://doi.org/10.3852/13-393
- Wu S, Chen Y, Shao S, Wang L, Yu Y et al. (2009). Two new solanapyrone analogues from the endophytic fungus *Nigrospora sp.* YB-141 of Azadirachta indica. Chemistry & Biodiversity 6 (1): 79-85. https://doi.org/10.1002/cbdv.200700421
- Wu Z, Xie Z, Wu M, Li X, Li W et al. (2018). New antimicrobial cyclopentenones from *Nigrospora sphaerica* ZMT05, a fungus derived from *Oxya chinensis* Thunber. Journal of Agricultural and Food Chemistry 66 (21): 5368-5372. https://doi.org/10.1021/ acs.jafc.8b01376

- Yang M, Zou J, Liu C, Xiao Y, Zhang X et al. (2019). Chinese white truffles shape the ectomycorrhizal microbial communities of *Corylus avellana*. Annals of Microbiology, 69: 553-565. https:// doi.org/10.1007/s13213-019-1445-4
- Yu HB (2019). Experimental study on the introduction of large fruit and hazelnut in economic forest tree species. Agricultural Development and Equipment 8: 102-115 (in Chinese).
- Zimmerman A (1902). Ueber einige an tropischen kulturpflanzen beobachtete pilze III. Zentralblatt für Bakteriologie Parasitenkunde 8: 216–221 (in German).