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Abstract: Wireless sensor networks have multiple applications in intelligent environment and structural monitoring.

The major challenge in wireless sensor networks is the power constraint. This paper deals with minimizing the energy

utilization of wireless sensor nodes and maximizing their overall life span. The objective of our proposed scheme is to

find a method for grouping sensors into the maximum number of distinct sensor cover sets to totally monitor the required

area. This problem can be solved by using the disjoint cover set problem. Present optimization techniques take much

time and deliver unsatisfactory results in large-scale networks. This paper proposes a technique that delivers optimal

results in minimal computation time. The results of the proposed technique are superior to existing techniques ranging

from four to more than eighteen times better in various cases.

Key words: Wireless sensor networks, disjoint complete cover set, particle swarm optimization

1. Introduction

A wireless sensor network contains a different number of sensors placed at different positions to monitor the

physical and environmental changes [1]. Sensors are placed in an environment in which battery charging or

replacement is almost impossible. Sensor placement can be random or preplanned [2]. In the case of random

deployment, more than one sensor node may be sensing the same area, thus resulting in inefficient utilization of

the nonrechargeable batteries of the sensor nodes. A lot of work has been done regarding energy conservation.

Although there is a significant amount of literature addressing the issue of efficient energy management [3] in

wireless sensor networks, the sensor scheduling technique [4] is used for efficient energy usage in wireless sensor

networks. In this technique, sensors are divided into a number of disjoint groups and each group turns ON when

the previous group’s energy is less than the specified threshold energy level. As a result, more sensor groups

will sustain the network for a long period of time. In wireless sensor networks, this technique of finding disjoints

sensor cover sets is known as the disjoint set cover (DSC) problem and it is a well-known nondeterministic

polynomial complete problem [5]. Different people have applied different techniques to solve this DSC problem.

Slijepcevic and Potkonjak [5] tried to solve the DSC problem by proposing a greedy deterministic

approach, known as the most constrained minimally constraining (MCMCC) algorithm. The same problem

was approached by Cardei and Du [6] using the mixed integer programming (MCMIP) algorithm. MCMIP

produced more disjoint sets than the MCMCC algorithm, but the latter had lower execution time. In addition

∗Correspondence: muhammad.zubair@iiu.edu.pk
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to the above mentioned algorithms, researchers have also utilized evolutionary algorithms to solve the coverage

problem. In this regard, Lai et al. [7] were among the pioneers. They proposed the genetic algorithm for

maximum disjoint sets (GAMDSC) to solve the DSC problem. However, the GAMDSC is infeasible with an

increased number of sensors. The schedule transition hybrid genetic algorithm (STHGA) was proposed by Hu

et al. [8] to solve the DSC problem.

In this paper, we solve the above-mentioned DSC problem by using a hybrid particle swarm optimization

algorithm (PSODSC). There is a strong reason for choosing particle swarm optimization (PSO) [9] to solve the

DSC problem. From our previous experience in [10–12] and from [13], we have observed that PSO is faster

in convergence than the GA. It reaches the optimal solution in less time than the GA. The major difference

between the GA and PSO is that that the former has more operations to perform than the latter. The GA also

involves more parameters to work with while PSO has fewer parameters for implementation. Finally, the GA

operates by generating a number of generations (also known as a vertical approach), while PSO operates on just

one generation of candidate solutions (also known as a horizontal approach). Results of our proposed algorithm

show that both the time complexity for large-scale wireless sensor networks and efficiency are achieved at the

same time. The paper is organized as follows: Section 2 explains the DSC problem, Section 3 describes the

components of the proposed PSODSC in detail, simulation results of the proposed algorithm are given and

discussed in Section 4, and Section 5 concludes the paper.

1. Problem definition

We consider the target area having dimensions L × W , as shown in Figure 1. Suppose a set S consisting of N

number of wireless sensors is scattered in the desired region. The circular discs show the coverage of sensors;

the area of each disc is the same, meaning that all sensors have equal coverage. The goal of our proposed

algorithm is to search the maximum number of sensors of set D̃ with each set containing disjoint sensors. The

corresponding disjoint sets Sj should satisfy the following conditions:

Width
of
Target
Area
(W)

Length of Target Area (L)

Figure 1. Target area L × W.

1) Each set S = S1 ∪ S2 ∪ S3 . . . SD ⊆ S ,

2) Sj = {Sj1, Sj2, . . . , Sj , . . . Sj max} .

Each sensor set must monitor the whole L × W target area. Sj max is the set of those sensors that are

working in the jth set.

3) No sensor should be used in multiple sensor cover sets, i.e. Sj ∩ Sk = φ where j ̸= k and j, k =

1, 2, 3, 4, . . . D̃ .
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In Figure 1, most of the sensors cover the same target area, which forms fields. Figure 2 gives a closer

look and explains how seven sensors form sixteen fields. When a total N number of sensors are activated, fields

are formed and D̃ is found by using Eq. (1):

D̃=min (|Fj |) j = 1, 2, . . . , nF , (1)

where Fj represents those sensors that cover the field j , and nF represents the total number of fields formed.

In Figure 2, the values of |F1| , |F2| , |F3| , |F4| , |F5| , |F6| , |F7| , . . . , |F16| are 1, 2, 1, 2, 1, 3, 3, 2, 2, 1, 2, 2, 1, 2,

and 1, respectively, so the value of Dmax is 1.

1
2 3

4 5

6

7

8

9

10 11
12

13

14

15

16

Figure 2. Fields formed by all sensors.

The total area covered by a sensor is represented by the coverage percentage of that sensor and this area

is calculated by dividing the whole L × W target area into small, precalculated areas called grids. Only the

grids that are fully covered by a sensor will be considered covered. Figure 3 shows three sensors which are active

(ON) and fully covers 9, 9, and 8 grids. Hence, a total of 23 grids will be covered.

S1

S2

S2 S3

S3

S1

Figure 3. Number of grids covered by sensors S1, S2, and S3.
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2. Proposed hybrid particle swarm optimization algorithm

This paper proposes a PSODSC algorithm for the DSC problem for extending the overall lifetime of a sensor

network. In PSODSC, the key of design is the particle representation of sensors. Additional operators, called

forward encoding scheme and schedule transition operations, are applied to the offspring.

In a forward encoding scheme, sensors are placed as an element in a particle. Each particle contains

a number of different sensors covering different grids. When a particle contains such sensors that collectively

cover the whole target area, L × W , this particle will be saved and its sensors will be turned ON at their turn.

The implementation flowchart of the proposed PSODSC is shown in Figure 4.

SCHEDULE TRANSITION OPERATIONS 

START 

PRIOR COMPUTATIONS 

INITIALIZATION 

FITNESS EVALUATION 

SELECTION 

VELOCITY & POSITION UPDATE
 

LOCAL & GLOBAL BEST SELECTION 

REVERSE MUTATION 

CONDITION 

MET 

STOP 

Figure 4. Flowchart of the proposed PSODSC.

2.1. Prior computations

The whole target area was divided into fields. The term “field” is used to represent that area that is covered

by all sensors. For our computational facility, the whole target area was divided into grids. Fields were then

computed on the basis of these grids, and then finally we attempted to find the set of those sensors that cover

all the grids. The primary objective was to find a large number of such sensor sets.
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2.2. Initialization and representation of particles

Each particle is encoded as a list of integers. Each element of a particle represents one sensor, and the value of

the elements indicates the cover set to which the sensor belongs. Initially, a population with P set of particles

is generated. Each particle Pi in the population is represented as in Eq. (2):

Pi = (pi1, pi2, pi3, pi4, . . . , piN ), (2)

where pij represents scheduling numbers for sensorsj = 1, 2... N, where N is the total number of sensors

deployed and i = 1, 2, 3, 4, . . . , p , where p is the total number of particles in the population. Initially, each

sensor is assigned value 1 for scheduling number, i.e. P i = (1, 1, 1,..., 1), i = 1, 2,..., p means that all sensors

are working. For every particle, K1 elements are randomly selected, where K1 is a user-defined parameter. If

the K1 selected sensors are redundant with respect to the present set, then the values of the selected sensors

will be incremented by 1, which means that these sensors will be in the second schedule. This process is applied

to all particles and then the initial population with P particles is generated.

2.3. Fitness evaluation

The initial fitness evaluation function of a particle Pi in P population is found by using in Eq. (3):

fi = β∗ψi + (1− β)∗ηi, (3)

where ψi , the number of DSC sets, is ψ1, ψ2, . . . , ψi , formed at the end of the initialization process, and

(ηi ∈ 0, 1) shows the coverage percentage of the incomplete sensors cover set (ψi + 1)th . If the coverage

percentage of the incomplete cover set ηi is 1, then the value of ψi adds to 1; otherwise its coverage percentage

value will be added to ηi . The greater the value of ψi , the higher the fitness of particle Pi . The fitness of the

initial population Pi , where i = 1, 2, 3, . . . . . . p, is calculated using the above fitness evaluation formula. The

fitness values of all the particles are sorted in descending order and local best particles and global best particles

are declared. These local best particles and global best particles are nominated for initial population.

2.4. Selection of particles

Select the two particles with the best fitness values from the currently generated population. Let the selected

particles be pi and pj . Now randomly select all the elements from the selected particles and form new offspring

pk by recombining the elements. The fitness of new offspring pk is then calculated by using Eq. (3) and only

the offspring with better fitness values than their parents are added in the new population. In this way, the

new population with pi particles is created. Now the fitness of the new population is calculated according to

the above fitness evaluation expression and fitness values are sorted in descending order to find local and global

bests.

2.5. Velocity and position update

Now the velocity and positions of the particles are updated using Eqs. (4) and (5), respectively.

Updating velocity:

Vim (n) = Vim (n− 1) + Ø1 (pim − bim (n− 1)) + Ø2 (pgm − bim (n− 1)) , (4)

where Vim (n− 1) is the previous velocity, pim−bim (n− 1) is the distance from local best, and pgm−bim (n− 1)

is the distance from global best. The constants Ø1 and Ø2 and their values are problem-dependent. Vim (0)

can be taken as zero for the initial step.
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Updating position:

S (Vim) = 1/1 + e−V
im . (5)

If S (Vim) > rand() then bim (n) = +1 else bim (n) = −1.

Here, bim (n) is the position value. The value of S (Vim) is between 0 and 1. The velocity and position updating

steps will be carried out for all i = 1, 2, 3, . . . , p particles and for all j = 1, 2, 3, . . . , N elements.

2.6. Reverse mutation

The reverse mutation operation randomly selects sensors from an incomplete cover set εηi and places these

sensors into a randomly selected complete cover set ψi . If the selected incomplete cover set εηi is already a

complete cover set ψi , then reverse mutation operation is not performed. Otherwise, it is performed only once

in every generation. For every element eij in the incomplete cover set εηi , if q1 < µ , the mutated element

value is generated as in Eq. (6):

eij = floor (ciq2) + 1, (6)

where q1 and q2 are uniform random numbers between [0, 1] and the floor (ciq2) represents the largest integer

that is less than or equal to ciq2 .

2.7. Schedule transition operations

The schedule transition operations consist of three search operations: mixed schedule transition, forward

schedule transition, and critical schedule transition. These schedule transition operations schedule sensor

redundancy information among all particles.

a) Mixed schedule transition: This transition scheme schedules redundant sensors among complete cover sets

as shown in Figure 5. A sensor is selected randomly from a particle. If it is redundant, it is rescheduled to

another randomly selected complete cover set. If the present scheduling number is the same as the newly

selected scheduling number, then this redundant sensor will be scheduled to an incomplete cover set (εη).

This process is repeated k2 times so that all redundant sensors from all complete cover sets (ψ) will be

moved to εη .

COMPLETE COMPLETE COMPLETE INCOMPLETE 

Figure 5. Mixed schedule operations.

b) Forward schedule transition: This transition scheme schedules redundant sensors among ψ and εη , as

shown in Figure 6. In this way, the coverage percentage of εη increases. For every particle P i , k1 sensors

are randomly selected. If the selected sensor is redundant, the selected sensor is scheduled into the εη .

In this way, the coverage percentage of incomplete cover sets increases.

COMPLETE  COMPLETE COMPLETE INCOMPLETE 

Figure 6. Forward schedule operations.
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c) Critical schedule transition: This transition scheme is designed especially for covering critical fields.

Redundant sensors from ψ are rescheduled to critical fields. Once a critical field is covered by at least

one sensor, then this εη has higher chances to become ψ by using the above-mentioned two scheduling

techniques.

3. Experimental results and discussion

The results of the proposed PSODSC algorithm were compared with the previous two algorithms, GAMDSC

and STHGA, which have been applied to the same problem for finding a solution to the DSC problem. It can be

seen that the performance of the PSODSC algorithm is much better than the above-mentioned two algorithms.

We conducted a number of simulations to compare the results of the proposed PSODSC algorithm with

GAMDSC and STHGA. The simulation platform was MATLAB 7.8.0 (R2009a) in Windows XP/Pentium 4,

2.8 GHz. Each simulation case included 100 runs of the PSODSC algorithm.

Previously, GAMDSC and STHGA were proposed for the same DSC problem. Results of our proposed

scheme are compared with both these schemes and can be viewed in Tables 1 and 2. The detailed comparison

of different parameters, like number of fields formed, average simulation time, number of disjoint sets, and

successful percentage, is as follows: Table 1 summarizes the test results of the proposed PSODSC and GAMDSC

with different numbers of sensors N and sensing ranges R .

By comparing the number of fields of both the algorithms, it can be noted that the number of fields

formed by the proposed PSODSC algorithm is greater than or almost equal to the GAMDSC (see columns 4

and 9 of Table 1).

When total N numbers of sensors are deployed in the whole target area, fields are formed. On the basis

of these fields, we calculate the total number of disjoint cover sets (D̃). The value of this D̃ is different in each

deployment. The average simulation time of the algorithm is the total time required/consumed by the proposed

PSODSC algorithm to find the precalculated number of disjoint cover sets. This time will be different for

different numbers of deployments. Average simulation time increases by the increase of the number of sensors

deployed.

The average simulation time of an algorithm represents the amount of time required for finding the

disjoint sets of sensors (ψ). The average simulation times of both algorithms are shown in columns 7 and 12

of Table 1. When we compare the average simulation times of both algorithms, it is clear that the average

simulation time of the proposed PSODSC algorithm is always much less than that of the GAMDSC for all the

cases from serial number 1 to 9 of Table 1. The difference increases more rapidly as the number of sensors

increases. When the number of sensors increases by 500, the performance of GAMDSC is almost negligible.

The shorter average simulation time means the proposed algorithm is much more effective for the DSC problem

than the GAMDSC.

D̃ is the number of disjoint sets of sensors (ψ) formed. If we compare these D̃ values of the proposed

PSODSC algorithm with the GAMDSC algorithm, it can be clearly seen that the D̃ values of the proposed

PSODSC algorithm are always greater in number than GAMDSC (see columns 6 and 11 from serial number 1

to 9 of Table 1). There is much difference in some cases, like case numbers 5 to 9 in Table 1. This difference

shows the better performance of the proposed PSODSC algorithm compared to GAMDSC, which means that

the proposed algorithm is more suitable for solving the DSC problem than GAMDSC.

The successful percentage (OK %) field shows the overall performance of the algorithm in all respects.

GAMDSC gets 100% in only one case, serial number 1 in Table 1. It gets 0% in all the remaining cases from
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serial number 2 to 9 in Table 1. Thus, GAMDSC is not suitable for solving the DSC problem. However, the

proposed PSODSC algorithm gets 100% success in every case from serial number 1 to 9 in Table 1.

By comparing the number of fields of both algorithms, it can be noted that the number of fields calculated

by the proposed PSODSC algorithm are greater than or almost the same as those of STHGA (Table 2).

Now if we compare the D̃ values of the proposed PSODSC algorithm with STHGA, it can be clearly seen

that the D̃ values of the proposed PSODSC algorithm are greater than or nearly the same as those of STHGA

(see columns 6 and 11 from serial number 1 to 9 in Table 2). Taking cases 1 and 6 as examples, the proposed

PSODSC algorithm formed more disjoint complete cover sets than the STHGA. One thing is very clear from the

results: as the sensing range of the sensors decreases, the number of disjoint complete cover sets also decreases

(see columns 6 and 11, cases 4, 6, and 8 in Table 2). Thus, if we would like to increase the number of disjoint

complete cover sets, we have to increase the sensing ranges of sensors (see columns 6 and 11, cases 1, 2, 3, and

5 in Table 2).

The average simulation times of both the PSODSC algorithm and STHGA are shown in columns 7 and

12 of Table 2. As the number of sensors increases, the average simulation time also increases (see cases 8 and

9 in Table 2). The average simulation time of the proposed PSODSC is less than the average simulation time

of STHGA in all the cases from 1 to 9 (see Table 2) because PSO is more convergent and reaches the optimal

solution faster than GA. The reduced average simulation time means that the proposed PSODSC algorithm is

much more effective for solving the DSC problem than the STHGA.

Both PSODSC and STHGA get 100% success in all the cases from serial number 1 to 9 in Table 2.

In Figure 7, a relation between average simulation time and number of complete cover sets is shown. As

the average simulation time increases, the number of complete cover sets decreases, because in the beginning

most of the sensors have already been used in the disjoint cover sets. Thus, in the end, there are very few

sensors that are not still used in any disjoint set.
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Figure 7. Relation between the total sensors deployed and number of complete cover sets achieved.

As the number of sensors increases, the number of disjoint complete cover sets also increases; more sensors

form more fields, and hence there are more disjoint cover sets. However, this process continues for some initial

time. Eventually, increasing the number of sensors is useless. Figure 8 clearly shows this relation.

Relations between the numbers of fields formed and disjoint complete cover sets are shown in Figure 9.

In the beginning, more fields are formed, but with the passage of time, the number of fields decreases.
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Figure 8. Relation between the total fields formed and number of complete cover sets achieved.

 

 

 

 

 

 

No. of sensors N = 100,120,150,175,200,250,300,400,500,1000
 

Sensing ranges R = 5,8,10,15,20

 

Ok % = 100%
 

 

 
  

0            50              100            150           200                       250           300         350
Average imulation times

N
u

m
b

er
 o

f 
co

m
p

le
te

 c
o

ve
r 

se
ts

 
10

  1
5 

   
   

20
   

   
   

   
   

25
   

  3
0 

Figure 9. Relation between the average simulation time and number of complete cover sets achieved.

4. Conclusions

We proposed a hybrid particle swarm optimization algorithm for DSC, called PSODSC, to solve the DSC

problem. Simulation results show that the PSODSC algorithm performs better than the GAMDSC and STHGA

and gets optimal results in much less time. The improvement in time is in a range of 4 times to more than

18 times faster. The PSODSC algorithm also works well in large-scale wireless sensor networks. Although

PSODSC can get near-optimal solutions, there is still room for improvement. For large-scale dense wireless

sensor networks, there should be more efficient utilization of PSO to avoid trapping and time complexity issues.

In the future, we intend to investigate the hybridization of PSO with various other evolutionary techniques,

especially with differential evolution and ant colony optimization.
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