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On the Weak-Integrity of Trees

Alpay Kırlangıç

Abstract

In this paper the concept of weak-integrity is introduced as a new measure of

the stability of a graph G and it is defined as Iw(G) = min
S⊂V (G)

{|S| +me(G− S)},

where me(G− S) denotes the number of edges of a largest component of G-S. We

investigate the weak-integrity of trees and compute the weak-integrity of a binomial

tree and all the trees with at most 7 vertices. We also give some results about the

weak-integrity of graphs obtained from binary operations.

Key Words: Stability; Connectivity; Integrity

1. Introduction

The stability of a communication network composed of processing stations and com-
munication links is of prime importance to network designers. As the network begins
losing links or stations, eventually there is a loss in its effectiveness. Thus, communica-
tion networks must be constructed to be as stable as possible, not only with respect to
the initial disruption, but also with respect to the possible reconstruction of the network.
To describe the stability of communication networks we have some graph theoretical pa-
rameters, e.g., connectivity, thoughness, binding number and integrity. These parameters
deal with two fundamental questions about the resulting graph. How many vertices can
still communicate? How diffucult is it to reconnect the graph? The integrity is a measure
which deals with the first question. To obtain an answer to the first question, the con-
cepts of Integrity and Edge-Integrity were introduced by Barefoot, Entringer and Swart
as a measure of the stability of a graph [3, 4, 7, 8, 10]. The integrity I(G) of a graph G
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is defined as I(G) = min
S⊂V (G)

{|S|+ m(G− S)}, where m(G − S) denotes the number of

vertices of a largest component of G−S. The edge-integrity I′(G) of a graph G is defined
as I′(G) = min

S⊆E(G)
{|S|+ m(G− S)}, where m(G−S) denotes the number of vertices of a

largest component of G− S. Moreover the Pure Edge-Integrity was introduced by Bagga
and Deogun[6] and is defined as Ip(G) = min

S⊆E(G)
{|S|+ me(G− S)}, where me(G − S)

denotes the number of edges of a largest component of G− S.
Similiarly, to obtain an answer to the first question stated above, we can need the

minumum sum of the numbers of vertices being removed and the numbers of edges of
a largest remaining component. This motivated the author to introduce a new measure
of stability of a graph G in this sense and it is called Weak-Integrity. Formally, the
weak-integrity Iw(G) of a graph G is defined as

Iw(G) = min
S⊂V (G)

{|S|+ me(G− S)},

where me(G − S) denotes the number of edges of a largest component of G − S. Any
set S with property that | S | +me(G − S) = Iw(G) is called an Iw − set of G and it is
obvious that Iw(G) ≥ I(G) − 1 for any graph G.

The aim of this paper is to investigate the weak-integrity of trees. Let T be a tree of
order n and all the trees with n ≤ 7 vertices are given in Appendix [5]. Let Ti be any
tree for 1 ≤ i ≤ 24 as in Appendix.

In Section 2 we give several bounds for any tree T and compute the values Iw(Ti) and
Iw(K2×Ti) for any Ti in Appendix. In Section 3 the weak-integrity of a binomial tree is
given. We also determine the weak-integrity of graphs obtained from binary operations.
Moreover, the values Iw(Bn[Ti]) and Iw(Ti ◦ Bn) for any Ti in Appendix and 2 ≤ n ≤ 4
are calculated. In Section 4 we compare the weak-integrity with other stability measures.

2. The Weak-Integrity of Trees

Firstly we can say the following observation for the weak-integrity:
� � Let S ⊂ V (T ). Since me(T−S) = m(T−S)−1 for every S we have Iw(T ) = I(T )−1
for any tree T.
Now we give the following definitions.

Definition 2.1 The connectivity κ(G) of a graph G is the minumum number of vertices
whose removal results in a disconnected graph, or trivial graph.
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Definition 2.2 A subset S of V is called a covering of G if every edge of G has at
least one end in S. A covering S is a minumum covering if G has no covering S′ with
| S′ |<| S |. The covering number α(G) is the number of vertices in a minumum covering
of G.

Definition 2.3 A vertex dominating set for a graph G is a set S of vertices such that
every vertex of G belongs to S or is adjacent to a vertex of S. The minumum cardinality
of a vertex dominating set in a graph G is called the vertex dominating number of G and
it is denoted by σ(G).

Theorem 2.1 Let S be a dominating set of T. For any tree T,

Iw(T ) ≤ σ(T )+ | E(T − S) | .

Proof. If S be a dominating set, then each one of vertices in T-S is adjacent to vertices
of S and the graph T-S has not any cycle. So if we remove the vertices of S from T, then
me(T − S) ≤| E(T − S) |. This completes the proof. 2

The values of σ(Ti), α(Ti) and Iw(Ti) for the trees in Appendix are given in Table 1.
From these values we make the following observation:
�� If σ(T ) = α(T ) for any tree T, then Iw(T ) ≤ σ(T ).

Table 1. The values of σ(Ti), α(Ti) and Iw(Ti) for the trees in Appendix.

i σ(Ti) α(Ti) Iw(Ti) i σ(Ti) α(Ti) Iw(Ti)
1 1 1 1 13 2 2 2
2 1 1 1 14 3 3 3
3 2 2 2 15 2 3 3
4 1 1 1 16 3 3 3
5 2 2 2 17 3 3 2
6 2 2 2 18 2 2 2
7 1 1 1 19 3 3 2
8 3 3 3 20 2 2 2
9 2 2 2 21 2 2 2

10 3 3 2 22 1 1 1
11 2 2 2 23 3 3 3
12 1 1 1 24 2 2 2
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Next we give the definition of Cartesian product between two graphs.

Definition 2.4 The (Cartesian) product G1 × G2 of graphs G1 and G2 has V (G1) ×
V (G2) as its vertex set and (u1, u2) is adjacent to (v1, v2) if either u1 = v1 and u2 is
adjacent to v2 or u2 = v2 and u1 is adjacent to v1.

Now we give an upper bound for Iw(K2 × T ).

Theorem 2.2 For any tree T, Iw(K2 × T ) ≤ 3Iw(T ).

Proof. Let S be a subset of V(T) such that | S | +me(T − S) = Iw(T ). If we remove
2 | S | vertices from graph K2 × T , then

me(K2 × T − 2 | S |) = 2me(T − S) +m(T − S),

where m(T-S) is the number of vertices of a largest component of T-S. Since m(T −S) =
me(T − S) + 1 for any tree T, we have

Iw(K2 × T ) = 2 | S | +2me(T − S) +m(T − S)

= 2(| S | +me(T − S)) + me(T − S) + 1

= 2Iw(T ) +me(T − S) + 1

= 2Iw(T ) + Iw(T )− | S | +1. (1)

Since | S |≥ κ(T ) = 1 for any tree T, we have

Iw(T )− | S |≤ Iw(T ) − κ(T ) = Iw(T )− 1. (2)

If we substitue (2) in (1), then this completes the proof. 2

In Table 2 we give the values Iw(K2 × Ti) for the trees in Appendix.

Definition 2.5 The distance d(u,v) between two points u and v in G is the length of a
shortest path joining them if any; otherwise d(u, v) = ∞. A shortest u-v path is often
called a geodesic. The diameter diam(G) of a connected graph G is the length of any
longest geodesic.
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Let deg(x) be the degree of any vertex x in T. In the following theorem we consider a
tree T with diam(T ) = 4(Figure 1). Any tree with diam(T ) = 4 is isomorphic to the
following tree or its induced subgraph T′ with diam(T ′) = 4.

Table 2. The values of Iw(K2 × Ti) for the trees in Appendix.

i Iw(K2 × Ti) i Iw(K2 × Ti) i Iw(K2 × Ti)
1 2 9 5 17 6
2 3 10 6 18 5
3 4 11 5 19 6
4 3 12 3 20 5
5 5 13 5 21 5
6 5 14 7 22 3
7 3 15 6 23 7
8 6 16 7 24 5
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Figure 1. A tree with diam(T ) = 4.

Let x be a root vertex of T and let x1, x2, ..., xn be the vertices which are adjacent to x
where deg(x1) ≥ deg(x2) ≥ ... ≥ deg(xn)(Figure 1).

Theorem 2.3 Let T be a tree with diam(T ) = 4. Then

Iw(T ) = min{α(T ), min
0≤k<n

{k+ deg(xk+1)}}.
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Proof. Consider the tree in Figure 1 and let S be a Iw − set of T. Then we have two
cases, depending on S.

Case 1. If S is a cover set, then me(T − S) = 0 and so

Iw(T ) =| S | +me(T − S) = α(T ). (3)

Case 2. Let 0 ≤ k < n. Suppose that S contains both root vertex x and k vertices
which are x1, x2, x3, ..., xk−1, xk with order. (It is obvious that if k=0, then S contains
only the vertex x.) Then me(T − S) is equal to

d(
n∑
i=1

deg(xi) −
k∑
i=1

deg(xi))/(deg(x)− k)e − 1 = deg(xk+1)− 1

and

Iw(T ) = min
0≤k<n

{k + deg(xk+1)}. (4)

Hence the result follows by (3) and (4). 2

3. On the Weak-Integrity of Binomial Trees

In this section we consider the binomial tree. The binomial tree Bn is an ordered tree
defined recursively. The binomial tree B0 consists of a single vertex. The binomial tree
Bn consists of two binomial trees Bn−1 that are linked together: the root of one is the
leftmost child of the root of the other (Figure 2). In Figure 2 we call the vertex u top
vertex of Bn .
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Figure 2. A Binomial Tree.

Now we give the weak-integrity of a binomial tree Bn.
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Theorem 3.1 Let n ≥ 1 be a positive integer. Then

Iw(Bn) =


2
n+1

2 − 1, if n is odd,

3× 2
n
2−1 − 1, if n is even.

Proof. Let S be a subset of V (Bn) such that | S | +me(Bn − S) = Iw(Bn). If we
consider the vertices of S, then we have two cases:

Case 1. First, if we remove top vertex u of Bn, then the remaining graph have the
components Bn−1, Bn−2, ..., B0 and the largest component has 2n−1−1 edges. Second, if
we remove the top vertex of Bn−1, then we have the components Bn−2, Bn−3, ..., B0 and
the largest component has 2n−2 − 1 edges. If we continue to remove the top vertices as
mentioned above, the largest component has 2n−k − 1 edges at kth step. So

Iw(Bn) = 2n−k − 1 + k (5)

Case 2. First, if we remove any vertex other than top vertex u of Bn, then the largest
component has 2n−1 edges. Second, if we remove one more vertex from the remaining
graph (except any top vertex), then the largest component has 2n−2 edges. If we continue
to remove the vertices as mentioned above, the largest component has 2n−k edges at the
kth step. So

Iw(Bn) = 2n−k + k. (6)

From (5) and (6) we have 2n−k + k > 2n−k − 1 + k for every n,k. That is, iteratively at
each step we must remove top vertex.

If we remove r top vertices where 2i ≤ r < 2i+1 and 0 ≤ i ≤ n − 1, then one of the
remaining connected components has 2n−(i+1) − 1 edges. Therefore

Iw(Bn) = min
r
{2r + 2n−(r+1) − 1}.

The function 2r + 2n−(r+1) − 1 takes its minimum value at r =
n− 1

2
when n is odd

and r =
n

2
when n is even. Hence if we substitute the minumum values in the function

2r + 2n−(r+1) − 1, the proof is completed. 2
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Next we give the definition of the composition (also known as the lexicographic
product) of two graphs. In the following theorem m(G − S) denotes the number of
vertices of a largest component of G-S.

Definition 3.1 The composition G1[G2] of two graphs G1 and G2 has its vertex set
V (G1) × V (G2), with (u1, u2) adjacent to (v1, v2) if either u1 is adjacent to v1 in G1 or
u1 = v1 and u2 is adjacent to v2 in G2.

Theorem 3.2 Let T be a tree of order m. Then Iw(Bn[T ]) is equal to

min{ min
0≤r<n

{m2r +m2(2n−(r+1) − 1) + 2n−(r+1) | E(T ) |}, m2n−1 + Iw(2n−1T )}.

Proof. Let X be a subset of V (Bn [T ]) such that | X | + me(Bn[T ]−X) = Iw(Bn[T ]).
The graph Bn[T ] has m subgraphs Bn and let S be a set of removing vertices from any
graph Bn. Then we have the following two cases, depending on X:

Case 1. Suppose that X contains only vertices of subgraphs Bn in Bn [T ]. By
Theorem 3.1 we know that S must contain the top vertex of Bn at each step. Hence
we must remove X = m | S |= m2r vertices from Bn[T ] and me(Bn[T ] − X) =
m2(2n−(r+1) − 1) + 2n−(r+1) | E(T ) |. So

Iw(Bn[T ]) = min
0≤r<n

{m2r + m2(2n−(r+1) − 1) + 2n−(r+1) | E(T ) |}. (7)

Case 2. Suppose that X contains the vertices of subgraphs Bn but also the vertices
of subgraphs T in Bn[T ]. Then S must be a cover set of Bn and me(Bn[T ]−X) =| E(T ) |.
Moreover, the number of remaining components with edges | E(T ) | is exactly β(Bn).
Since | S |= α(Bn) = 2n−1 and β(Bn) = 2n−1, we have

Iw(Bn[T ]) = m2n−1 + Iw(2n−1T ) (8)

The proof is completed by (7) and (8). 2

In Table 3 we give the values Iw(B2 [Ti]), Iw(B3[Ti]) and Iw(B4[Ti]) for the trees in
Appendix.
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Table 3. The values of Iw(B2[Ti]), Iw(B3[Ti]) and Iw(B4[Ti]) for the trees in Appendix.

i Iw(B2[Ti]) Iw(B3[Ti]) Iw(B4[Ti]) i Iw(B2[Ti]) Iw(B3[Ti]) Iw(B4[Ti])

1 5 9 14 13 16 29 53

2 8 14 25 14 18 34 62

3 11 19 35 15 19 34 62

4 10 19 35 16 18 34 62

5 13 24 44 17 17 33 62

6 13 24 44 18 18 34 62

7 12 24 44 19 17 33 62

8 16 29 53 20 17 33 62

9 16 29 53 21 18 34 62

10 15 29 53 22 16 32 62

11 15 29 53 23 18 34 62

12 14 28 53 24 18 34 62

Now we consider the corona operation.

Definition 3.2 The Corona G1 ◦ G2 is defined as the graph G obtained by taking one
copy of G1 of order n and n copies of G2, and then joining the ith vertex of G1 to every
vertex in the ith copy of G2.

Next we give the values of Iw(Ti ◦ B2), Iw(Ti ◦ B3) and Iw(Ti ◦ B4) for the trees in
Appendix.

Table 4. The values of Iw(Ti ◦B2), Iw(Ti ◦ B3) and Iw(Ti ◦ B4) for the trees in Appendix.

i Iw(Ti ◦ B2) Iw(Ti ◦ B3) Iw(Ti ◦B4) i Iw(Ti ◦ B2) Iw(Ti ◦ B3) Iw(Ti ◦ B4)

1 5 7 9 13 9 13 19

2 6 9 12 14 10 14 21

3 7 11 15 15 10 14 21

4 7 11 15 16 10 14 21

5 8 12 17 17 10 14 21

6 8 12 17 18 9 14 21

7 8 12 17 19 10 14 21

8 9 13 19 20 9 14 21

9 9 13 19 21 9 14 21

10 9 13 19 22 8 14 21

11 9 13 19 23 10 14 21

12 8 13 19 24 9 14 21
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The following theorem gives the value Iw(Bn ◦ T ) for every n.

Theorem 3.3 Let T be a tree with m vertices and q edges. Let r = b ln (2n−1(m+ q + 1))
ln 4

c.

Define f(r) = {2r + 2n−(r+1)(m+ q + 1)− 1} if m+ q + 1 < 2n+1. Then

Iw(Bn ◦ T ) = min{2n + q, 2n + Iw(2nT ), f(r)}.

Proof. Let S be a subset of V (Bn ◦ T ). Then we have two cases, depending on S.
Case 1. If S contains all vertices of graph Bn, then we have

Iw(Bn ◦ T ) = min{2n + q, 2n + Iw(2nT )}. (9)

Case 2. If S contains 2r vertices of graph Bn where 0 ≤ r ≤ n − 1, then we have
me(Bn ◦ T − S) = 2n−(r+1)m+ 2n−(r+1)q + 2n−(r+1) − 1. Then

Iw(Bn ◦ T ) = min
r
{2r + 2n−(r+1)(m+ q + 1)− 1}.

The function 2r + 2n−(r+1)(m+ q + 1)− 1 takes its minumum value at

r = b ln (2n−1(m+ q + 1))
ln 4

c if (m+ q + 1) < 2n+1. Consequently, Iw(Bn ◦ T ) is equal to

f(r) = {2r + 2n−(r+1)(m+ q + 1)− 1} if m+ q + 1 < 2n+1. (10)

Hence the result follows from (9) and (10). 2

The following theorems give the weak-integrity of graphs Bn ×Cm and Bn × Pm.

Theorem 3.4 let a = bn
2
c and b = b

√
(2n+1 − 1)m√

2n
c, where m and n are positive

integers. Then

Iw(Bn × Cm) = min{m(2a + 2n−a − 1), 2nb+ (2n+1 − 1)bm− b
b
c − 2n}.

Proof. Let S be a subset of V (Bn×Cm) that achieves the weak-integrity of Bn×Cm.
Then we have two cases, depending on S.

Case 1. If we remove | S |= m2r vertices where 0 ≤ r ≤ n− 1, then
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me(Bn ×Cm − S) = 2n−(r+1) | E(Cm) | +(2n−(r+1) − 1)m.

Since | E(Cm) |= m, we have

Iw(Bn × Cm) = min
r
{m2r + 2m2n−(r+1) −m}

= m min
r
{2r + 2n−r − 1}.

The function 2r + 2n−r − 1 takes its minumum value at r = bn
2
c.

Case 2. If we remove | S |= 2nr vertices where 1 ≤ r ≤ m− 1, then we have

me(Bn ×Cm − S) = 2n(bm− r
r
c − 1) + (2n − 1)bm− r

r
c.

So

Iw(Bn × Cm) = min
r
{2nr + bm− r

r
c(2n+1 − 1) − 2n}.

The function 2nr+bm− r
r
c(2n+1−1)−2n takes its minumum value at r = b

√
(2n+1 − 1)m√

2n
c.

If we substitute the minumum values in the functions, the proof is completed. 2

Theorem 3.5 Let a =
ln( (2m−1)(2n−1)

m )
ln 4

and b = b
√

(2n+1 − 1)(1 +m)√
2n

c − 1, where m

and n are positive integers. Let’s define f(a) as

f(a) =


m2bac + (2m− 1)2n−(bac+1) −m, if n is odd,

m2dae + (2m− 1)2n−(dae+1) −m, if n is even.

Then

Iw(Bn × Pm) = min{f(a), 2nb+ bm− b
b+ 1

c(2n+1 − 1)− 2n}.

Proof. The proof follows directly from Theorem 3.4. 2
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4. Conclusion

In this paper we introduce a new stability measure. There are many examples of
graphs which suggest that Iw is a suitable measure of stability in that it is able to
distinguish between graphs that intuitively should have different levels of stability.

For example consider the trees T14, T15, T16, T17, T18, T19, T21 and T24 in Appendix.
First we give the values integrity, edge-integrity, pure-edge-integrity and weak-integrity
of these trees in a table as follows:

Table 5. The values of I, I ′, Ip and Iw for some trees in Appendix.

i I(Ti) I′(Ti) Ip(Ti) Iw(Ti)

14 4 5 4 3
15 4 5 4 3
16 4 5 4 3
17 3 5 4 2
18 3 5 4 2
19 3 5 4 2
21 3 5 4 2
24 3 5 4 2

Since the edge-integrity of these trees are the same, it does not distinguish these
trees. Similiarly, the pure-edge-integrity does not also distinguish these trees. Now let
A = {T14, T15, T16} and B={T17, T18, T19, T21, T24}. Then the weak integrity distinguishes
the sets of trees A and B. Similiarly, the integrity distinguishes the sets of trees A and B.

The comparison of weak-integrity to the integrity, edge-integrity and pure-edge-
integrity of the trees indicates that the weak-integrity can be a useful measure of graph
stability.
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Appendix

All the trees with p ≤ 7 [5]
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