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Abstract: We present mechanical calculations on suspended ultrathin membranes on circular holes. Our focus
is group-6 transition metal dichalcogenides. We provide computations on strain, stress, deflection, surface area,
volume, radius of curvature, gradient, and resonance frequency of membranes. We also provide code in the
Python programming language so anyone can repeat these calculations on their material of interest.
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1. Introduction
Numerous studies and reviews have been conducted on the mechanics of atomically thin or so-called
two-dimensional (2D) membranes [1–7]. Efforts to obtain suspended 2D materials enabled experiments
that revealed their fundamental properties [8–15]. Researchers also demonstrated that 2D materials
exhibit drastically different characteristics when suspended. They reported that properties such as
thermal conductivity [16, 17], electron mobility [18], chemical effect of the substrate [19], exciton
binding energy, and optical dielectric function [20] change significantly if the 2D material is suspended.
Achieving strain on suspended 2D materials and studying their mechanical properties has been one of
the main branches under scope. In this work, we present a tool to perform mechanical computations
on suspended 2D membranes. We provide a code in the Python programming language that can
calculate the mechanical properties of 2D membranes, such as strain, stress, deflection, surface area,
volume, radius of curvature, gradient, and resonance frequency.

2. Mechanical properties of the materials
We list the mechanical properties of MoS2 , MoSe2 , MoTe2 , WS2 , WSe2 , graphene, aluminum, and
gold in Table 1 below. We limit the listing to the parameters needed for the calculations mentioned
in this study. The properties of aluminum and gold belong to the bulk thickness, and they may need
to be adjusted for the thicknesses of the membranes studied. Many publications on the mechanical
properties of the 2D materials listed in Table 1 are available in the literature, but we only mention
those that report results on all [21]. Thicknesses of the graphene and other 2D materials are from Ref.
[22, 23]. We cite the typical values of breaking strain and strength of MoS2 available in the literature
so that the maximum pressure the membrane can sustain can be calculated [24, 25].
∗Correspondence: aslan@bogazici.edu.tr
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Table 1. Mechanical properties of the materials of interest.

Material Thickness
(nm)

E2D = E3Dt
(N/m)

E3D

(GPa)

Breaking
strength
(GPa)

Breaking
strain
(%)

Poisson’s
ratio

Mass
density
(g/cm3)

MoS2 0.615 [23] 124.5 [21] 202.4 [21] 16-30 [25] 6-11 [25] 0.25 [21] 5.06
MoSe2 0.646 [23] 103.9 [21] 160.8 [21] 0.23 [21] 6.9
MoTe2 0.698 [23] 79.4 [21] 113.8 [21] 0.24 [21] 7.7
WS2 0.618 [23] 139.6 [21] 225.9 [21] 0.22 [21] 7.5
WSe2 0.649 [23] 116.0 [21] 178.7 [21] 0.19 [21] 9.32

Graphene 0.335 [22] 341.0 [21] 1017.9 [21] 0.18 [21] 2.27
Aluminum Bulk 68.0 0.36 2.71

Gold Bulk 77.2 0.42 19.3

Even though we focus on atomically thin materials in this study, we will also inspect ultrathin
folio of metals such as aluminum and gold that have been commercially available. Large-size aluminum
folios as thin as 7.5 nm and gold folios as thin as 1 µm are available in the market. Researchers
demonstrated thinner gold folios that may not be available commercially. As such metals are stable,
sturdy, and have high conductivity and close to 1 optical reflectance, using them as suspended
membranes might be preferable over using 2D materials for specific applications. We present some
calculations on metal membranes as well.

3. Structure and Hencky’s solution

(a)                        (b)

Figure 1. Schematic of a membrane on a circular hole ((a) side view, (b) top view). Blue arrows indicate the
direction of the deflection under external air pressure.

We inspect the behavior of a uniform membrane placed on a circular hole under uniform air
pressure. Figure 1 depicts the schematic of the structure. We assume the membrane does not slide
on or delaminate from the surface (clamped at the hole edge). For the simplicity of the calculations,
we assume uniform lateral loading (so-called Hencky’s problem) instead of uniform pressure for the
calculations. The uniform loading model neglects the radial pressure component on the deflected
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membrane. We will review the validity of that assumption afterward. The biaxial strain, ϵ , vertical
deflection, h , radial and tangential stress, Nr and Nθ at the center of a uniformly loaded circular
membrane clamped at radius a are given by [26]:

ϵ(r = 0) =
(1− ν) b0

4

(
Pa

E3Dt

) 2
3

,

h(r = 0) =
a

b0

(
Pa

E3Dt

) 1
3

,

Nr(r = 0) = N θ (r = 0) =
b0
4
E3Dt

(
Pa

E3Dt

) 2
3

,

ϵ(r = 0) =
(1− ν) b30

4

(
h

a

)2

(1)

Here P is the air pressure difference between the two sides of the membrane (which we refer
to as ”pressure” in this work), ν is Poisson’s ratio of the membrane, b0 is a parameter dependent
on ν , E3D is the 3D Young’s modulus (modulus of elasticity), t is the membrane thickness, r is the
radial distance from the center. The quantity E3Dt is also called the 2D elastic modulus, E2D . We
assume all these material properties remain invariant as the sample deflects and stretches. We also
assume that there is no pre-tension on the membrane; when the pressure is zero, the tension is also
zero. We compute the strain, ϵ , vertical deflection, h , radial and tangential stress, Nr and Nθ for
0 ≤ r ≤ a by using equations (3, 4, 12, 20-31, 34) in Ref. [26]. We show the calculated deflection,
strain, and stress at the center of a 1L WS2 membrane as a function of pressure for various diameter
values in Figure 2. It shows that the deflection is very sensitive to slight pressure variations around
low-pressure levels as the deflection is proportional to the one-third power of pressure. However, strain
and stress are proportional to the two-thirds power of pressure, and they are less sensitive to pressure
for low-pressure levels. Deflection is proportional to the four-third power of the radius, and the above
effect is more apparent for larger radius values.

(a)                (b)                 (c)

Figure 2. (a) Deflection, (b) strain, and (c) stress at the center of the membrane as a function of pressure
(material is 1L WS2 ).

To examine the distribution of the strain, vertical deflection, and radial and tangential stress on
the membrane, we compute them for 0 ≤ r ≤ a by using equations (3, 4, 12, 20-31, 34) in Ref. [26].
Figure 3 shows the calculations on a 1L WS2 with a diameter of 12 µm at various pressure values. It
is worth noting that the radial strain slowly decreases away from the center, whereas the tangential
strain is zero at the edges of the membrane due to the boundary condition.

117



ASLAN/Turk J Phys

(a)                (b)                 (c)

Figure 3. (a) Deflection, (b) strain, and (c) stress as a function of radial distance on the membrane (material
is 1L WS2 ).

Once the deflection of the membrane is calculated everywhere on the membrane, we can calculate
the radius of curvature, surface area, volume, and gradient. We refer to the volume between the flat
and deflected membrane as the volume of the membrane, V . It can be calculated as the sum of the
volume of the infinitely small cylindrical shells with radius r , thickness dr , and height h (r) . The
area of the membrane, A , can be calculated as the sum of the area of the infinitely small rings. They
are given in the equation below:

V =

∫ a

0
2πrh (r) dr,

A =

∫ a

0

2πr

cos (θ(r))
dr =

∫ a

0

2πr√
1 + tan2 (θ (r))

dr =

∫ a

0

2πr√
1 +

(
dh
dr

)2 dr,
(2)

We compare the volume and area of the membrane given in eq. (2) to that of a paraboloid

(Vparaboloid = 1
2πha

2, Aparaboloid = πa4

6h2

[(
1 + 4

(
h
a

)2) 3
2 − 1

]
) with the same height and radius in

Figure 4. The relative deviation of the membrane’s area from the paraboloid’s area is minimal,
even for high-pressure values. Both of the area values reduce to πa2 for small deflection. The same
deviation is large in the case of the volumes. Interestingly, the volume deviation is independent of
pressure. The volume deviation depends on the material but not the radius. Volume and deflection
have a similar dependence on pressure, as expected. The paraboloid approximation underestimates
the membrane’s area and volume in all cases.

We calculate the angle between the tangential in the outward direction and the horizontal, θ (r) ,
the focal length as a function pressure as F (r) = R(r)

2 from the radius of curvature, R (r) , and for
comparison, the focal length of a paraboloid with the same maximum deflection as the membrane at
its center Fparaboloid (r = 0) as follows:
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(a)           (b)

(c)           (d)

Figure 4. Comparison of calculated volumes and areas of a monolayer WS2 membrane under air pressure and
a paraboloid shape with the same height as the maximum deflection of the membrane.

θ(r) = tan−1

(
dh

dr

)
,
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)2) 3
2

2
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a2

4h (r = 0)
= a

b0
4

(
E3Dt

Pa

) 1
3

(3)

Figure 5 shows the calculations mentioned above on a membrane with a diameter of 12 µm. The
angle at the hole’s edge goes well above 10 degrees, making it nonnegligible, even at a pressure of 1
atm. R (r) varies relatively little around the center. The focal length at the center is on the order
of the hole’s radius and decreases with the third power of pressure. The focal length values at the
centers of the parabola and membrane are close to each other for large pressure values. However, the
membrane’s shape deviates from a parabola, and the focal lengths of the two differ more away from
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the center.

(a)                (b)                    (c)

Figure 5. (a) The angle between the tangential to the membrane in the radial and horizontal directions, (b)
the radius of curvature of the membrane in the radial direction for various pressure levels, (c) focal length at
the center of the membrane and parabola as a function of pressure (material is 1L WS2 ).

For the validity of assuming uniform loading instead of uniform pressure, the loading parameter
Pa/E3Dt should be less than 0.1, as Fichter reported. In our calculations, it is around 0.015 for P

= 5 atm and a = 4 µm on a typical monolayer membrane. Thus, that assumption is valid for the
calculations in this study, and we use the uniform loading model instead of the more complicated
uniform pressure model. However, as Fichter stated, the uniform-pressure loading causes a more
nearly spherical shape that is even farther away from the ideal paraboloid than the shape predicted
by the solution to Hencky’s problem [26].

4. Resonance frequency of 2D membranes
We discuss the resonance frequency of suspended ultrathin membranes. We consider a circular
membrane placed on a hole and clamped at the edges of the hole. The structure will possess membrane-
like and plate-like vibrations. For a membrane-like and a plate-like circular resonator, the resonance
frequencies are given by [27, 28]:

fmembrane
m,n =

jm,nc

2πa
,

fplate
m,n =

(γm,na)
2

2πa2
√
12(1− ν2)

cBt,

(4)

where jm,n are the zero crossings of the Bessel functions with Jm (xn)=0, a is the radius,

c =
√

T
ρt is the speed of transverse waves, T is the initial pre-tension (in N/m), ρ is the mass density,

and t is the thickness. The fundamental frequency of a membrane-like resonator is fmembrane
0,1 = 2.4048c

2πa .
γm,na gives the resonance frequencies of plate-like resonators with the fundamental value of

γ0,1a=3.19622, and cB =
√

E3D
ρ is the longitudinal wave speed in bars. The fundamental frequency

of a plate-like resonator is fplate
0,1 = 10.2158

2πa2
√

12(1−ν2)
cBt . As stated by Garrett, the vibration of thin

plates has the same relationship to the vibration of membranes as the flexural vibration of bars has to
the transverse vibrations of a limp string [28]. The resonance frequency of the mechanical resonators

in the cross-over regime of plate to membrane can be calculated as f ∼=
√
fplate2 + fmembrane2 [14].
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Figure 6a shows the lowest resonant frequency of a circular 1L WS2 membrane as a function of
the membrane diameter. Figure 6b shows the lowest resonant frequency of a 2 µm diameter circular
WS2 membrane for various thicknesses. We take the pre-tension in the WS2 membranes as 0.02 N/m
[6, 13].

(a)              (b)

Figure 6. (a) The fundamental frequency of a circular 1L WS2 membrane as a function of diameter, (b) the
fundamental frequency of a 2 µm diameter circular WS2 membrane for various thicknesses. In both cases, the
pre-tension in the membrane is 0.02 N/m. Membrane and plate-like vibrational frequencies are in red and blue,
respectively.

As a comparison, we repeat the calculations above on an aluminum membrane about 1500
times greater in dimensions. Figure 7a shows the lowest resonant frequency of a circular 1 µm thick
aluminum membrane as a function of diameter. Figure 7b shows the lowest resonant frequency of a
3000 µm diameter circular aluminum membrane for various thicknesses. To determine a reasonable
pre-tension on the aluminum membrane, we calculate the stress on a 2 µm diameter circular 1L WS2

membrane and find that a pressure of around 0.015 atm causes an average stress of about 0.02 N/m.
The same pressure causes an average stress of about 20 N/m on the 3000 µm diameter and 1 µm thick
aluminum membrane. In both cases shown in Figure 7, the pre-tension in the aluminum membranes
is 20 N/m.

In both materials, the frequency is dominated by the membrane-like vibrations at small thick-
nesses, but plate-like vibrations become more dominant with increasing thickness. The resonant
frequencies of both components decrease with increasing diameter.

5. Codes for calculations
The model used for the calculations in this study has been used in several studies and yielded material
properties that agree with the experimental results [11, 12, 14, 20, 29–31]. As the model has been so
helpful for studies on 2D materials, a simple tool ready to use will benefit the scientific community.
We are including the link to the codes we used to perform the calculations given as supplemental
material in this publication (see ”Data availability” section at the end). Our codes can be modified
to repeat the calculations on other materials or for different dimensions or parameters.

6. Conclusions
We have performed mechanical calculations on uniform suspended ultrathin membranes on circular
holes. We have reported strain, stress, deflection, surface area, volume, radius of curvature, gradient,
and resonance frequency calculations in suspended ultrathin membranes. Applications relying on thin
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(a)              (b)

Figure 7. (a) The fundamental frequency of a circular 1 µm thick aluminum membrane as a function of diameter,
(b) the fundamental frequency of a 3000 µm diameter circular aluminum membrane for various thicknesses. In
both cases, the pre-tension in the membrane is 20 N/m. Membrane and plate-like vibrational frequencies are
in red and blue, respectively.

membranes, such as fiber-optic sensors, can benefit from the calculation capabilities we present here
[32, 33]. Applying air pressure to two-dimensional materials is one of the most common techniques,
and we hope our results will be helpful in expanding universe of research on 2D materials.

Data availability
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