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Abstract: This work investigates the role of the Weyl tensor in the formation of a black hole. We discuss
the development of the Weyl tensor and prove its existence in spacetime during the gravitational collapse
of cosmic objects, utilizing the Riemannian curvature tensor, Ricci tensor, Kulkarni–Nomizu product, and
Schouten tensor. By decomposing the Weyl tensor, we use theorems and proofs that satisfy the exact solutions
of the Einstein field equations. We observe that the Riemann curvature tensor and Weyl tensor share the same
symmetric identities, as trW (δ, .)σ = 0 such that Wδσγτ = 0 when Riemannian curvature tensor, Rδσγτ = 0 .
Additionally, the Riemann curvature and Weyl scalar tensor invariants are conformally related to each other,

as RδσγτRδσγτ = W δσγτWδσγτ =
48(GM)2

r6
in the Schwarzschild metric. From the Einstein field equations,

the Ricci tensor is Rστ = 0 ; consequently, the stress-energy tensor, Tστ = 0 , indicating that the Einstein field
equation is empty space. However, in the Schwarzschild black hole solution, the Ricci tensor vanishes, but the
Weyl tensor does not. Additionally, it seems that divergence occurs around the event horizon in a stagnant and
uncharged Schwarzschild black hole with proper acceleration. Furthermore, the investigation into the existence
of the Weyl tensor in the Schwarzschild black hole reveals its presence. We also explore the Reissner–Nordström,
Kerr, and Kerr–Newman black holes by examining the coupling between the Einstein-Maxwell field equations
and the Weyl tensor, utilizing small Weyl corrections. We obtain the metric that reduces to the Kerr–Newman
black hole solution in Boyer–Lindquist coordinates when α = 0 . The same metric equation obtained reduces to
Kerr black hole solutions when the electric charge q = 0 and the coupling parameter α = 0 . Furthermore, when
the parameter of the charged rotating black hole a vanishes, we obtain solutions for the static and spherically
symmetric black hole with Weyl corrections. When the terms a = q = 0 , the obtained metric reduces to the
Schwarzschild black hole solution.

Key words: Gravitational collapse, Riemann curvature tensor, Schwarzschild black hole, Reissner–Nordström
black hole, Kerr and Kerr–Newman black holes

1. Introduction
Gravitational collapse is the contraction of an astronomical object due to the influence of its gravity,
which tends to pull matter towards the center of gravity [1–4]. The formation of black holes is
the result of collapsing objects, allowing for the creation of a wide range of structures early on. A
well-defined event horizon is a part of the spacetime region where the geometry behaves similarly
∗Correspondence: ndidizakia10@gmail.com
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to the external environment, leading to a highly constrained state of equilibrium with gravitational
radiation emitting in various directions [2, 5–9]. In 1929, Herman Weyl introduced Weyl’s equations
as an alternative to the Dirac equation for describing subatomic particles such as nucleons [10–13].
Ordinary Dirac fermions can be derived from and are composed of two Weyl fermions [14]. Initially,
neutrinos were thought to be Weyl fermions, but they were later found to possess mass. In General
Relativity, the Weyl tensor provides the Riemannian curvature, while the Ricci tensor equals zero due
to the nature of the Weyl tensor. The Ricci tensor, in the context of general relativity, represents the
energy-momentum distribution of matter within confined fields. If there is no distributed matter, the
Ricci tensor is also zero. However, even though the Riemannian curvature and Ricci tensor are zero in
spacetime, it does not necessarily imply that space is flat [15]. While we understand the contribution
of the Weyl tensor to the Riemannian curvature and Ricci tensor in spacetime, the gravitational field
remains nonzero. This allows gravity to spread even where there is no matter or energy source. The
Weyl tensor is the sole tensor where curvature exists in the vacuum of Einstein’s region of space devoid
of matter, particularly in the context of the Schwarzschild black hole metric. In general relativity, we
learn the distribution of matter through the Riemannian metric tensor Rδσγτ and the Ricci tensor Rστ

alongside the stress-energy momentum tensor in the Einstein field equations. Initially, we decompose
the Riemannian metric tensor using the Einstein field equations.

Rστ −
1

2
gστR =

8πG

C4
Tστ (1)

The Weyl tensor is derived from the Riemann curvature tensor minus the Kulkarni–Nomizu product
of the Schouten tensor. To obtain the Weyl tensor, we first establish the Riemann curvature tensor,
Schouten tensor, and Kulkarni–Nomizu product. These tensors all involve the Ricci tensor and scalar
curvature. Numerous researchers have studied the behavioral changes of black holes by employing
Weyl corrections [16–18]. Investigations into rotating charged black holes within four-dimensional
spherical symmetry, incorporating small Weyl corrections, have been conducted by [17–19]. Similarly,
static and spherically symmetric charged black holes with Weyl tensor corrections have been explored
by [17, 20–23]. The aim of this paper is to conduct a comprehensive investigation into the role of the
Weyl tensor in black hole formation. We commence in Section 2, by deriving the Riemann curvature
tensor, which serves as the key step in decomposing the Weyl tensor through defining and proving
an appropriate theorem. In Section 3, we delve into the Schouten tensor, elucidating its crucial
properties in Riemannian geometry towards the Weyl tensor decomposition which we obtain through
calculations involving the Riemann curvature tensor. Section 4 is dedicated to the manipulation of
the Kulkarni–Nomizu product, exploring its fundamental properties in differential geometry such as
products, direct sums, wedge products, and symmetric products. Moving on to Section 5, we examine
the algebraic properties of Rδσγτ using covariant derivatives to decompose Christoffel symbols, thereby
capturing the essence of the algebraic properties of the Riemann curvature tensor, such as symmetric,
antisymmetric, cyclic, and Bianchi identities. In Section 6, we investigate the Weyl tensor, particularly
its implications for black hole formation, with a special emphasis on the Schwarzschild black hole. In
Section 7, we delve into the role of the Weyl tensor in the formation of Reissner–Nordström (RN) black
holes using a coupling method between Einstein field equations and Weyl corrections. In Section 8,
we investigate the Weyl tensor in Kerr and Kerr–Newman (KN) black holes through the coupling
of Einstein-Maxwell field equations with the Weyl tensor using minimal Weyl corrections. Moving
forward to Section 9, we observe the implications of the study findings in both experimental and
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theoretical work in laboratory astrophysics concerning the gravitational collapse of cosmic objects.
Finally, we conclude this paper with a summary in Section 10.

2. Riemann curvature tensor
Definition 1 Given a Riemannian space (M, g) , p ∈ M , two linear independent tangent vectors
u, v ∈ TpM , we define the sectional curvature [24, 25]:

K(δ, σ) =
< R(δ, σ)σ, δ >

< δ, δ >< σ, σ > − < δ, σ >2
, (2)

where R is the Riemann curvature tensor defined by

R(δ, σ)γ = ∇δ∇σγ −∇σ∇δγ −∇[δ, σ]γ, (3)

where δ and σ are linearly independent and in the expression (2), denominator is nonzero, if δ and
σ are orthonormal, then the equation (2) will be in the form of

K(δ, σ) =< R(δ, σ)σ, δ > . (4)

Theorem 1 A Riemannian manifold is a space form if it contains a constant value of sectional
curvature k , then the curvature tensor can be written as:

R(δ, σ)γ = k(< σ, γ > δ− < δ, γ > σ), ∀δ, σ, γ ∈ TpM. (5)
Proof We can use the first and second argument of polarization for R(δ, σ)σ and R(δ, σ)γ +R(δ, γ)σ ,
respectively. From these two polarizations with a combination of first Bianchi identity improves the
given formula for R(δ, σ)σ .
From the sectional curvature (2), we have

< R(δ, σ)σ, δ >= k(|δ|2|σ|2− < δ, σ >2), (6)

where δ, σ are linearly independent. Let us give the arbitrary values of δ, σ, γ and compute <

R(δ + γ, σ)σ, δ + γ > in two different ways.

i . By applying multilinearity, it equals

< R(δ, σ)σ, δ > + < R(γ, σ)σ, γ > + < R(δ, σ)σ, γ > + < R(γ, σ)σ, δ >, (7)

ii . According to the equation (6), it equals

k(|σ|2(|δ|2 + |γ|2 + 2 < δ, γ >)− < δ, σ >2 − < γ, σ >2 −2 < δ, σ >< γ, σ >). (8)

From equation (7), and recalling the Riemannian symmetry:

< R(δ, σ)σ, γ >=< R(γ, σ)σ, δ >, (9)
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then (7), with the help of (9), will be simplified to:

< R(δ, σ)σ, δ > + < R(γ, σ)σ, γ > +2 < R(δ, σ)σ, γ > . (10)

Also, equation (8) reduces to:

k(|δ|2|σ|2− < δ, σ >2) + k(|γ|2|σ|2− < γ, σ >2) + 2 < R(δ, σ)σ, γ > . (11)

Setting equation (10) and (11) equal, we have:

< R(δ, σ)σ, γ >= k(|σ|2 < δ, γ > − < δ, σ >< γ, σ >). (12)

Since γ is arbitrary, then equation (12) will be:

R(δ, σ)σ = k(|σ|2δ− < δ, σ > σ). (13)

Let δ, σ, γ be arbitrary and calculate

< R(δ, σ + γ)(σ + γ), δ > (14)

in two different ways :

(1) By applying multilinearity, we get

< R(δ, σ + γ)(σ + γ), δ >= R(δ, σ)σ +R(δ, γ)γ +R(δ, σ)γ +R(δ, γ)σ, (15)

(2) Using the formula given in equation (8), we get

< R(δ, σ + γ)(σ + γ), δ >=

k((|σ|2 + |γ|2 + 2 < σ, γ >)δ− < δ, σ > σ− < δ, γ > σ− < δ, σ > γ− < δ, γ > γ).
(16)

Simplifying, we get

= k(|σ|2δ− < δ, σ > σ) + k(|γ|2δ− < δ, γ > γ) +R(δ, σ)γ +R(δ, γ)σ. (17)

Setting equations (16) and (17) equal, we have

R(δ, σ)γ +R(δ, γ)σ = k(2 < σ, γ > δ− < δ, γ > σ− < δ, σ > γ). (18)

Interchanging δ and σ and adding to Bianchi identity, we get

2R(σ, δ)γ +R(δ, γ)σ = k(2 < δ, γ > σ− < σ, γ > δ− < δ, σ > γ). (19)

Subtracting (18) from (19) in consideration of symmetry R(δ, σ)γ = −R(σ, δ)γ , we have:

R(δ, σ)γ = k(< σ, γ > δ− < δ, γ > σ). (20)
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We know that the Riemannian metric is equivalent with respect to its Levi-Civita connection, which
shows that the Riemannian tensor of any constant curvature in Einstein space is also equivalent
(parallel). Then, the Ricci tensor and scalar curvature are given as Ric = (n− 1)kg and n(n− 1)k ,
respectively. The Riemannian curvature tensor has some symmetries and identities, such as:

R(δ, σ) = −R(σ, δ),

< R(δ, σ)γ, τ >= − < R(δ, σ)τ, γ >,

< R(δ, σ)γ, τ >=< R(γ, τ)δ, σ >,

R(δ, σ)γ +R(σ, γ)δ +R(γ, δ)σ = 0.

(21)

We write Riemann curvature tensor in terms of indices as follows:
Rδσγτ = −Rδστγ ⇐⇒ Rδσ(γτ) = 0,

Rδσγτ = −Rσδγτ ⇐⇒ R(δσ)γτ = 0,

Rδσγτ +Rδγστ +Rδτσγ = 0,

Rδσγτ = Rγτδσ.

(22)

Weyl tensor has the same symmetries and identities as the Riemann curvature tensor as follows:

W (δ, σ) = −W (σ, δ),

< W (δ, σ)γ, τ >= − < W (δ, σ)τ, γ >,

< W (δ, σ)γ, τ >=< W (γ, τ)δ, σ >,

W (δ, σ)γ +W (σ, γ)δ +W (γ, δ)σ = 0.

(23)

We know that the Weyl tensor is trace-free as:

trW (δ, .)σ = 0, ∀δ, σ ∈ TpM. (24)

We write this in indices as:
Wδσγτ = −Wσδγ,τ = −Wδστγ , (25)

and
Wδσγτ +Wδγτσ +Wδτσγ = 0. (26)

Therefore,
W δ

σδγ = 0. (27)

3. Schouten tensor
Schouten tensor in Riemannian geometry is the second order covariant tensor introduced by Schouten
[26, 27], defined for n ≥ 3 . We know that the Weyl tensor is obtained through the Riemann curvature
tensor by subtracting several traces. These calculations are done by decomposing the Riemann tensor
in (0, 4) valence tensor by subtracting with metric as [28]:

ζ = Rm − 1

n− 2

(
Ric− R

n
g
) ? g − R

2n(n− 1)
g ? g, (28)
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where n is the dimension of the collapsing object, g is the metric, Rm is the Riemann curvature
tensor, Ric is the Ricci tensor, R is the scalar curvature, and u ? v denote the Kulkarni–Nomizu
product of two symmetrical tensors of type (0, 2) ; in the next section, we will see its decompositions.

u? v(e1, e2, e3, e4) = u(e1, e3)v(e2, e4)+u(e2, e4)v(e1, e3)−u(e1, e4)v(e2, e3)−u(e2, e3)v(e1, e4), (29)

and we can write this in tensor components as:

ζδσγτ = Rδσγτ +
1

n− 2
(Rδτgσγ −Rδγgστ +Rσγgδτ −Rστgδγ +

1

(n− 1)(n− 2)
R(gδγgστ − gδτgσγ). (30)

The Weyl tensor with ordinary valence like (1, 3) can be given with the contraction of the above
equation (30) with inverse metric. Then, the decomposition that expresses the Riemann curvature
tensor as an orthonormal direct sum is given as:

|Rm|2 = |ζ|2 +
∣∣∣ 1

n− 2
(Ric− R

n
g) ? g

∣∣∣2 + ∣∣∣ R

2n(n− 1)
g ? g

∣∣∣2. (31)

This is a Ricci decomposition. Therefore, now we can write the equation of Schouten tensor defined
for n ≥ 3 as [26–28]:

Q =
1

n− 2

(
Ric− R

2(n− 1)
g
)

⇐⇒ Ric = (n− 2)Q+ Jg, (32)

where Ric is a Ricci tensor, and it can be defined by contracting the first and the third indices of the

Riemannian tensor, R is the scalar curvature, g is the Riemannian metric, J =
1

n− 2
R is the trance

of Q , and n is the dimension of the manifold.
Therefore, through the expressions of the Schouten tensor, we can write the Weyl tensor as a trace-
adjusted multiple with Ricci tensor, as we can see in equation (32) as:

Q =
1

n− 2

(
Ric− R

2(n− 1)
g
)
. (33)

From equation (31), we express ζ = R−Q ? g , then, through indices, we obtain the Weyl tensor as:

Wδσγτ = Rδσγτ +
2

n− 2

(
gδ[γRτ ] − gσ[γRτ ]δ

)
+

2

(n− 1)(n− 2)
Rgδ[γgτ ]σ, (34)

where Rδσγτ is the Riemann tensor, Rδσ is the Ricci tensor, R is the scalar curvature and the brackets
around the indices are antisymmetric part of the equation. Consistently,

W γτ
δσ = −4S[γδ∆

τ
σ], (35)

where S is the Schouten tensor.
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4. Kulkarni–Nomizu product
The Kulkarni–Nomizu product, sometimes known as the K−N product, is very famous in differential
geometry for finding (0, 2) tensors and gives the results of (0, 4)-tensor; this method was discovered
by Kulkarni and Nomizu [29].

Definition 2 If K and N are symmetric (0, 2)− tensors , then
K ? N (e1, e2, e3, e4) = K(e1, e3)N (e2, e4) +K(e2, e4)N (e1, e3)−K(e1, e4)N (e2, e3)−K(e2, e3)N (e1, e4)

=

∣∣∣∣K(e1, e3) K(e1, e4)
N (e2, e3) N (e2, e4)

∣∣∣∣+ ∣∣∣∣N (e1, e3) N (e1, e4)
N (e2, e3) K(e2, e4)

∣∣∣∣ ,
(36)

where ei are tangent vectors and |..| are the determinants of matrix. From equation (36), we see that
K ? N = N ? K .

The tangent space with respect to basis {∂i} can be compressed into the following form:

(K ? N )ijlm = (K ? N )(∂i, ∂j , ∂l, ∂m) = 2Ki[lNm]j + 2Kj[mNl]i, (37)

where [...] denotes the total antisymmetrical symbol which shows the alternating signs (+/−) . The
Kulkarni–Nomizu product is the graded algebra with the particular case of products like direct sum,
wedge product, and symmetric product as follows:

n⊕
limp=1

S2(ΥpM) (38)

means that (α.β) ? (γ.δ) = (α ∧ γ) ⊙ (β ∧ δ) , where ⊙ is a symmetric product [30]. We know that
the Riemann curvature tensor also has the expressions in terms of the Kulkarni–Nomizu product of
the metric:

g = gδσdv
δ ⊗ dvσ, (39)

with itself.
If we denote by

R((∂δ, ∂σ)∂γ = Rτ
δσγ∂l, (40)

then, the (1, 3)−Riemann curvature tensor is given by

Rm = Rδσγτdv
δ ⊗ dvσ ⊗ dvγ ⊗ dvτ , (41)

with Rδσγτ = gδkR
γ
σγτ , then the Riemann curvature tensor will be reduced to

Rm =
Scal

4
g ? g, (42)

where Scal = tracgRic = Rδ
δ is the scalar curvature and Ric(δσ) = tracg{δ → R(δσ)γ} is the Ricci

tensor which reads as Rδσ = Rγ
δγσ .

Therefore, in the expansion of Kulkarni–Nomizu product g ? g by using the definition (36), we get:

Rδ
σγτ =

Scal

4
gδ[γgτ ]σ =

Scal

2
(gδγgστ − gδτgσγ), (43)
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which is the same as the Riemann curvature tensor as stated above. We know that the Riemannian
manifolds have constant sectional curvature k if and only if the Riemann curvature tensor has the
following form:

k

2
g ? g, (44)

where g is the metric tensor. Note that the (0, 4)−tensor of the Kulkarni–Nomizu product satisfies the
Bianchi identities and the skew-symmetric property. Therefore, the Weyl tensor can be obtained from
the Kulkarni–Nomizu product through the Riemann curvature tensor of type (0, 4) by subtracting
several traces as in equation (28).

5. Algebraic properties of Rδσγτ

Instead of using the algebraic properties of curvature tensor Rδ
σγτ , we prefer using the covariant form

as:
Rδσγτ ≡ gδβR

β
σγτ . (45)

Through the decomposition of second-kind Christoffel symbols, we get the algebraic properties of the
Riemann curvature tensor as follows:

Rδ
σγτ ≡

∂Γδ
σγ

∂xτ
− ∂Γδ

στ

∂xγ
+ Γη

σγΓ
δ
τη − Γη

στΓ
δ
γη, (46)

and
Γβ
δσ =

1

2
gγβ{∂gσγ

∂xδ
+

∂gδγ
∂xσ

− ∂gσδ
∂xγ

}. (47)

Using (46) and (47) in (45), we get

Rδσγτ =
1

2
gδβ

∂gβp

∂xτ
{∂gpσ
∂xγ

+
∂gpγ
∂xσ

− ∂gσγ
∂xp

}− 1

2
gδβ

∂gβp

∂xγ
{∂gpσ
∂xτ

+
∂gpτ
∂xσ

− ∂gστ
∂xp

}+ gδβ{Γη
σγΓ

β
τη −Γη

στΓ
β
γη}.

(48)
Using the relation

gδβ
∂

∂xτ
gβp = −gβp

∂

∂xτ
gδβ = −gβp

(
Γη
τδgηβ + Γη

τβgηδ

)
, (49)

we obtain

Rδσγτ =
1

2

[ ∂2gδγ
∂xτ∂xσ

− ∂2gσγ
∂xτ∂xδ

− ∂2gδτ
∂xγ∂xσ

+
∂2gστ
∂xγ∂xδ

]
−
[
Γη
τδgηβ + Γη

τβgηδ

]
Γβ
σγ

+
[
Γη
γδgηβ + Γη

γβgηδ

]
Γβ
στ + gδβ

[
Γη
σγΓ

β
τη − Γη

στΓ
β
γη

]
.

(50)

Most of the terms cancel and leave us with

Rδσγτ =
1

2

[ ∂2gδγ
∂xτ∂xσ

− ∂2gσγ
∂xτ∂xδ

− ∂2gδτ
∂xγ∂xσ

+
∂2gστ
∂xγ∂xδ

]
+ gηβ

[
Γη
γδΓ

β
στ − Γη

τδΓ
β
σγ

]
. (51)

From (51) , we can see the algebraic properties of the curvature tensor the same as we see it from (23)
as:
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• Symmetry:
Rδσγτ = Rγτδσ (52)

• Antisymmetry:
Rδσγτ = −Rσδγτ −Rδστγ = +Rσδτγ (53)

• Cyclicity:
Rδσγτ +Rδτσγ +Rδγτσ = 0 (54)

• Bianchi identities:
Rδσγτ ;η +Rδσηγ;τ +Rδστη;γ = 0 (55)

The Bianchi identities are obtained by permuting γ, τ , and η cyclically. Equation (55) is covariant
and holds in a locally inertial system. Also, we can see the contracted form of (55) by recalling the
covariant derivatives of gδγ vanish, we find on contraction of δ with γ that [31, 32]:

Rστ ;η −Rση;τ +Rγ
στη;γ = 0, (56)

contracting again gives: (
Rση − 1

2
∆σ

ηR
)
;σ = 0, (57)

which is equivalent to (
Rσγ − 1

2
gσγR

)
;σ = 0. (58)

We mention that, the Rδσγτ may be contracted to give the Ricci tensor as:

Rστ = gδγRδσγτ . (59)

Also, using the antisymmetry property(53) , we see that there is only one way of contracting Rδσγτ

to construct the scalar curvature:

R ≡ gδγgστRδσγτ = −gδγgστRσδγτ ,

0 = gδσgγτRδσγτ .
(60)

Therefore, the cyclicity property mentioned in equation (54) ultimately eliminates any other scalar
curvature that could have formed in four dimensions, that is:

1
√
g
eδσγτRδσγτ = 0. (61)

Also, we consider the curvature in N-dimensional spacetime to find the number of algebraically
independent components of Rδσγτ . We can adopt the Petrov notation [33] and consider Rδσγτ as
a matrix of R(δσ)(γτ) with indices (δσ) and (γτ) . From (53) , each index takes some independent
values equal to the number of independent elements of an antisymmetric matrix in dimension N as:

1

2
N(N − 1). (62)
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From (52) , we see that R(δσ)(γτ) is symmetric in these indices. Therefore, when (52) and (53) stand
alone, Rδσγτ will have independent components equal to the number of independent elements of a
symmetric matrix, as stated in equation (62) [31–33].

1

2

[1
2
N(N − 1)

][1
2
N(N − 1) + 1

]
=

1

8
N(N − 1)(N2 −N + 2). (63)

Equation (52) and (53) also makes the cyclic sum of

Rδσγτ +Rδτσγ +Rδγτσ, (64)

which is completely antisymmetric. Thus, equation (54) introduces further constraints, adding:

N(N − 1)(N − 2)(N + 3)

4!
, (65)

which leads Rδσγτ to have a number of independent components equal to

CN =
1

12
N2(N2 − 1). (66)

Figure 1. Riemannian curvature tensor.

We observe that the curvature tensor in one dimension is R1111 , which always vanishes. This
can be seen from either equation (53) or (54), or from the fact that equation (66) yields C1 = 0 ,
indicating zero independent components. This observation is also depicted in Figure 1. It only reveals
the internal characteristics of space, reflecting through Rδσγτ , without considering its embedding in
additional spacetime dimensions. In one dimension, the transformation rules for the metric tensor are
given by

g
′
11 =

( dx

dx′

)2
g11, (67)

84



SHANKER and NDIDI/Turk J Phys

so that g
′
11 can be completely equal to ±1 everywhere by choosing x

′
=

∫ √
±g11dx . In two

dimensions, equation (66) indicates that Rδσγτ has only one independent component, which can be
represented as R1212 . The other components are related to R1212 through equation (53) as follows:

R1212 = −R2112 = −R1221 = R2121 and R1111 = R1122 = R2222 = 0. (68)

These formulae can be summarized smoothly as

Rδσγτ =
(
gδγgστ − gδτgσγ

)R1212

g
, (69)

where g is the determinant g11g22 − g212 . If we contract δ with γ , it gives the Ricci tensor:

Rστ = gστ
R1212

g
, (70)

and contracting σ and τ , it gives the scalar curvature:

R = 2
R1212

g
. (71)

Therefore, the curvature tensor is

Rδσγτ =
1

2
R
(
gδγgστ − gδτgσγ

)
. (72)

Therefore, the sectional curvature, discussed in Section 2, will be defined as:

k ≡= −R

2
= −R1212

g
. (73)

In three dimensions, equation (66) implies that the curvature tensor C3 = 6 independent components.
Moreover, this is the same number of independent components as the Ricci tensor Rστ in three
dimensions. This suggests the possibility that Rδσγτ might be expressed solely in terms of Rστ .

Theorem 2 By using the covariant, symmetry, and contraction properties of Rδσγτ , we have:

Rδσγτ = gδγRστ − gδτRσγ − gσγRδτ + gστRδγ −
1

2

(
gδγgστ − gδτgσγ

)
R (74)

Proof To prove (74), first we need to adopt the coordinate systems such that the gσγ vanishes for

σ ̸= γ at some point X . This can be managed by choosing ∂x
′σ

∂xδ
at X as the orthogonal matrix that

diagonalizes gσγ at X . Therefore, in this system, at X we have:

R12 = g33R1323, R1323 = g33R12. (75)
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The equation (75) is in agreement with (74). Furthermore,

R11 = g22R1212 + g33R1313, R22 = g33R2323 + g11R2121, (76)

so,

g22R11 + g11R22 = 2R1212 + g33
(
g22R1313 + g11R2323

)
= R1212 +G11g22

(
g11g22R1212 + g11g33R1313 + g22g33R2323

)
R1212 = g22R11 + g11R22 −

1

2
g11g22R,

(77)

also the equation (77) is in agreement with (74). The other independent components of Rδσγτ are
R1223 , R1213 , R2323 , and R3131 , which can be obtained from R1323 and R1212 by permuting the values
1, 2, 3 , so, (74) holds for these independent components as well. Since (74) holds in a coordinate system
that is orthogonal at X and patently covariant, it generally holds.

So, four or more dimensions of the Riemann-Christoffel tensor Rδσγτ are needed to describe the
curvature in spacetime. For example, in four dimensions, (66) gives the curvature tensor C4 = 20

independent components, whereas Rστ has only 10 independent components, so Rδσγτ has ten
components beyond those which can be expressed in terms of Rστ .

Therefore, the 1

12
N2(N2 − 1) components of Rδσγτ describes the curvature of a general N -dim

spacetime [33], but it does not do so in a consistent manner. Hence, these components’ values depend
on the intrinsic properties and the particular coordinate system chosen. When we talk about the
invariant characterization of the curved space, it must be in terms of scalars which are constructed
from Rδσγτ and gσγ . Also, let us see how to count the scalars out there. Let us see the N2 quantities
∂x

′σ

∂xγ
for the general coordinate transformation as x → x

′ it is everything in a given point X .

Hence, there are 1

12
N2(N2 − 1) independent components of Rδσγτ and the 1

2
N(N + 1) independent

components of gσγ , so at this point, general coordinate transformations are subjected to N2 algebraic
conditions. Therefore, the number of scalars that can be constructed from Rδσγτ and gσγ are:

1

12
N2(N2 − 1) +

1

2
N(N + 1)−N2 =

1

12
N(N − 1)(N − 2)(N + 3). (78)

The case N = 2 is an exception to this argument since 2 dimensional spacetime has one parameter
subgroup of coordinate transformations that has no effect on gσγ and Rδσγτ , the correct number of
invariants here is not zero but one, that is the scalar curvature R itself. However, this exception does
not occur in higher dimension spacetime, so (78) holds for N ≥ 3 . Therefore, for N = 3 , the equation
(78) tells that there is 3 scalar curvature, which suitably is chosen as the three roots of the equation:

Det
(
Rσγ − δgσγ

)
= 0, (79)
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which is equivalent to the three quantities as R,RσγR
σγ , and DetR

Detg
. For N = 4 , the equation (78)

tells that there are 14 independent components of scalar curvature; in order to enumerate them, we
need to decompose Rδσγτ into terms that only depend on Ricci tensor Rσγ plus a term Wδσγτ which
does not contain nontrivial contractions. In N ≥ 3 dimensions, the decompositions are:

Rδσγτ =
1

N − 2

(
gδγRστ − gδτRσγ − gσγRδτ + gστRδγ

)
− R

(N − 1)(N − 2)

(
gδγgστ − gδτgσγ

)
+Wδσγτ .

(80)
The tensor Wδσγτ is called the conformal tensor or Weyl tensor [32, 34]. It is a necessary and sufficient
condition for the existence of coordinate systems in which gσγ is proportional to a constant matrix
throughout the space and Wδσγτ vanishes everywhere [31, 32]. This Weyl tensor has the same algebraic

properties as Rδσγτ and in addition characteristics satisfies the 1

2
N(N +1) conditions, W δ

σγτ = 0 , so
the number of its linearly independent components as shown below, also represented in figure 2 :

1

12
N2(N2 − 1)− 1

2
N(N + 1) =

1

12
N(N + 1)(N + 2)(N − 3). (81)

Figure 2. Weyl Tensor

Then from equation (74), Wδσγτ = 0 for N = 3 . Without any misconception, the curvature
invariants can be explained as comprising all the components of the Weyl tensor, except for a specific
choice of coordinate axes that make Rσγ and gσγ diagonal. In this case, the elements of gσγ are ±1′s

and 0′s , plus the N -eigenvalues of Rσγ [13, 35, 36]. Nevertheless, sometimes this enumerate breaks
down when some eigenvalues of Rσγ are degenerate; also, we know that when the Rσγ = 0 , it describes
the gravitational fields in empty or vacuum space. Therefore, in this way, the curvature is invariant
for N = 4 , have 10 vanishing components of Rσγ plus 4 quantities, W δσγτWδσγτ , ∈δσ W pβγτ

pβ Wδσγτ ,

WδσγτW
γτpβW δσ

pβ and Wδσγτ

W γτpβ ∈aη
pβ W δσ

aη√
g

.
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According to Petrov et al. [37], the Petrov type N has given an equivalent description of the 4

nonvanishing curvature invariants as roots of rooted equations and has classified various algebraic types
of Weyl tensors according to the degeneracies of these roots. Furthermore, it should be highlighted
that (78) gives the number of algebraically independent curvature invariants.
Also, we know that the Weyl tensor in pseudo-Riemannian metric g of the dimension n in terms of
the Riemann curvature tensor, Ricci tensor, and scalar curvature is given as [16, 38, 39]

Wδσγτ = Rδσγτ −
Rδγgστ −Rδτgσγ +Rστgδγ −Rσγgδτ

n− 2
+

R

(n− 1)(n− 2)
(gστgδγ − gσγgδτ ) (82)

which is the same as the equation given in (80).
Weisstein explained the independent component numbers in the Weyl tensor, which were discovered
by Sloane in 1964. This information is listed in the On-Line Encyclopedia Integer Sequences (OEIS)
and under the code A052472 [33], where n represents the integer starting from N = 3, ..., 40 which
are the independent number for Weyl tensor in N -dimension as follows:

a(N) =
N (N + 1) (N + 2) (N − 3)

12
, (83)

and is illustrated in Figure 3. 

 
(a) (b) 

Figure 3. (a) and (b) show the decomposition of Weyl tensor in four components of Petrov type N in
spacetime dimension, and it shows the gravitational fields locally obtained in a linear summation of those
distinct components, and where the graphs are monotonically growing with respect to t .

The slope of the logarithmic plot also demonstrates that the Weyl scalar invariants transverse
radiations in a long way as shown in Figure 4:

Additionally, the independent number of scalars that can be constructed from the Riemann
tensor and the metric tensor in N dimensions is given by the OEIS code A050297 for A050297 ,
N = 3, ..., 40 [33], as shown in the following equation:

b(N) =
N2

(
N2 − 1

)
12

, (84)

as illustrated in Figure 5.
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Figure 4. Weyl tensor: The transverse of radiations scalar invariants in the decomposition of Weyl tensor
through linear summation of distinct components.

 

 

(a) (b) 

Figure 5. Riemannian Curvature Tensor: The graphs shown in (a) and (b) exhibit monotonic growth with
respect to t , similar to the behavior depicted in the graph of the Weyl tensor in Figure 5.

6. Weyl tensor in the Schwarzschild black hole
The contraction of the Weyl tensor, W δσγτWδσγτ is the scalar invariant principal for construction. The
Weyl tensor vanishes everywhere and is conformally flat in the spacetime metric. However, Penrose’s
hypothesis states that some scalar invariants of the Weyl tensor, like W δσγτWδσγτ the functions, are
monotone, which grows over time t . It can be identified as an arbitrary gravitational collapse of the
object in the universe [40, 41]. Also, we understand the Penrose hypothesis better by conceptualizing
the Friedman-Lemaitre-Robertson-Walker metric, which is based on the exact solution of the Einstein
field equations of general relativity, and discovered that spacetime is conformally flat and the Weyl
tensor vanishes, while the Ricci tensor persists [41]. Conversely, in the Schwarzschild black hole
solution, the Ricci tensor vanishes while the Weyl tensor persists [40].
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The Schwarzschild black hole metric is given by:

ds2 = −
(
1 +

2GM

c2r

)
c2dt2 +

(
1− 2GM

c2r

)−1
dr2 + r2(dθ2 + sin2θdϕ2). (85)

The sloping in logarithmic the Riemann curvature scalars as the gravitational radiations going far
is represented in Figure 6: The Schwarzschild metric has the coordinates which correspond to the

Figure 6. Transverse logarithmic graph of Riemann curvature scalar invariant.

Einstein metric gαβ(x) which is spherically symmetric; it has time-independent t , mass M , and

Schwarzschild radius r =
2GM

c2
. The displacement of Killing vector η associated with time coordinate

t are spherically symmetric and ξ = (t, r, θ, ϕ) = (1, 0, 0, 0) from equation (85) and the line element
can be summarized as [42]:

dΣ2 = r2dθ2 + r2sin2θdϕ2. (86)
Regarding the changes of angles like θ and ϕ as in (85) and (86), the Schwarzschild geometry is
spherical symmetric for ϕ-direction such that the metric is independent of ϕ-invariant under the
rotations near the z-axis. From (86), the Killing vectors associated with the symmetry will be
ηξ = (0, 0, 0, 1) . The area of the Schwarzschild metric in two-dimensional spacetime at r and t

is written as
A = 4πr2, (87)

which we get from (86) and also can be written on a flat surface as

dA = dl2dl3 =
√
g11g22dx

1dx2. (88)

The spatial metric of the homogeneous closed universe is written as

ds2 =
dr2

1− (
r

a
)2

+ r2dθ2 + r2sin2θdϕ2, (89)
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then, the area of the two surfaces will be:

Area =

∫
dA =

∫ π

0
dθ

∫ 2π

0
dϕr2sinθ = 4πr2. (90)

The Schwarzschild black hole geometry is the unique spherically symmetric solution of the vacuum
Einstein field equations. The exact form of the weak field in static metric (85) with the gravitational
potential Φ is given by

Φ = −GM

r
, (91)

where the weak metric with gravitational potential is given by [42]:

ds2 = −
(
1 +

2Φ(xi)

c2

)
c2dt2 +

(
1− 2Φ(xi)

c2

)
(dx2 + dy2 + dz2). (92)

The Newtonian theorem states that it is spherically symmetric outside of the falling object, which is
governed by the Newtonian gravitational potential and is as given in (92), whether the objects changing
the directions with time t or not. Therefore, outside of the falling objects, it could be there due to
the conserved mass. Nevertheless, similarly, the general relativity theorem shows the distribution of
mass is time-dependent and outside of the spherical symmetric geometry of the gravitational collapse
is time-independent in Schwarzschild geometry.
The local coordinate of the inertial systems surrounding the geometry of a black hole at a certain
point p in spacetime is given by

gστ (x) = ηστ , (93)
at given point of the curved spacetime, first derivative vanishes, and then, someone can say that the
spacetime is flat as:

g
′
στ (x

′
p) = ηστ . (94)

The Killing vector outside the event horizon surrounding Schwarzschild geometry generated through
null vector fields are given by [42–44]:

∂g
′
στ

∂x′γ

∣∣∣∣∣
x=xp

= 0, (95)

which can be also written as:
d2xγ

dt2

∣∣∣∣∣
p

= 0. (96)

From equation (85), we see that the radius of Schwarzschild is r = 2GM , where G is the Newton
gravitational force of the collapsing object and M is the total mass contained in the collapsing object.
Therefore, the corresponding scalar invariant in the Schwarzschild metric (85) will be written as follows
[40, 42, 43, 45];

R = 0, RστR
στ = 0, (97)

and the Riemann curvature and Weyl scalar invariants are written as:

RδσγτRδσγτ = W δσγτWδσγτ =
48(GM)2

r6
. (98)
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7. Weyl Tensor in the Reissner–Nordström (RN) Black Hole
The Reissner–Nordström black hole is a non-rotating black hole with a charged electromagnetic field,
which is significant in the vacuum solutions of Einstein’s field equations. It represents a charged black
hole in an asymptotic Minkowski space with more than three dimensions [20, 21]. The Reissner–
Nordström metric is the exact solution to the Einstein-Maxwell equations. These equations are
spherically symmetric due to the absence of rotation but involve an electric charge.A distinctive feature
of the Reissner–Nordström black hole, compared to the Schwarzschild black hole, is the presence of
two horizons: the event horizon and the inner horizon. The inner horizon is believed to be unstable
under small perturbations due to the mass inflation phenomenon. The Reissner–Nordström solution
also has an ever-moving inward spacetime that, instead, ends on the Cauchy horizon, which can then
travel into a region where singularity can be vividly seen but evaded [22, 23]. The correlations inside
a black hole show perturbations and instability of the internal Cauchy horizon, which occurs, as the
spacelike or null radiations where singularity emerges inside a charged Reissner–Nordström black hole
[17, 46]. The RN solution is an exact solution to the Einstein and Maxwell field equations (Einstein–
Maxwell) of general relativity in the presence of an electromagnetic field, exhibiting the same spacetime
symmetries as the uncharged Schwarzschild solution [18, 19]. Recently, many researchers have focused
on solutions for black holes constructed in the framework of power-law Maxwell theory [17–19, 46],
where the power-law function can be written in the form of:

L = −α(FµvF
µv)k, (99)

where α is a coupling constant and k is a power parameter. Therefore, the asymptotic behavior of the
solutions depends on the power parameter k . However, we consider the solutions of black holes in the
modified Maxwell field, including nonminimal coupling between the gravitational and electromagnetic
fields [17], which shows that the coupling terms are used to modify the gravitation and electromagnetic
structures of the charged black holes. A generalized electromagnetic theory with electrodynamics of
Weyl correction, which involves coupling between Maxwell field and Weyl tensor, has been observed
by [16, 17]. In this theory, the electromagnetic field of the Lagrangian density is modified to be:

LEM = −1

4

(
FµvF

µv − 4αW µvρσFµvFρσ

)
, (100)

where Fµv is the electromagnetic tensor, which is related to Eµ , an electromagnetic vector potential,
in such a way that Fµv = Eµ;v − Ev;µ and the coefficient α is a coupling constant with a squared
length of dimensions. Wµvρσ is the Weyl tensor, which is related to Riemann tensor Rµvρσ , the Ricci
tensor Rµv , and the Ricci Scalar R , and can also be written as in equation (82):

Wµvρσ = Rµvρσ − 2

N − 2

[
gµ[ρRσ]v − gv[ρRσ]µ

]
+

2

(N − 1)(N − 2)
Rgµ[ρgσ]v, (101)

where N refers to the dimensions, gµv is the metric, and the indices in brackets refer to the antisym-
metric portion.
In order to study the RN black hole solutions, we use the Weyl tensor corrections for static and
symmetrically charged black holes. The action of the gravity system, coupled with the Weyl tensor
and electromagnetic field, is given by [16, 17, 47]:

S =

∫
d4x

√
−g

[
R− 1

4
FµvF

µv + αW µvρσFµvFρσ

]
. (102)
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Through the adoption of the Schwarzschild coordinates, the line elements of RN in static and
spherically symmetric black hole spacetime can be written as:

ds2 = f(r)dt2 − (f(r))−1dr2 −H(r)(dθ2 + sin2θdϕ2), (103)

where f(r) and H(r) are the metric coefficients which represent the functions of the polar coordinates
r . However, assuming the electromagnetic fields inherit the static spherical symmetries, the potential
of electric field for four-vectors can be expressed in the form of:

Eµ = (ϕ(r), 0, 0, 0). (104)

Through inserting equations (101), (103), and (104) into equation (102) and verifying the actions with
respect to f(r) , H(r) , and Eµ , we can have three coupled equations of motion as follows:

3
(
H

′
(r)2 − 2H(r)H

′′
(r)

)
+ 4α

d

dr

[
ϕ

′
(r)H(r)

(
2H(r)ϕ

′′
(r) +H

′
(r)ϕ

′
(r)

)]
= 0, (105)

3
[
ϕ

′
(r)2H(r)2 + f(r)

(
H

′
(r)2 − 2H(r)H

′′
(r)

)
− 2H(r)

(
H(r)f

′′
(r) +H

′
(r)f

′
(r)

)]
− 4α

[
2H(r)ϕ

′′
(r)2

(
ϕ

′
(r)f(r)

)′

+ 2H(r)H
′
(r)

(
f(r)ϕ

′
(r)2

)′

− ϕ
′
(r)2

(
H

′
(r)2f(r) + 2f

′′
(r)H(r)2

)
+ 2f(r)H(r)ϕ

′
(r)

(
H(r)ϕ

′′′
(r) +H

′′
(r)ϕ

′
(r)

)]
= 0,

(106)

d

dr

{
ϕ

′
(r)H(r)+

4ϕ
′
(r)α

3H(r)

[
f(r)

(
H

′
(r)2−H(r)H

′′
(r)

)
+H(r)

(
H

′
(r)f

′′
(r)−f

′
(r)H

′
(r)

)
−2H(r)

]}
= 0.

(107)
Therefore, we must solve these three coupling equations above to obtain the solutions of black holes
attached with Weyl tensor correction. In equation (105), we can obtain the solutions of the Reissner–
Nordström black hole by using α → 0 . Nevertheless, it will be complicated for nonzero Weyl coupling
constant α to obtain the analytical solutions of black holes. Otherwise, we can decide for ourselves in
which case the deviation of the coupling parameter is minimal, starting from zero. For this justification,
we can say it is a weak Weyl correction. The terms containing parameter α on the left-hand side of
the three coupling equations are regarded as perturbation, and using the theory of perturbation, we
get:

H(r) = H0(r)+αH1(r)+Φ(α2), f(r) = f0(r)+αf1(r)+Φ(α2), ϕ(r) = ϕ0(r)+αϕ1(r)+Φ(α2). (108)

Substituting equation (108) into equations (105)–(107), we obtain a series of perturbation equations.
Apparently, the normal Reissner–Nordström black hole is a solution of the zeroth-order equations,
with

H0(r) = r2, f0(r) = 1− 2m

r
+

q2

r2
, Φ0(r) =

q

r
. (109)

By solving the first order differential equations and using (109), we obtain

H(r) = r2+
4αq2

9r2
, f(r) = 1− 2m

r
+
q2

r2
− 4αq2

3r4

[
1− 10m

3r
+
26q2

15r2

]
, ϕ(r) =

q

r
+
αq

r3

[m
r
− 37q2

45r2

]
. (110)
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Clearly, the static electric potential and metric coefficients depend on the coupling parameter α , which
means that the Weyl tensor corrections affect the behaviors of electric fields’ and charged black holes’
behaviors. Notably, we find static electric potential ϕ , which depends on the parameter m , sometimes
different from regular RN black hole in which the static electric potential ϕ(r) depends only on the
charged particle q because of the Weyl tensor coupling between the gravitational and electromagnetic
fields. The radius of the black hole horizon is located when f(r) = 0 from the above equation (110)
of the charged black hole with Weyl tensor correction. Though the equation f(r) = 0 has more than
two real distinct roots, we focus only on the roots close to the radius of RN black hole horizon using
the weak Weyl correction and leaving the rest.

8. Weyl tensor in the Kerr and Kerr–Newman (KN) black holes
Kerr black hole is the black hole solution that has no electric charge but only mass and angular
momentum. Nevertheless, the Kerr–Newman black hole is a rotating and charged black hole. However,
Kerr and Kerr–Newman black holes are solutions to Einstein’s field equation of general relativity. They
describe the rotating black holes, but there is a difference between the two: the Kerr–Newman black
hole has an electric charge, while the Kerr black hole does not have an electric charge. In addition
to mass and charge, the Kerr–Newman black hole also possesses angular momentum, which arises
from its rotation. We will use the rotating black hole with a charged electromagnetic field for the
investigation to get the solutions of Kerr and Kerr–Newman black holes through coupling between
the Maxwell field and Weyl tensor. The investigation will be of a rotating charged black hole with
minimal Weyl corrections that have also been done by [16, 17]. The electromagnetic field coupling with
the Weyl tensor was introduced in [17] as stated in equation (102), where Fµv = Eµ;v − Ev;µ , which
means Fµv = ∂vEµ−∂µEv is the electromagnetic tensor and Eµ is the vector potential written in the
form of (104). The significance of charged rotating spherically symmetric black hole spacetime with
minimal Weyl tensor corrections was obtained in [17]. The chosen convention signature coordinates
is (−,+,+,+) with geometry units (G = c = 1) . Considering the spacetime formula written in
equation (102) is an electrovacuum solution, then we can apply the method of complex transformation
coordinates of the Newman-Janis Algorithm in Boyer–Lindquist coordinate (t, r, θ, ϕ) to the spacetime
metric of the charged rotating black hole spacetime with minimal Weyl correction [17]. We know that
the coupling between the Maxwell field and Weyl tensor causes difficulties in getting solutions for field
equations for a rotating black hole. From previous static black hole solutions, we need to construct
a rotating black hole with minimal Weyl corrections (110) to study the properties of spacetime black
holes. Even if the previous method of perturbation is different, the solution is true since equation
(102) is the only nongravitational mass-energy present with an electromagnetic field and the spacetime
described in equation (102) is electrovacuum and the approach of Newman-Janis is substantiated for
electrovacuum [3, 39, 48]. However, we will neglect calculations of order terms Φ(α2) from the above
section and keep consistency with the terms of higher order in consideration of the minimal Weyl
corrections from the above section. We can introduce new variable ω defined by [17]:

ω = t−
∫

dr

f(r)
, (111)
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so that we can rewrite the metric (110) as:

ds2 = f(r)dω2 + 2dωdr −H(r)2(dθ2 + sin2 θdϕ2). (112)

The inverse metric using null tetrad vectors will be written as:

gvω = −lvnω − lωnv + bv b̃ω + bω b̃v, (113)

such that using the differential equations obtained from (110), the null tetrad vectors will be:

lv = δv1 , nv = δv0 −
1

2

[
1− 2m

r
+

q2

r2
− 4αq2

3r4

(
1− 10m

3r
+

26q2

15r2

)]
δv1 ,

bv =
1√

2H(r)

(
δv2 +

i

sin θ
δv3

)
, b̃v =

1√
2H(r)

(
δv2 −

i

sin θ
δv3

)
.

(114)

We treat radius r as the complex variable, then;

lv = δv1 , nv = δv0 −
1

2

[
1−m(

1

r
+

1

r̃
) +

q2

rr̃
− 4αq2

3r2r̃2

(
1− 5m

3
(
1

r
+

1

r̃
) +

26q2

15rr̃

)]
δv1 ,

bv =
1√

2H(rr̃)

(
δv2 +

i

sin θ
δv3

)
, b̃v =

1√
2H(rr̃)

(
δv2 −

i

sin θ
δv3

)
,

(115)

where r̃ is the complex conjugates of r . Now we need to perform complex transformation coordinates
[3, 17, 39, 48]:

v
′
= v − ia cos θ, r′ = r + ia cos θ, θ

′
= θ, ϕ

′
= ϕ, (116)

then, we find transformed tetrad as follows:

l
′v = δv1 ,

n
′v = δv0 −

1

2

[
1− 2mr

′ − q2

r′2 + a2 cos2 θ
− 4αq2

3(r′2 + a2 cos2 θ)2

(
1− 50mr

′ − 26q2

25(r′2 + a2 cos2 θ)

)]
δv1 ,

b
′v =

1√
2H(r′)

[
ia sin θ(δv0 − δv1) + δv2 +

i

sin θ
δv3

]
,

b̃
′v =

1√
2H(r′)

[
− ia sin θ(δv0 − δv1) + δv2 −

i

sin θ
δv3

]
.

(117)

We can check the metric of rotating charged black hole using Weyl corrections with the help of
new formed tetrad by:

g
′vω = −l

′vn
′ω − l

′ωn
′v + b

′v b̃
′ω + b

′ω b̃
′v, (118)

and the transformed coordinates (v
′
, r

′
, θ

′
, ϕ

′
) the covariant derivatives of the metric components in
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equation (118) can be written as:

g
′
00 =

f(r
′
, θ

′
)

∆(r′ , θ′)
, g

′
01 = 1, g

′
13 = −a sin2 θ

′
,

g
′
22 = −∆1(r

′
, θ

′
), g

′
03 =

(
1− f(r

′
, θ

′
)

∆(r′ , θ′)

)
a sin2 θ

′
,

g
′
33 = − sin2 θ

′

∆(r′ , θ′)

[
∆(r

′
, θ

′
)∆1(r

′
, θ

′
) + a2 sin2 θ′(2∆(r

′
, θ

′
)− f(r

′
, θ

′
))
]
,

(119)

where

∆(r
′
, θ

′
) = r

′2 + a2 cos2 θ
′
, ∆1(r

′
, θ

′
) = r

′2 + a2 cos2 θ
′
+

4αq2

9(r′2 + a2 cos2 θ′)
,

f(r
′
, θ

′
) = r

′2 + a2 cos2 θ
′ − 2mr

′
+ q2 − 4αq2

3(r′2 + a2 cos2 θ′)

[
1− 50mr

′ − 26q2

15(r′2 + a2 cos2 θ′)

]
.

(120)

Now we need to use transformations of coordinates (v
′
, r

′
, θ

′
, ϕ

′
) to remove the elements g

′
01

and g
′
13 [17]:

dv
′
= dt− Ω(r

′
, θ

′
)dr, r

′
= r, θ

′
= θ, dϕ

′
= dϕ−G(r

′
, θ)dr, (121)

where

Ω(r
′
, θ

′
) =

g
′
33g

′
01 − g

′
13g

′
03

g
′
33g

′
00 − g

′2
03

=
∆(r

′
, θ

′
)∆1(r

′
, θ

′
) + a2 sin2 θ

′

f(r′ , θ′)∆1(r
′ , θ′) + ∆(r′ , θ′)a2 sin2 θ′ ,

G(r
′
, θ) =

g
′
13g

′
00 − g

′
03g

′
01

g
′
33g

′
00 − g

′2
03

=
a∆(r

′
, θ

′
)

f(r′ , θ′)∆1(r
′ , θ′) + ∆(r′ , θ′)a2 sin2 θ′ .

(122)

Therefore, the charged rotating black hole metric with Weyl correction tensor is:

ds2 =
f(r, θ)

∆(r, θ)
dt2 + 2

(
1− f(r, θ)

∆(r, θ)

)
a sin2 θdtdϕ− ∆(r, θ)∆1(r, θ)dr

2

f(r, θ)∆1(r, θ) + a2 sin2 θ∆(r, θ)

−∆1(r, θ)dθ
2 − sin2 θ

∆(r, θ)

[
∆(r, θ)∆1(r, θ) + a2 sin2 θ(2∆(r, θ)− f(r, θ))

]
dϕ2.

(123)

where

∆(r, θ) = r2 + a2 cos2 θ, ∆1(r, θ) = r2 + a2 cos2 θ +
4αq2

9(r2 + a2 cos2 θ)
,

f(r, θ) = r2 + a2 cos2 θ − 2mr + q2 − 4αq2

3(r2 + a2 cos2 θ)

[
1− 50mr − 26q2

15(r2 + a2 cos2 θ)

]
.

(124)

Notice that, in the whole process, m represents the mass of black holes, a =
J

m
is the rotational

parameter, J is the angular momentum of the black hole, q is the electric charge, and α is the
coupling constant parameter which has the squared-length of dimension. Therefore, the above metric
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(123) is reduced to Kerr–Newman black hole metric in Boyer–Lindquist coordinates as α = 0 and the
same equation (123) to be reduced to Kerr Black hole solutions, we should have the electric charge
q = 0 and the parameter α = 0 . When a parameter of the charged rotating black hole a vanishes, we
can have solutions of the static and spherically symmetric black hole with Weyl correction as in (110).
When the terms a = q = 0 , the metric (123) reduces to Schwarzschild black hole metric as in (85).

9. Implications of study findings for current astrophysical observations
The initial theme developed for advanced astrophysics connects astronomical observers with the
underlying physical phenomena that initiate our cosmos. Effective planning is essential for the
tools and mechanisms used to observe astrophysical phenomena. Laboratory astrophysics includes
both experimental and theoretical studies to produce tangible observed processes in astrophysical
research. Six areas of physics are relevant to astrophysics and astronomy, with observational science
focusing on detecting protons generated by atomic, molecular, and condensed matter physics [49–
51]. Additionally, chemistry plays a role in condensed matter and molecular physics. The growth of
space-based in situ observations of the solar system bodies necessitates advancements in astrophysical
activities. These advancements should be conducted through sophisticated laboratory experiments to
detect gravitational waves in cosmic objects [49].
Advanced laboratory work requires both experimental and theoretical contributions to understand
our universe comprehensively. Studying and conducting experiments in atomic, molecular, condensed
matter, plasma, nuclear, and particle physics are key components. These aspects are crucial to
observe during experiments and theoretical investigations in advanced laboratories. Understanding the
effects of strong magnetic fields on atomic structure necessitates analyzing spectra from the vicinity of
magnetized compact objects like neutron stars and black holes. Agencies concerned with astrophysics
should prioritize laboratory astrophysics, recognizing its potential contributions to national research
in plasma, magnetized objects, and high-energy plasma. The experiments and theoretical insights
gained from laboratory astrophysics will serve as a foundation for generations to come. It extends
beyond mere detector and instrumental development, playing a pivotal role in maximizing the scientific
returns from astronomical observations.

10. Conclusion
The Einstein field equations (1) in the distributions of matter and energy with the radial null vector
field, µσ in the manifold of a collapsing object, can be written in the form of [39, 52]:

Rστµ
σµτ ≥ 0, (125)

where Rστ is the Ricci tensor. By applying the field equations (1), equation (125) implies the radial
null energy conditions for stress-energy tensor of matter, denoted as Tστ , such that:

Tστµ
σµτ ≥ 0. (126)

From equation (97), we observe that the Ricci scalar equals zero in the Schwarzschild metric, while the
Riemann scalar curvature and Weyl scalar invariants are as expressed in equation (98). This implies
the presence of the Weyl tensor in the Schwarzschild black hole. Suppose Tστ = 0 due to the zero
Ricci scalar. However, this does not imply the absence of energy distribution; it could be less, and
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this condition holds in vacuum situations, akin to vacuum Maxwell field equations [53]. In a vacuum,
Tστ vanishes from the equation:

Rστ = −8πG
(
Tστ −

1

2
gστT

λ
λ

)
. (127)

Therefore, when Tστ = 0 , from (127), we conclude that the Einstein field equations are empty space
as Rστ = 0 and Tστ vanish. Additionally, the equations (23, 24, 25, 26, 27) and (52, 53, 54, 55) are
the identities that show the stress- energy-momentum tensor equal to zero due to the source of Ricci
scalar-tensor in the matter distribution. Furthermore, the divergence occurs near the event horizon in
a stagnant Schwarzschild geometry with a proper acceleration [41, 53]. Indeed, in scenario, spacetime
resembles the flat and static Schwarzschild black hole [7, 16, 52, 54, 55]. Therefore, in the stated
conditions, the spacetime black hole might be flat, stagnant, and uncharged. Nevertheless, when
we refer to Figure 7, comparisons of the Weyl scalar invariant and the Riemann curvature tensor
show that the functions grow monotonically in the positive direction with respect to time t . Based

 

 (a) (b) 

Figure 7. (a) and (b) show the comparison of the behaviors of the Riemann curvature and Weyl tensors, which
almost behave the same.

on these interpretations, we can infer that the collapsing model could represent an uncharged and
nonrotating body in spacetime, assuming it is far from external disturbances. This collapse may lead
to the formation of a static Schwarzschild black hole, accompanied by the emergence of the Weyl
tensor. Furthermore, we observe the presence of the Weyl tensor in the formation of RN , Kerr, and
KN black holes, indicating a coupling between the Einstein–Maxwell equations and the Weyl tensor
through minimal Weyl corrections
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