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Abstract: We investigate the effects of an early cosmological period dominated by primordial 2-2-holes on
axion dark matter. The 2-2-holes emerge as a new family of horizonless classical solutions for ultracompact
matter distributions in quadratic gravity, a candidate theory of quantum gravity. Thermal 2-2-holes, sourced
by relativistic thermal gas, exhibit Hawking-like radiation and fulfill the entropy-area law before they become
remnants with almost no radiation. In this paper, we consider the remnant contribution to dark matter (DM)
small and adopt the axion DM scenario by the misalignment mechanism. We show that a 2-2-hole domination
phase in the evolution of the universe changes the axion mass window, obtained from the dark matter abundance
constraints. The biggest effect occurs when the remnants have the Planck mass, which is the case for a strongly
coupled quantum gravity. The change in abundance constraints for the Planck mass 2-2-hole remnants amounts
to that of the primordial black hole (PBH) counterpart. Therefore, since we use the revised constraints from
gravitational waves on the initial fraction of 2-2-holes, the results here can also be considered the updated
version of the PBH case. As a result, the lower limit on the axion mass is found as ma ∼ 10−9 eV. Furthermore,
the domination scenario itself constrains the remnant mass Mmin considerably. Given that we focus on the
pre-BBN domination scenario in order not to interfere with BBN (Big Bang nucleosynthesis) constraints, the
remnant mass window becomes mPl ≲ Mmin ≲ 0.1 g .

Key words: Nonstandard cosmology, quadratic gravity, axions, dark matter, 2-2-hole domination, black holes

1. Introduction
The axion is the (pseudo-) Nambu-Goldstone boson associated with Peccei–Quinn (PQ) U(1) global
symmetry and it was originally proposed to explain the strong CP problem of quantum chromodynam-
ics (QCD) [1–3]; namely, the question of why the CP violation in the SM from nonperturbative effects
turns out to be very small (or absent), which requires the QCD angle θ constrained to be extremely
small (or vanishing). The axion ϕ is related to the phase of a complex scalar field charged under the
PQ symmetry, which can be generically expressed as Φ = χ eϕ/fa , where fa is the symmetry breaking
scale of PQ symmetry trough the vacuum expectations of Φ . As a Goldstone boson, the axion is
initially massless (at high temperatures) but acquires a small mass through the nonperturbative QCD
effects, which introduce explicit breaking terms for the PQ symmetry. Through the axion, the QCD
angle is promoted to a field θ = ϕ/fa , for which ϕ = 0 is energetically favorable.
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Over time, the axion has also emerged as one of the leading DM particle candidates through
the misalignment of the minimum of its potential [4–6], set by the initial angle θi . In order for axion
to account for the entire dark matter, it has to be consistent with the relic density constraints. If the
axion is the only DM component then the required parameters are ma ≃ 10−6 eV (i.e. fa ≃ 1012

GeV), which otherwise becomes a lower (upper) bound so that the universe is not overclosed (see
Refs. [7, 8] for recent reviews).

The values for axion parameters given above are valid for standard cosmologies, where the
transition from the radiation-dominated era to the matter-domination era in the early-time universe
progresses based on the basic model of early cosmology. On the other hand, in the case of nonstandard
cosmologies [9–18], which generally include an intermediate stage of early matter domination or
kination, the parameter window for the axion sector can change. Recently, Ref. [19] investigated
a nonstandard cosmology triggered by primordial PBH domination and they found that due to the
entropy injection of the evaporation of PBHs, the bound from the dark matter abundance on the axion
mass becomes ma ≳ 10−8 eV (or fa ≲ 1014 GeV) for θi ∼ 1 .

In this paper, motivated by such effects of PBHs, we consider a nonstandard cosmology triggered
by a period of 2-2-hole domination and investigate the interplay between the 2-2-hole and axion
parameter spaces. The 2-2-holes [20–23] emanate as horizonless classical solutions for ultracompact
distributions in quadratic gravity [24–27], a candidate quantum theory of gravity (see Refs. [28, 29]
for a recent review of quadratic gravity). A 2-2-hole resembles a black hole in the exterior without the
event horizon, whereas in the interior, it is characterized by a distinct high curvature solution with a
transition region around the would-be horizon. These objects, as black-hole mimickers (i.e. horizonless
ultracompact objects [30]), are expected to appear as dark as black holes for a distant observer, despite
lacking event horizons, due to light being trapped in the high redshift region in their deep gravitational
potential [21, 30]. Even though the observed ultracompact objects appear to be consistent with General
Relativity, confirming these objects as black holes requires precise tests of near-horizon (or would-be
horizon) physics, and this is an active field of study [30]. In particular, binary mergers of such objects
are expected to cause distinctive signatures in gravitational wave signals as late-time echoes in the
waveforms [30]. There have been some discussions regarding the existence of statistically significant
signals of such nature in the current data [31–33], where no consensus has been reached. As for 2-2-
holes, the characteristics of gravitational wave echoes have been studied in Refs. [34, 35]. Any sign of
the existence of these objects will have profound consequences regarding gravity beyond the theory of
General Relativity.

In contrast to many other ultracompact objects, a 2-2-hole can possess an arbitrarily large mass,
yet its mass is bounded from below, indicating the existence of remnants. Until the remnant stage
of their evaporation, 2-2-holes exhibit Hawking-like radiation and satisfy the entropy-area relation.
Remarkably, these properties directly arise from self-gravitating relativistic thermal gas on a curved
background, without taking into account spontaneous particle creation from the vacuum, and thus
originate from a completely different origin than the black holes.∗ Once they become remnants, 2-2-
holes behave more like an ordinary thermodynamic system with an extremely slow pace of radiation.
Therefore, the remnants can be considered cold and stable objects, and hence constitute a viable dark

∗Taking into account particle creation effects from the vacuum on the curved background for 2-2-holes should introduce
the usual contribution to the temperature and entropy (as in the case of black holes), expected to be on the order of
Hawking temperature and Bekenstein–Hawking entropy, respectively.
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matter (DM) candidate [36]. Furthermore 2-2-holes, just like black holes, can produce particles that
are responsible for the baryon asymmetry, dark matter, and dark radiation [37].

Axion cosmology, as noted above, is another area of interest that can be connected to 2-2-
hole density evolution in the early universe, which is the focus of this paper. Naturally, a 2-2-hole
domination period, just in the case of black holes [19], can change the evolution of the Hubble rate and,
therefore, can affect the axion abundance constraints. This is due to the large entropy injection at the
end of the nonremnant stage of 2-2-hole evaporation, during which the radiation is Hawking-like. Once
the 2-2-holes become remnant, they behave like cold and stable matter, and therefore contribute to the
DM abundance. Since we are interested in the axion DM case, we only focus on parameter space where
the remnant contribution to DM is negligible. In addition to the misalignment mechanism, axions
can also be produced from the 2-2-hole evaporation process. As could be inferred from our previous
study [37], this contribution is negligible compared to the DM abundance; moreover, the axions directly
produced from 2-2-holes can be hot and can make a meaningful contribution to the effective number
of relativistic degrees of freedom in the early universe, Neff , which will be briefly discussed later in
this paper. Due to the extreme constraints from Big Bang nucleosynthesis (BBN) [36], we only focus
on 2-2-holes small enough to complete their evaporation by the beginning of the BBN period. This
maximum mass, of course, has a dependence on the remnant mass Mmin .

Our scenario deviates from the PBH case in several aspects. First, we have naturally leftover
remnants, whereas it has been so far a conjecture for PBHs if one prefers to adopt the remnant
scenario. Note that the 2-2-hole provides a specific example of how high curvature terms can play
a role in preventing horizon formation, which is also anticipated for the possible existence of BH
remnants. Due to the dependence on the remnant mass Mmin , the axion abundance limits can
constrain this parameter. The pre-BBN 2-2-hole domination scenario itself limits Mmin , where the
most strict bound, Mmin ≲ 0.1 g , comes from the condition that the background temperature when
the 2-2-hole domination period begins, Tdom , should be higher than the temperature when 2-2-holes
become remnants (Tτ ) . Second, since the radiation rate depends on the remnant mass, in addition to
the initial mass of the hole, the required initial mass to survive up to some critical times can be much
larger than the PBH counterpart for a given Mmin . This is because this upper limit on the initial mass
goes with ∝ (Mmin/mPl)

2/3 , where Mmin ≳ mPl . Finally, since the Planck mass 2-2-hole remnant
scenario (Mmin ≃ 3.6 mPl , to be more precise) parametrically amounts to the PBH case; since we are
using the revised constraints from the GWs during BBN [38] (see Refs. [39, 40] for earlier discussions),
our study can also be considered the updated version of the PBH case in this limit. As we will show,
the lowest bound on the axion mass occurs in the Planck mass limit, which yields ma ≳ 10−9 eV .

The rest of the paper is organized as follows. In Section 2, we briefly review the standard axion
cosmology. In Section 3, we discuss the primordial 2-2-hole domination scenario and the necessary
conditions. In Section 4, the effects of entropy injection from the 2-2-hole evaporation, are investigated.
We present the main results in Section 5 and conclude with Section 6.

2. QCD axions as dark matter in standard cosmology
The axion dynamics is conjectured as a mechanism to naturally drive the CP-violating term in the
SM to zero and hence provides a resolution to the strong CP problem in QCD. The axion is initially
massless as the Nambu-Goldstone boson of the spontaneously broken global U(1)PQ symmetry, namely
Peccei–Quinn (PQ) symmetry [1–3]. Once the nonperturbative effects, which arise due to the axion’s
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couplings to QCD, become important at around the QCD scale, the axion acquires temperature-
dependent mass, which was determined by methods in lattice QCD as [41]

m̃a(T ) ≃ ma ×

{
(TQCD/T )

4 for T ≳ TQCD

1 for T ⩽ TQCD ,
(2.1)

where TQCD ≃ 150 MeV. The relation between the constant mass factor ma and the decay constant
fa (which is set to be around the Peccei–Quinn symmetry breaking scale) is given as [42]

ma

eV
= 5.70× 106

GeV

fa
. (2.2)

The Lagrangian for the axion ϕ , a real scalar field minimally coupled to gravity, in the massive
realm is given simply as

La = −1

2
(∂µϕ)∂

µϕ− 1

2
m2

aϕ
2 . (2.3)

From varying the action S =
∫ √

−g La on the Friedmann–Lemaître–Robertson–Walker (FLRW)
background, gµν = diag(−1, a2, a2, a2) with a(t) being the scale factor, the equation of motion for the
spatially homogeneous axion field becomes

ϕ̈+ 3Hϕ̇+ m̃2
a(T )ϕ = 0 , (2.4)

where H = ȧ/a is the Hubble parameter, as usual. Therefore, the system behaves like a damped
harmonic oscillator where the critical damping point occurs for Tosc where H(Tosc) ∼ m̃a(Tosc) . In
general, this condition is chosen as 3H(Tosc) = m̃a(Tosc) . When m̃a(T ) ≲ 3H(T ) , which corresponds
to T ≳ Tosc , the system is overdamped. Thus, for very high temperatures (m̃a ≈ 0), the axion field
does not really move, and the solution for Eq. (2.4) is ϕ = constant . On the other hand, for T ≲ Tosc

(i.e. m̃a(T ) ≳ 3H(T )), the system describes the damped harmonic motion, and the axion field begins
to oscillate with angular frequency m̃a(T ) . Therefore, this production of axions is a nonthermal process
whose scale is set by the Hubble parameter, which can be related to the corresponding temperature
through the Friedmann equation,

H2(T )M2
Pl

8π
=

ρR(T )

3
=

π2

90
g∗,R(T )T

4 , (2.5)

for a radiation-dominated epoch of the universe. Here, MPl is the Planck mass, and g∗,R(T ) is the
effective number of relativistic degrees of freedom contributing to the radiation energy density ρR(T )

at temperature T .
In order to find the axion relic density, we will utilize the entropy conservation. In the standard

cosmological scenario (which will change later in our discussion), it is generally assumed that no
entropy is generated after the axion field begins to oscillate, and therefore, the total entropy S = sa3

is conserved. Since the coherent axion oscillations behave like nonrelativistic matter, its number
density na(T ) = ρa(T )/ma(T ) varies with a−3 , just like the entropy density s . Since, na/s remains
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constant as long as there is no entropy injection/production through the evolution of the universe, we
can determine the current energy density of axions from

ρa (T0) = ρa (Tosc)
ma

m̃a (Tosc)

s (T0)

s (Tosc)
, (2.6)

where T0 is the temperature today and since T0 ≪ TQCD , m̃a (T0) = ma from Eq. (2.1). Note that the
entropy density is given as s(T ) = 2π2

45 g∗s(T )T
3 , whose value at present is s (T0) ≃ 2.69×103 cm−3 [43].

Note that g∗s(T ) denotes the number of relativistic degrees of freedom contributing to the entropy. The
difference between g∗s(T ) and g∗,R (defined above) is small and generally ignored, i.e. g∗,R ≈ g∗s(T ) .
The energy density of the axion field due to its misalignment from the minimum of its potential is
given as ρa (Tosc) ≃ 1

2m̃
2
a (Tosc) f

2
aθ

2
i , where θi is the initial misalignment angle. The axion abundance

Ωah
2 ≡ ρa(T0)

ρc/h2 is then found as

Ωah
2

0.12
≃

(
θi

10−3

)2

×


(

ma

mQCD
a

)− 3
2

for ma ≤ mQCD
a(

ma

mQCD
a

)− 7
6

for ma ≥ mQCD
a ,

(2.7)

where we follow the notation of Ref. [19]. Here, mQCD
a ≡ ma ≃ 4.8 × 10−11eV is the axion mass

value for Tosc = TQCD . ρc/h
2 ≃ 1.1× 10−5 GeV/cm3 is the critical energy density in terms of Hubble

parameter h , and Ωah
2 ≃ 0.12 is the required value for the axion abundance to account for the entire

DM [43].
The expected range of values for the initial misalignment angle depends on whether or not

the PQ symmetry breaking occurs after a possible period of inflation [8]. If the universe never
underwent inflation or the PQ symmetry breaking occurred before inflation (HI < fa ), then the
initial misalignment angle θi is a free parameter, and its expected (or ”natural”) interval is taken
as 0.5 < θi < π/

√
3 (where π/

√
3 = (θi)rms ). Much smaller values are also possible depending on

how much fine-tuning one is willing to allow. Such small values, on the other hand, are sometimes
considered in the anthropic perspective in the literature. On the other hand, if the PQ symmetry
occurred after inflation (HI > fa ), θi is not a free parameter and it is averaged over the uniform
distribution in the interval [−π, π] , namely θi = π/

√
3 . In the latter case, topological defects can arise

due to PQ symmetry breaking and have to be dealt with. Moreover, in this scenario (i.e. HI > fa ),
the backreaction effects become important and the parameter space becomes quite restricted such
that the region fa ≲ 1015 GeV (or ma ≳ 10−9 eV) is excluded in order not to produce too much dark
matter [8].

Therefore, the standard axion scenario, in general, assumes that HI ≪ fa , where the PQ
symmetry breaking occurred before inflation and θi is a free parameter; this is the case we adopt in
this paper as well. The classic axion window is taken as 0.5 < θi < π/

√
3 , corresponding to 10−6 eV

≲ ma ≲ 10−5 eV (or 1011 GeV ≲ fa ≲ 1012 GeV). We will investigate the effects of primordial
2-2-domination in this parameter space.

Note that the potential term in the Lagrangian is a generic (harmonic) approximation to a more
complicated, model-dependent, periodic potential for small displacements (θ = ϕ/fa < 1) from the
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potential minimum [8]. Anharmonic corrections may become important for large initial angle values,
θi ≃ 1 . Such corrections can be introduced pragmatically to the solution of the linear equation, given
in Eq. (2.4), for the full nonlinear solution by employing the replacement θ2i → θ2i fanh(θi) , where
fanh(θi) is called anharmonicity correction factor. For instance, such a correction factor to cosine
potential was found by Ref. [44] as

fanh(x) =

[
ln

(
e

1− x2/π2

)]7/6
, (2.8)

which we will use below when we take into account such effects.

3. Primordial 2-2-hole domination
As we have seen above, we have quite restricted parameter space for the axion to account for all DM
in the standard cosmological scenario. Ref. [19] considered the scenario that there was an era in the
evolution of the universe in which PBH came to dominate the total energy density. This introduces
an intermediate stage of matter domination that relaxes the axion bounds by a couple of orders of
magnitude.

Now, we will look at a similar situation for the 2-2-holes. Just like PBHs, 2-2-holes also behave
like cold matter which evolves with a−3 . But differently, we have a well-established notion of 2-
2-holes remnants, whose mass Mmin is a free parameter and comes from the underlying theory of
quantum gravity (quadratic gravity). (In the case of BHs also, sometimes remnants are conjectured
to occur although the mechanism of that is not clear and in general assumed to have Planck mass
remnants, unlike in our case.) In fact, we studied the 2-2-hole remnants as whole DM in Ref. [36]
and as complimentary to particle DM in Ref. [37]. Therefore, in the case of axion DM we need to be
careful to take into account the necessary constraints.

To avoid interfering with the BBN constraints, we will focus on the 2-2-holes that become
remnants by the beginning of the BBN era (t ∼ 1 s). The mass fraction of 2-2-hole remnants in dark
matter today is

r ≡ Mmin n(t0)

ρDM(t0)
=

Mmin s(t0)

ρDM(t0)

n(t0)

s(t0)
, (3.1)

where n(t) denotes the remnant number density, s(t0) = 2.9 × 103 cm−3 and ρDM(t0) ≈ 0.26ρc

are the entropy and dark matter densities today, with ρc = 9.5 × 10−30 g cm−3 being the critical
density [43].† Note that here, as the leading order approximation for the cosmic evolution, we consider
the evaporation as instantaneous radiation of energy at t ≈ τL

‡, with the 2-2-hole mass M(t) ≈ Minit

†Another commonly used parameter in the literature is the mass fraction at the formation of the holes, namely
β ≡ ρ(tinit)/ρtot(tinit) [45]. For 2-2-holes, it is related to the remnant fraction r as β ≈ 4.0× 10−28 f M̂−1

min M̂
3/2
init , where

the background temperature Tbkg(t) = 0.17mPl (t/ℓPl)
−1/2 and the inital 2-2-hole mass Minit ≈ 8× 1037 (tinit/s) g [36]

is used.
‡This is commonly called as teva for the black hole case in the literature. For us, it is the end of the large-mass stage

(away from the minimum mass Mmin ) of the 2-2-hole radiation, where the radiation occurs in a Hawking-like behavior.
After τL , the 2-2-holes radiate like coal with an extremely slow rate and effectively become cold remnants.
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at t ≤ τL and M(t) ≈ Mmin at t > τL . Note that the background temperature in the radiation-
dominated early universe is given as

T (t) = 1.6 g
−1/4
∗ (t/s)−1/2 MeV , (3.2)

which should not be confused with the temperature of the 2-2-hole radiation, T∞(t) .
The relation between r and the number density to entropy density ratio at the time of formation,

n(tinit)/s(tinit) , depends on whether or not the primordial 2-2-holes ever came to dominate the energy
density. Even though the initial mass fraction of 2-2-holes starts with a small value (in the radiation
era of the very early universe), since they behave as cold nonrelativistic matter and therefore evolve
with a−3 as opposed to the radiation which goes with a−4 , their relative mass fraction increases
with time. If we define the ratio of 2-2-hole energy density to the radiation energy density as
β ≡ ρ(tinit)/ρR(tinit) = Minitn(tinit)/ρR(tinit) , the condition that the 2-2-holes and the radiation have
equal energy densities before 2-2-holes become remnant (t ≈ τL ), i.e. the condition for the 2-2-hole
domination to occur, can be given in terms of a critical value βc ≃ T (τL)/T (tinit) , which can be
expressed in terms of the critical number density as [36],

βc ≃ Minitnc(tinit)/ρR(tinit) where nc(tinit) ≃
ρrad(tinit)

Minit

√
tinit
τL

,

≃ 3.5× 10−2 Mmin

Minit
. (3.3)

If n(tinit) ≲ nc(tinit) (i.e. β ≲ βc ), the 2-2-holes are always subdominant in the energy budget,
and the entropy injection from evaporation is negligible. The ratio n(t)/s(t) remains constant till the
present, with n(t0)/s(t0) ≈ n(τL)/s(τL) ≈ n(tinit)/s(tinit) . The mass fraction of remnants today is
then r ≈ 2.6×1028M̂min n(tinit)/s(tinit) . This is the nondomination scenario, and we are not interested
in this case since it does not really affect the evolution of the universe significantly.

If, on the other hand, n(tinit) ≳ nc(tinit) (i.e. β ≳ βc ), then the domination scenario occurs, in
which there is a new era of matter domination before τL . It turns out that the extra redshift of the
number density introduced by this new era cancels with the large initial density so that n(τL) remains
the same as the one with nc(tinit) , i.e. n(tinit) = nc(tinit) [36]. Thus, the mass fraction at present has
a maximum,

rmax = 2.6× 1028M̂min
nc(tinit)

s(tinit)
= 9.1× 1025 M̂2

min M̂
−5/2
init , (3.4)

and the bound is saturated with r = rmax for the domination scenario. The ”hat” notation denotes
the Planck mass normalized mass values, e.g., M̂min ≡ Mmin/mPl , where mPl = 2.2 × 10−5 g is the
Planck mass. There is a critical value of 2-2-hole initial mass, say Mc , corresponding to rmax = 1 ,
given as

Mc = 5.3× 105 M̂
4/5
min g. (3.5)

Thus, for Minit ≲ Mc , with rmax being greater than unity, the 2-2-hole remnants can account for all
of the dark matter since r ≈ 1 is allowed, as we investigated in Ref. [36]. In this case, the 2-2-hole
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domination is not allowed due to the fact that this would require r ≈ rmax (the domination condition)
and thus r > 1 , which is forbidden. As for Minit ≳ Mc on the other hand, the 2-2-hole domination
can occur since rmax ≲ 1 and hence the domination condition (r ≈ rmax ) is allowed, and in this case
the remnants cannot account for whole dark matter. The latter scenario is the one we are interested
in here since we want 2-2-hole domination in the early universe and we want 2-2-hole remnants not
being the majority of DM since that role is saved for axions. For concreteness, we choose the value
rmax ≲ 0.01 in order to guarantee a small 2-2-hole abundance. Therefore, from Eq. (3.4) we determine
a second critical initial mass for 2-2-holes as

Mc̄ = 3.3× 106 M̂
4/5
min g. (3.6)

Together with the aforementioned condition that the 2-2-holes of interest become remnants by the
beginning of BBN, the initial mass of 2-2-holes must be in the interval

Mc̄ ≲ Minit ≲ MBBN (3.7)

where MBBN is the initial mass of a 2-2-hole that would evaporate (and become remnant) at the
beginning of BBN (TBBN ≳ 4 MeV). To find MBBN , if we assume the noninterrupted radiation
domination as in the case of standard cosmology, we can use Eq. (3.2) to find that tBBN ≲ 10−2 s .
If we take the condition τL ⩽ tBBN , we get a value for the critical initial mass for the 2-2-holes.
But we do not adopt the standard cosmology in our scenario, since we consider a 2-2-hole (matter)
domination era before BBN. Once the 2-2-holes complete their large-mass stage evaporation (and
become remnants), they reheat the universe to a temperature Tτ and the universe becomes radiation-
dominated again. Now, instead of using Eq. (3.2), we can find Tτ from the Friedmann equation for
the radiation-dominated new phase, as given in Eq. (3.11). By imposing Tτ ≳ TBBN , we find the value
for MBBN as

MBBN = 1.4× 108 M̂
2/3
min g . (3.8)

which interestingly does not differ noticeably from the value that can be found in the standard
cosmological scenario as explained above.

For the later discussion, an important input is the 2-2-hole number density to entropy ratio right
after evaporation. For the domination case, i.e. n(tinit) = nc(tinit) , we have [36]

n(τL)

s(τL)
= 3.5× 10−3 M̂min M̂

−5/2
init . (3.9)

As mentioned above, this is the result of the entropy injection due to the 2-2-hole evaporation following
a 2-2-hole dominated era in the evolution of the universe.

3.1. The background temperature of the universe at critical times
Recall that we can divide the evolution of the universe (before BBN) into four regimes: t ⩽ teq ,
teq < t ⩽ tdom , tdom < t ⩽ τL , and τL < t . For each regime, the Hubble parameter can be found
in terms of background temperature, as we will do in the next subsection. But first, let us find the
background temperatures corresponding to t = teq and t = τL .
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At t ≃ τL , where 2-2-holes complete its large-mass stage evaporation (and become remnants),
the universe is now filled with radiation and becomes radiation-dominated again. Therefore, we can
find the background temperature at t ≃ τL , i.e. T (τL) ≡ Tτ , from the Friedmann equation§

3m2
PlH

2(τL)

8π
≃ ρR(τL) =

π2

30
g∗(Tτ )T

4
τ . (3.10)

Since the universe was matter-dominated from t = td , we can use the Hubble parameter H ≃ 2/(3τL) .
By using Eqs. (3.10) and (4.1), we find

Tτ = 6.9× 1012 M̂min

(
Minit

g

)−3/2

MeV , (3.11)

where M̂min ≡ Mmin/mPl , as before. Note that, as in the case of BHs, this value can also be called
reheating temperature since the universe reheated to this value after the 2-2-hole evaporation, which
of course has nothing to do with the reheating after inflation. As we discussed before, in order to avoid
disrupting BBN, we require that Tτ ≳ 4 MeV , which amounts to imposing Minit ⩽ MBBN , whose
value is given in Eq. (3.8). As explained around Eq. (3.7)), we also have a lower bound for Minit as
a result of the domination condition. Therefore, the condition Mc ≲ Minit ≲ MBBN yields that the
reheating temperature should satisfy

4 MeV ≲ Tτ ≲ 1.2× 103 M̂
−1/5
min MeV . (3.12)

Since the minimum value for Mmin is the Planck mass mPl = 2.18 × 10−5 g , the upper limit for the
reheating temperature is ∼ 1 GeV . Notice that from Eq. (3.12) we can also determine the upper limit
for the remnant mass Mmin (see Eq. (3.15)).

From the time the 2-2-holes formed (t = tinit ≈ (8 × 1037)−1Minit s/g) up to the time t = teq ,
the 2-2-holes are subdominant, and therefore there is no significant entropy injection during this time.
By using the entropy conservation, we can find the background temperature of the universe at t = teq
as

Teq = β Tinit

(
g∗s (Tinit)

g∗s (Teq)

)1/3

, where Tinit = T (tinit) = 4.3× 1015
(
Minit

gr

)−1/2

GeV , (3.13)

where we recall that g∗s ≃ g∗ at high energies [46] and where we use Eq. (3.2) to obtain the background
temperature at the time of 2-2-hole formation, Tinit . Notice that eq in Teq(teq ) does not denote the
usual matter-radiation equality, which is right around CMB and is denoted in this paper with the
capital letters as in TEQ(tEQ) . We also take β ≳ βc (or n(tinit) ≳ nc(tinit) , see Eq. (3.3)), since we

§Notice that we have the identical Friedmann equation to the GR case. This is mainly because we consider the R2

term in the quadratic Lagrangian (Eq. (A.1)) negligible since this term does not play an important role for 2-2-hole
solutions and it is ignored for simplicity reasons while finding the particular solution we use in this paper [23]. Note also
that there is a formulation of quadratic gravity that removes the R2 term by introducing an auxiliary scalar, followed
by some field redefinitions [28]). Meanwhile, the Weyl squared term in the action vanishes for the FRW metric and does
not play a cosmological role. This is an advantage for the purpose of this paper since we would like to explore the axion
DM parameter space with modifications in the standard cosmological scenario brought by only the intermediate 2-2-hole
domination era before BBN, while not altering the rest of the cosmological evolution.
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are interested in the early 2-2-domination scenario. From the condition Mc̄ ≲ Minit ≲ MBBN , we can
also determine the interval for the background temperature at the time of 2-2-hole formation as

3.6× 1011M̂
−1/3
min GeV ≲ Tinit ≲ 2.4× 1012M̂

−2/5
min GeV . (3.14)

From Eqs. (3.12) and (3.14), we can also determine the upper limit for the remnant mass Mmin , but
the more stringent bound comes from the fact that Mc̄ must not exceed MBBN . Therefore, in the
early 2-2-hole domination scenario, we have the following condition for Mmin .

mPl ≲ Mmin ≲ 3.3× 107 g . (3.15)

However, this can be improved further. Ref. [38] investigated the BBN constraints on the energy
density of the gravitational waves produced at the time when primordial black holes, dominating the
energy density, evaporated and reheated the universe into a radiation-dominated phase. This leads to
a constraint on the initial fraction of the holes [38],

β < 1.1× 10−6
( γ

0.2

)−1/2
(
N∗
108

)17/48(g∗(Tτ )

106.75

)1/16(Minit

104g

)−17/24

≡ βmax . (3.16)

This should also be valid for 2-2-holes. The formation and almost instantaneous evaporation of 2-2-
holes, in theory, is almost identical to the BH case (as discussed in Appendix A). The difference is
that 2-2-holes leave behind remnants, which seemingly do not play a role in the calculation of the
gravitational wave production after evaporation. Since these are the main ingredients of the analysis
of Ref. [38]¶, we simply assume that the bound on the initial fraction, given in Eq. (3.16), applies to
2-2-holes as well. Note that

Then, with our assumptions of γ ≃ 0.2 , g∗(Tτ ) ≃ 12 , and N∗ ≃ 108 , the 2-2-domination
condition (β ≳ βc , where βc is given in Eq. (3.3)), together with Eq. (3.16), leads to the condition
that Mmin ≲ 43 g . Furthermore, it is of course required that the background temperature at around
which 2-2-holes start to dominate the energy budget, which will be denoted as Tdom (see Eq. (4.5)), is
larger than the evaporation temperature of 2-2-holes Tτ (given in Eq. (3.11). The necessary (but not
sufficient condition) for Tdom ≳ Tτ becomes Mmin ≲ 0.1 g , which is obtained by choosing β = βmax

and Minit = MBBN . Therefore, our allowed interval for the remnant mass is finally given as

mPl = 2.2× 10−5 g ≲ Mmin ≲ 0.1 g . (3.17)

4. Effects of 2-2-hole entropy injection
Here, we look at the effects of entropy injection due to the 2-2-hole evaporation on the evolution of the
universe and axion abundance. This is in analogy to the PBH case discussed in Ref. [19]. Considering
that we have now a 2-2-hole dominant stage (i.e. n(tinit) ≳ nc ), at some point in time, say t = teq ,
the radiation and 2-2-hole densities become equal; at a later time, say tdom , the 2-2-hole domination

¶Note that Ref. [38]’s analysis is for PBHs with monochromatic mass function at formation, which is known to be
a well-working approximation to constraint the parameter space [45] and which we adopt in this paper for 2-2-holes as
well. For a recent discussion of PBHs with extended mass functions, see Ref. [47].
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begins and lasts till the time 2-2-holes become remnants, i.e. at t ≈ tinit + τL ≈ τL . The formation
time (tinit ) and evaporation time (teva ≈ τL ) (see Eq. (A.8)) are given as

tinit
s

= 10−38 Minit

g
,

τL
s

= 2× 10−26M̂−2
min

(
Minit

g

)3

. (4.1)

Note that we do not want to disrupt BBN. Therefore, whatever happens should happen before
BBN, i.e. t ≲ 1 s or T (τL) ≳ 1 MeV. This would require the aforementioned condition on the initial
(or formation) mass of the 2-2-holes Minit ≲ MBBN , where the definition of the latter is given in
Eq. (3.8).

Since the 2-2-hole domination in our scenario occurs before t ∼ 10−2 s, it lasts too short to have
any noticeable effects regarding the timing and duration of the significant processes in the evolution of
the universe. Hence, for instance, it cannot directly solve the Hubble tension problem. One possible
way that could affect this is the production of extra radiation degrees of freedom, namely changing
Neff . In our scenario, since the only non-SM degree of freedom is the axion, there is no significant
difference from the standard scenario [19], as opposed to the case where we may have a large dark
sector [37].

On the other hand, such a change in the evolution of the universe can affect the parameter space
of the axion DM scenario, which will be finalized later in this section.

4.1. Evolution of the very early universe
Due to the intermediate era of 2-2-hole domination, the entropy injection from the 2-2-hole radiation
cannot be ignored and therefore the total entropy is not conserved. As a result, the simple scale-factor
dependence of energy densities cannot be applied. Instead, the Boltzmann equations for the evolution
of each component should be solved. Namely, we have the equations [48]

dρ

dt
+ 3Hρ = +

ρ

M

dM

dt

dρR
dt

+ 4HρR = − ρ

M

dM

dt
,

(4.2)

where ρ and ρR are the energy density of 2-2-holes and radiation. From the Friedmann equation,
we have H2 = 8π(ρR + ρ)/(3m2

Pl) . The axion is always subdominant for the time scale of interest.
The radiation rate of axions from 2-2-holes is negligible. Therefore, the axion evolution equation
is decoupled from the equations above and can be solved separately [17, 19]. In fact, its evolution
equation can be approximated as dρa/dt+3Hρa ≃ 0 and hence it will always act like NR matter, i.e.
ρa ∝ a−3 . However, due to the time-dependent source terms on the RHS of Eq. (4.2), ρR and ρ do not
always evolve as free-falling fluids. In order to find the full evaluation of these components, one has
to solve these equations numerically, but approximate analytic solutions also are known to give good
results [17, 19, 49], which we will be using below. Meanwhile, we will always have ρR(T ) =

π2

30 g∗(T )T
4

and will expressed our results in terms of HR ≡
√
8πρR/(3m2

Pl) .
As mentioned above, we have four regimes before BBN denoted as t ⩽ teq , teq < t ⩽ tdom ,

tdom < t ⩽ τL , and τL < t . Similar to the BH case [19], we can find the Hubble rate for the 2-2-hole
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case in each regime in terms of temperature as

H(T ) ≃



HR(T ) for T ≥ Teq,

HR (Teq)

[
g∗s(T )

g∗s (Teq)

(
T

Teq

)3
]1/2

for Teq ≥ T ≥ Tdom ,

HR (Tτ )

[
1− 720 (8π)2

π N∗

M̂3
init

A4

H2
R (Tτ )−H2

R(T )

mPl HR (Tτ )

]
for Tdom ≥ T ≥ Tτ ,

HR(T ) for Tτ ≥ T ,

(4.3)

where A = 1.7N−1/4M̂
1/2
min , introduced in Eq. (A.4). In contrast to the BH case, in the third regime,

where 2-2-hole domination occurs, we have a dependence on our extra parameter M̂min ≡ Mmin/mPl ,
the remnant mass, in addition to the initial 2-2-hole mass, M̂init ≡ Minit/mPl through the dependence
on A . Taking A → 1 brings us to the BH case. We also recall that this is different from a possible BH
remnant case as well since the BH remnants are generally anticipated to have Planck mass, whereas
Mmin does not have a theoretical upper bound. Notice that the reheating temperature Tτ , which
appears in the third interval, includes factors of Mmin and Minit , as can be seen in Eq. (3.11). In this
interval, the denominator of the second term, in addition to N∗ , has also a factor of N−1 , contained
in the A4 factor. Recall that for our case, N = N∗ ≈ 108 , and thus, their effects cancel in the
quantities in question. What is important here is that the N∗ factor also exists in the BH case since
it represents the degrees of freedom (dofs) radiated at the initial temperature of the hole and for such
small holes N∗ takes the maximum value, which is the value above if we assume only the SM dofs.
But here we also have the factor N which corresponds to the dofs within the 2-2-hole, which also gets
extremely (actually divergently) hot deep inside. In most of the cases [36, 37], most of the quantities
that matter come with small exponents such as ±1/4 and thus do not play a big role. But if they
come with higher exponents as in above this may lead to noticeable effects. Overall, it could be better
to approximate the Hubble rates, given in Eq. (4.3), further in order to compare and contrast with
the black hole case (through the Mmin dependence) as

H(T )

GeV
≃



1.4× 10−18

(
T

GeV

)2

for T ≥ Teq,

9.3× 10−11 β1/2

(
Minit

gr

)−1/4( T

GeV

)3/2

for Teq ≥ T ⩾ Tdom ,

2.6× 10−37 M̂−2
min

(
Minit

gr

)3( T

GeV

)4

for Tdom ≥ T ≫ Tτ ,

4.7× 10−19

(
T

GeV

)2

for Tτ ≥ T .

(4.4)

Notice that in the second expression, the initial fraction of 2-2-holes, β , appears through the definition
of Teq , given in Eq. (3.13).
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By matching the second and third lines in Eq. (4.3) at T = Tdom , we can estimate the background
temperature at around which 2-2-holes start to dominate the energy budget as

Tdom ≃

[(
mPl√
8π

)10 A8

M6
init

N 2
∗

5760 g∗(Tdom)
Teq

]1/5

= 2.3× 107 M̂
4/5
min

(
Minit

g

)−6/5 (
Teq

GeV

)1/5

GeV

= 3.6× 1010 β1/5 M̂
4/5
min

(
Minit

g

)−13/10

GeV , (4.5)

where we use Eq. (3.13) and take into account that HR(Tdom) ≫ HR(Tτ ) (since Tdom ≫ Tτ ).
The entropy injection factor can also be found, similar to the BH case [19], as

S(T )

S(Tτ )
≃



g∗,s(Teq)

g∗,s(Tτ )

g∗(Tτ )

g∗(Teq)

Tτ

Teq
for T ≥ Tdom ,

g∗,s(T )

g∗,s(Tτ )

(
T

Tτ

)3
[
1− 720 (8π)2

π N∗

M̂3
init

A4

H2
R (Tτ )−H2

R(T )

mPl HR (Tτ )

]−2

for Tdom ≥ T ≥ Tτ ,

1 for Tτ ≥ T ,

(4.6)

where there are three regimes, instead of the four in Eq. (4.3), due to the approximate entropy
conservation for T ⩾ Teq . Recall that g∗,s ≈ g∗ at temperature values of interest, i.e. above BBN
scale [46]. As in the case of Hubble rates, we can simplify these expressions further as

S(T )

S(Tτ )
≃



1.6× 10−6 β−1M̂min

(
Minit

g

)−1

for T ≥ Tdom ,

1.8× 1047 M̂5
min

(
Minit

g

)−15/2( T

GeV

)−5

for Tdom ≥ T ≫ Tτ ,

1 for Tτ ≥ T .

(4.7)

4.2. Relation to the axion abundance
The axion abundance is given as

Ωah
2 =

ρa(T0)

ρc/h2
=

ρa(Tosc)

ρc/h2
ma

m̃a(Tosc)

s(T0)

s(Tosc)

S(Tosc)

S(Tτ )
, (4.8)

where ρa(Tosc) ≈ 1
2m̃

2
a(Tosc)f

2
a θ2i is the axion energy density at the oscillation temperature and

s(T ) = 2π2

45 g∗T
3 is the total entropy density. The entropy density and the critical energy density

at present are given as s(T0) = 2.7 × 103 cm−3 and ρc/h
2 = 1.1 × 10−5 GeV cm−3 , respectively.

Therefore, the abundance becomes

Ωah
2 ≃ 2.9× 103 θ2i g−1

∗,s (Tosc)
m̃a(Tosc)

ma

(
Tosc

GeV

)−3

× S(Tosc)

S(Tτ )
. (4.9)
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Since Tosc is determined by 3H(Tosc) = m̃a(Tosc) , from Eqs. (2.1) and (4.4), we find for Tosc ⩽ TQCD

Tosc

GeV
≃



1.5× 104
(ma

eV

)1/2
for Tosc ≥ Teq,

2.3 β−1/3

(
Minit

gr

)1/6 (ma

eV

)2/3
for Teq ≥ Tosc ⩾ Tdom ,

6.0× 106 M̂
1/2
min

(
Minit

gr

)−3/4 (ma

eV

)1/4
for Tdom ≥ Tosc ≫ Tτ ,

2.7× 104
(ma

eV

)1/2
for Tτ ≥ Tosc ,

(4.10)

and for Tosc ≳ TQCD

Tosc

GeV
≃



7.0
(ma

eV

)1/6
for Tosc ≥ Teq,

0.34 β−1/11

(
Minit

gr

)1/22 (ma

eV

)2/11
for Teq ≥ Tosc ⩾ Tdom ,

9.5× 102 M̂
1/4
min

(
Minit

gr

)−3/8 (ma

eV

)1/8
for Tdom ≥ Tosc ≫ Tτ ,

8.4
(ma

eV

)1/6
for Tτ ≥ Tosc ,

(4.11)

where we recall that TQCD ≃ 150 MeV. Then, from Eqs. (4.9), (4.10), (4.7), and (2.1), we find the
axion abundance today, for Tosc ⩽ TQCD , as

Ωah
2

0.12
≃



θ2i

(
β

10−13

)−1( ma

0.4× 10−7 eV

)− 3
2

M̂min

(
Minit

108 g

)−1

for Tosc ≥ Teq,

θ2i

(
ma

0.5× 10−8 eV

)−2

M̂min

(
Minit

108 g

)− 3
2

for Teq ≥ Tosc ⩾ Tdom ,

θ2i

(
ma

0.5× 10−8 eV

)−2

M̂min

(
Minit

108 g

)− 3
2

for Tdom ≥ Tosc ≫ Tτ ,

θ2i

(
ma

4.4× 10−7 eV

)− 3
2

for Tτ ≥ Tosc ,

(4.12)

and for Tosc ≳ TQCD as
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Ωah
2

0.12
≃



θ2i

(
β

10−13

)−1( ma

3.7× 10−7 eV

)− 7
6

M̂min

(
Minit

108 g

)−1

for Tosc ≥ Teq,

θ2i

(
β

10−13

)− 4
11

(
ma

1.4× 10−7 eV

)− 14
11

M̂min

(
Minit

108 g

)− 29
22

for Teq ≥ Tosc ⩾ Tdom ,

θ2i

(
ma

2.0× 10−9 eV

)− 3
2

M̂2
min

(
Minit

108 g

)−3

for Tdom ≥ Tosc ≫ Tτ ,

θ2i

(
ma

6.9× 10−6 eV

)− 7
6

for Tτ ≥ Tosc .

(4.13)

5. Results and discussion
Here, we first present the maximum parameter space for the misalignment angle of the QCD axion,
required to generate the entire dark matter abundance (modulo the negligible 2-2-hole remnant
contribution). Adopting a similar style to Ref. [19], we present the results in Figure 1. Differently, not
only do we take into account the anharmonicity effects of the axion potential (dashed lines), but we
also use the most recent expression for the upper bound on β coming from the gravitational waves,
given in a revised version of Ref. [38] (see Eq. (3.16)). As can be seen from Eqs. (4.12) and (4.13), the
maximum allowed θi is obtained for maximum values for β and Minit for a given remnant mass Mmin ,
i.e. β = βmax(Minit) and Minit = MBBN , given in Eqs. (3.16) and (3.8), respectively. This is displayed
as red lines in Figure 1, whereas the standard cosmological scenario, where there is no 2-2-hole (etc.)
domination era, is shown as black lines. The anharmonicity effects of the axion potential, as described
in Ref. [44], are given as dashed lines. Notice that they are only effective for larger values of θi , as
expected.

Taking the optimal interval as 0.5 ⩽ θi ⩽ π/
√
3 yields an allowed interval for the axion mass.

As mentioned in Section 2, this interval is not carved in stone; it is just taken as a favorable window,
specifically for the angle not being ”too small” since QCD axion attempts to explain the smallness
of the θ parameter of QCD, namely the strong CP problem, in the first place. The largest range of
allowed axion mass for this angle interval is obtained for Mmin = mPl as

1.9× 10−9 eV ≲ ma ≲ 2.7× 10−5 eV. (5.1)

This is an improvement compared to the standard cosmological scenario, where the lower limit is
2.1 × 10−6 eV , as can be seen from the black line in Figure 1a. Recall that our scenario in the
Mmin ≃ mPl limit parametrically reduces to the black hole remnant case with the Planck mass.‖ This
is realized when the factor A , defined in Eq. (A.4), goes to unity, which happens when Mmin = 3.6 mPl

(for N = 108). Therefore, Figure 1a, displayed for this remnant mass value, can be considered the
updated version for the black hole case given in Ref. [19], since we use the most recent gravitational

‖More precisely, in this limit, our case reduces to the black hole remnant scenario with the Planck mass remnants. But,
in ”the axion as (almost) all dark matter scenario”, as we will discuss below, we ensure that the remnant contribution
to dark matter is negligible and hence remnants do not play a noticeable role.
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wave bounds on the initial fraction of the holes, β , given in Ref. [38]. We also take into account
the anharmonicity effects through the anharmonicity factor, given in Eq. (2.8). These effects become
only slightly noticeable for relatively larger values and they will not be considered for the rest of our
analysis. The black lines denote the standard cosmological scenario, where there is no 2-2-hole/black
hole domination (β < βc ). The red lines are the upper bound coming from the hole domination with
maximum β = βmax value, given in Eq. (3.16). Since the overall dependence of θ on the Minit is
directly proportional, we also take the largest value for the initial hole, for the pre-BBN scenario, for
the upper bound, namely Minit = MBBN , which is given in Eq. (3.8). The most narrow range for the
pre-BBN 2-2-hole domination comes from the largest allowed remnant mass, Mmin = 0.1 g , shown in
Figure 1b.
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Figure 1. The parameter space for the initial misalignment angle required for the QCD axion to generate all
dark matter (modulo negligible contribution from 2-2-hole remnants) in the 2-2-hole domination scenario, given
for two benchmark values of the remnant mass Mmin , corresponding to the (almost) minimum and maximum
allowed values for the remnant mass in our scenario, as given in Eq. (3.17). The black lines correspond to
the standard cosmological scenario, where there are no effects of 2-2-hole energy density in the evolution of
the universe. The red lines denote the upper boundary (β = βmax and Minit = MBBN ) of the pre-BBN
2-2-hole domination scenario. The gridlines display the intersection points with the desired θi values. The
Mmin = 3.6 mPl case parametrically yields the black hole scenario and can be compared to the results of
Ref. [19]. Therefore, our results for Mmin = 3.6 mPl can be considered the updated results for the black
hole case since we use the most recent upper bound on β , given in Eq. (3.16). We also take into account the
anharmonicity effects of the axion potential, denoted as dashed lines in the figure. The largest allowed ma

interval for 0.5 ⩽ θi ⩽ π/
√
3 is obtained in the Mmin = mPl limit. The interval in Figure 1a is found as

2.5× 10−9 eV ⩽ ma ⩽ 2.7× 10−5 eV .

In Figures 2 and 3, we display how the axion as all dark matter scenario (modulo negligible
contribution from the remnants), can constrain the initial hole fraction, β , for the desired interval
0.5 ⩽ θi ⩽ π/

√
3 . In Figure 2, we present the result for the Tosc ≳ TQCD case. As done above,

we choose one of our benchmark points as Mmin = 3.6 mPl in Figure 2a, which is equivalent to the
black hole case (modulo the small overlap between blue and orange regions; see the next paragraph.)
Our results are in slight disagreement with the results of Ref. [19], in regions that are not of interest
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(nonorange regions) which might be because they seem to be doing full numerical analysis whereas
we take into account the analytic results, given in Eqs. (4.10–4.13), since they work well in the region
of interest (orange regions in the plots).

We also display the critical temperatures, discussed in the previous sections, in Figures 2 and
3. The lower parts of the plots denote higher temperatures. Notice that above the Tosc = Tdom line,
β parameter is not constrained (the vertical red lines) since the abundance for Tosc < Tdom does not
depend on β . In this region, the right side of the Tosc = Tτ (dot-dashed) line denotes the interval
Tτ < Tosc < Tdom , whereas the left side of the line indicates the Tosc < Tτ region.

Since we look for the pre-BBN scenario, Minit is bounded from above by MBBN (given in
Eq. (3.8)), so that, by the time BBN begins, the 2-2-holes become remnants (or, in the case of black
holes, they complete their evaporation and disappear) and hence do not interfere with the BBN physics.
The critical initial 2-2-hole mass, Mc̄ (see Eq. (3.6)), displayed in each plot in Figure 2, denotes the
maximum remnant fraction in the dark matter to be one percent (where the rest is just axion dark
matter∗∗). If we impose even smaller values for this value, then the critical mass Mc̄ becomes bigger
and less parameter space is available for the axion dark matter in the nonstandard scenario. We also
denote the other critical mass Mc , where the remnants would account for all dark matter, which is
not the scenario of interest here. In the case of black holes with no remnants, no such bound exists,
i.e. the blue regions disappear; then slightly more parameter space within the red lines in Figure 2a
is allowed. This bound, i.e. remnant fraction in the dark matter being negligible, plays more role
for larger remnant mass for a given axion mass. This is displayed in Figure 2b, where we choose
our benchmark value as Mmin = 0.1 g (and the same axion mass as in Figure 2a); here, there is
relatively more overlap between the blue region and the region between red lines. If we impose that
the fraction of 2-2-hole remnants in dark matter becomes even lower than 0.01, then Mc̄ shifts to the
right, and at the lowest possible fraction this critical mass equates to MBBN , where there would be no
available parameter space. The lowest possible fraction of remnants is obtained for Mmin = mPl as
approximately 10−6 . As for Mmin = 0.1 g . which is the largest allowed remnant mass in the pre-BBN
remnant domination scenario, the fraction of the remnants becomes approximately 10−5 .

As illustrated in Figures 2c and 2d (as compared to the ones above), for a given Mmin , the
smaller the axion mass is the smaller the required parameter space. Note that the required parameter
space in Figure 2c consists of a single point; namely the intersection point of βmax and MBBN lines.
This can be seen in Figure 1a also, since the axion mass in question, ma = 3.2×10−9 eV , corresponds
to the point at which the ”knee” occurs, denoting the location where Tosc ≃ TQCD .

In Figure 3, we display the Tosc ≲ TQCD case, which has a much smaller parameter space than
the other case. The only constraint on β , here, is that it should take values in between the βmax and
Tosc = Teq lines. The reason for not going below the Tosc = Teq lines is that we cannot have Tosc ⩾ Teq

and Tosc ≲ TQCD together for the largest allowed interval for axion mass, which is below the knee on

∗∗Note that we also have axion particles emitted through the 2-2-hole radiation. The fraction of these particles in the
dark matter energy density, in the domination scenario, is given as r2-2a = 0.2BaM̂

1/2
minM̂

−1/2
init , where Ba = ga/N∗ = 1/108

is the branching fraction of the axion in total number of degrees of freedom [37]. The largest possible fraction r2-2a can
be found by using the smallest initial 2-2-hole mass in the domination scenario, Minit ≈ Mc , and the largest remnant
mass, Mmin = 0.1 g . This yields r2-2a ∼ 10−13 , which is not a meaningful contribution and hence can easily be ignored.
Note that due to their negligible contribution, these particles are also exempt from the free-streaming constraints [37].
Yet, these relativistic particles can also be important since they contribute to the effective number of relativistic degrees
of freedom, ∆Neff , in the early universe, as will be briefly discussed in the last paragraph of this section.
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the red line in Figure 1a; 2.5× 10−9 eV ⩽ ma ⩽ 3.2× 10−9 eV .†† This can be seen in the first line of
Eq. (4.10); for the allowed range of ma , Tosc ≃ 0.75 - 0.85 GeV ⩾ TQCD = 0.15 GeV . Since the plot
never reaches the Tosc = Tdom case, we are always in the Teq ⩾ Tosc ⩾ Tdom interval, where there is
no β dependence in the corresponding equation (given in Eq. (4.12)) and hence no constraint on β in
this region (as denoted by the vertical lines).

We choose two benchmark points to display in Figure 3. In Figure 3a, we again choose
Mmin = 3.6 mPl , which is parametrically the black hole case (modulo the blue region, as explained
above). For this figure, we pick the borderline value (namely the knee point in Figure 1a) for the axion
mass. Since the allowed region reduces as the axion mass increases, the orange part covers the whole
2.5 × 10−9 eV ⩽ ma ⩽ 3.2 × 10−9 region. Therefore, for ma = 2.5 × 10−9 eV (for Mmin = 3.6 mPl )
the red line on the left (i.e. θi = 0.5) in Figure 3a would reside on MBBN line with no allowed (i.e.
orange) parameter space left (unless one allows smaller values for the angle). We demonstrate this in
Figure 3b. But here, we choose Mmin = mPl to be able to go to the lowest ma allowed (see Eq. (5.1)).

Some final remarks are in order. In addition to the cold (DM) axions we have, there are also
axions emitted by the 2-2-hole (or black hole) radiation (which do not contribute to dark matter in
a meaningful amount, as mentioned in footnote ∗∗ on the previous page). On the other hand, these
nonthermally produced axions are highly relativistic and hence contribute to the effective number of
relativistic degrees of freedom, ∆Neff . Based on the Planck data [50], the current upper limit is found
as ∆Neff ⩽ 0.28 at 95% C.L. [51]. The contribution of particles with a single degree of freedom (hence
of the axions) from the 2-2-hole radiation (in the domination scenario) is found as ∆Neff ≃ 0.02 (see
the purple band in figure 3 of Ref. [37]), which is consistent with data.

6. Summary
We investigated the effects of a nonstandard cosmological scenario, triggered by the domination of
primordial 2-2-holes [20–23] in the early universe, on axion dark matter. In comparison to the PBH
counterpart [19], we have an extra parameter, namely the remnant mass Mmin , which is directly
related to the underlying quantum gravity, quadratic gravity [24–27]. Most importantly, the remnant
mass appears also in the classical Hawking-like radiation of 2-2-holes, which lasts until they go on
the remnant stage. These remnants themselves are viable dark matter candidates, as we studied
before [36]. However, in this paper, we focused on ”the axion as (almost) all dark matter scenario”,
and thus we ensured through our parameter selection that the 2-2-hole remnant contribution to dark
matter was negligible.

Due to the modification in the evolution of the universe as a result of corresponding changes in
the Hubble parameter in different temperature intervals, the abundance constraints of the axion dark
matter changes. We found that the lower limit on the axion mass becomes as low as ma ∼ 10−9 eV (as
opposed to the standard scenario value of ma ∼ 10−6 eV) for the Planck mass remnants, which is the
case for a strongly coupled quantum gravity. Furthermore, the domination scenario itself constrains
the remnant mass Mmin , considerably. Given that we focused on the pre-BBN domination scenario
in order not to interfere with BBN (Big Bang nucleosynthesis) constraints, the remnant mass window

††Recall that the red line in Figure 1a denotes the maximum θi we can get from the hole domination, which corresponds
to β = βmax ; for smaller values of β , the knee gets closer to the θi = 0.5 line and quickly passes below it. Therefore,
the maximum allowed ma interval for Tosc ≲ TQCD is denoted on the red line from the knee to the θi = 0.5 line.
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becomes mPl ≲ Mmin ≲ 0.1 g . We also discussed the implications of this scenario on the initial
fraction of holes (β ) in energy density, where we took into account the corresponding gravitational
wave constraints [38].
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Figure 2. Constraints on the β parameter, the initial fraction of 2-2-holes at formation, for Tosc ≳ TQCD ,
for a given Mmin . The region between red lines is the parameter space for the QCD axion to generate all
dark matter (modulo negligible contribution from 2-2-hole remnants) in the 2-2-hole domination scenario for
the interval 0.5 ⩽ θi ⩽ π/

√
3 . The small contribution to DM from remnants is chosen as one percent, which

requires that Minit > Mc̄ . We also display the critical mass Mc , indicating the case where the remnant would
account for all DM. βc denotes the minimum possible value of β required for the 2-2-hole domination to occur.
βmax is the upper bound coming from the gravitational wave constraints, investigated in Ref. [38]. MBBN is
the upper value for Minit so that 2-2-holes become remnants before BBN begins. In the left column, we display
the parameter space for Mmin = 3.6 mPl , which is equivalent to BHs with Planck mass remnants. For the
regular BH scenario, where there are no BH remnants, the blue regions disappear and the parameter space in
Figure 2a gets slightly larger since small overlapping regions between the blue region and the red lines become
also available. Note that the upper label in the frames denotes the background temperature in the universe at
the time of hole formation.
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Figure 3. Constraints on the β parameter for Tosc ≲ TQCD for a given Mmin . The only constraint on
β , in this case, is that it is limited by the βmax and Tosc = Teq lines. As detailed in the text, the only
relevant temperature interval here is Teq ⩾ Tosc ⩾ Tdom , where there is no β dependence in the corresponding
equation (given in Eq. (4.12)) and hence no constraint on β in this region (as denoted by the vertical lines).
In Figure 3a, we again choose Mmin = 3.6 mPl , which reduces to the black hole case. The knee point on
Figure 1a is the intersection point between βmax and MBBN lines on Figure 3a. The smaller the axion mass,
the smaller the allowed (orange) region. We display the smallest axion mass allowed (by our choice of angle
interval 0.5 ⩽ θi ⩽ π/

√
3) in Figure 3b, which occurs fort the smallest 2-2-hole remnant mass, Mmin = mPl .

Finally, we note that the study of such black-hole mimickers constitutes an example of the effects
of these BH alternatives on any related phenomenon. Since these objects appear in theories beyond
General Relativity, any sign of their existence may have profound effects on our current knowledge of
gravity. The fact that the remnant mass Mmin is a parameter directly related to the underlying theory
gives a chance to constrain quantum gravity. Therefore, it is important to study available candidates
and the corresponding phenomenological implications.
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A. Appendix A. Brief review on 2-2-holes
Here, we briefly review 2-2-holes. More detailed discussions can be found in Refs. [21–23, 52]. The
action of quadratic gravity is given as

SQG =
1

16π

∫
d4x

√
−g

(
m2

PlR− α CµνρσC
µνρσ + βR2

)
, (A.1)

where α and β are dimensionless couplings. The new terms, namely the Ricci scalar square and the
Weyl tensor square, bring in, in addition to the usual massless graviton, a new spin-0 and a spin-2
mode with the tree level masses m0 ≈ mPl/

√
β and m2 ≈ mPl/

√
α , respectively. The quadratic

theory is renormalizable and asymptotically free [24–27] and can also be obtained from the string
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theory as an effective field theory [29]. Yet, the theory suffers from an Ostrogradsky instability,
associated with a spin-2 ghost. The proposed solutions, in general, employ modifications to quantum
prescription, depending on whether the theory becomes strongly or weakly coupled at the Planck
scale [28, 29, 53–62].

The theory generally admits spherically symmetric solutions where the behavior around the
origin is in the form gtt = bmrm + .. and grr = anr

n + .. , which are characterized as (n,m) . In
addition to the expected family of solutions that have analogs in GR such as the black hole (1,−1)

and star solutions (0, 0) , the quadratic theory also has the (2, 2) solutions, hence the name 2-2-
holes [21]. These objects can be as compact as black holes but without an event horizon. From the
exterior, they closely resemble black holes, whereas in the interior the 2-2-hole solution takes over.
The importance is that in GR, such ultracompact configurations are not supported, and the endpoint
of the gravitational collapse is a black hole, which is, consequently, the most compact object in GR;
in quadratic gravity, on the other hand, 2-2-hole solutions are also a candidate for the endpoint.

The term responsible for the 2-2-hole solutions is the Weyl term CµνρσCµνρσ in the quadratic
action, given in Eq. (A.1), whereas the R2 term is optional and therefore could be neglected for
simplicity [21–23]. Thermal 2-2-holes, sourced by a thermal gas, can be arbitrarily large, but there is

no solution below the value ≈ m2
Pl

m2
[22, 23]. Consequently, one can state that the new spin-2 mode,

generated by the Weyl term, determines the minimum allowed mass for the 2-2-hole. We define the
parameter M̂min , to be used throughout the paper, as

M̂min ≡ Mmin

mPl
≈ mPl

m2
≈ λ2

ℓPl
; (A.2)

where λ2 is the corresponding Compton wavelength. There exist two main scenarios for quadratic
gravity regarding the strength of dimensionless couplings in action (A.1). In the strong coupling
scenario, the Planck mass is expected to emerge dynamically through dimensional transmutation as
the only mass scale, m2 ≈ mPl , i.e. M̂min ≈ 1 . On the other hand, in the weak coupling scenario, it
can be generated spontaneously through vacuum expectation values of some scalar fields or introduced
explicitly [22]. In this case, there can be a large mass hierarchy with m2 ≪ mPl , i.e. M̂min ≫ 1 .

To investigate the thermodynamics of such solutions, one can focus on massless particles, with
the equation of state

ρ = 3p =
π2

30
N T 4 , (A.3)

where ρ and p are the energy density and pressure, respectively. T (r) denotes the local temperature
and N = gb + 7gf/8 , where gb and gf are the numbers of bosonic and fermionic degrees of freedom.
Since in the interior, T (r) reaches arbitrarily high values, N accounts for particle species of any mass
and in principle could be much larger than its Standard Model value N ≈ 107 if there are new particles
in Nature. The conservation law of the stress tensor, as usual, leads to Tolman law (T (r)g1/2tt = T∞ ),
where the value at spatial infinity, T∞ , is roughly the temperature measured by a distant observer.

The temperature for a normal (nonremnant) 2-2-hole is determined to be [23]

T ≃ 1.7N−1/4M̂
1/2
min TBH ≡ A TBH, (A.4)
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where M̂min ≡ Mmin/mPl and the Hawking temperature TBH = m2
Pl/8πM . Here, we introduced the

symbol A to use in the main text. The entropy is given as

S ≃ 0.60N 1/4M̂
−1/2
min SBH , (A.5)

where the Bekenstein–Hawking entropy SBH = π r2H/ℓ2Pl . At this stage, the thermodynamic behavior
of a 2-2-hole significantly resembles black hole thermodynamics; it exhibits Hawking-like radiation with
a negative heat capacity and fulfills the area law for entropy. Remarkably, this behavior of the thermal
2-2-hole directly arises from self-gravitating relativistic thermal gas on a highly curved background
spacetime without considering spontaneous particle creation from the vacuum, and therefore originates
from a completely different origin than the black holes.

The above relations are for the nonremnant stage of the 2-2-hole, where the hole’s mass is large
(i.e. away from the minimum mass). Once the temperature reaches the peak value, which happens
at around M ≃ 1.2Mmin [23], the 2-2-hole enters into the remnant stage, where drastic changes
occur in the thermodynamic behavior; the object starts to radiate like a regular object with heat
capacitypositive. The evaporation continues extremely slowly and asymptotically halts.

The mass evolution of a thermal 2-2-hole can be described by the Stefan–Boltzmann law

−dM

dt
≃ π2

120
N∗ 4πr

2
H T 4 , (A.6)

where 4πr2H is the effective emitted area. N∗ accounts for the number of particles lighter than T [63],
and it could be much smaller than N . The time dependences of the temperature and mass take the
same form as for a black hole. Treating N∗ as a constant determined by the initial T , we have in the
nonremnant stage that

T∞(t) ≃ T∞,init

(
1− ∆t

τL

)−1/3

, M(t) ≃ Minit

(
1− ∆t

τL

)1/3

, (A.7)

where τL is the evaporation time for a 2-2-hole evolving from a much larger Minit to Mmin ,

τL ≃ 2× 10−40NN∗
−1 M̂−2

min M̂
3
init s , (A.8)

where M̂min ≡ Mmin/mPl and M̂init ≡ Minit/mPl .
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