
Turkish Journal of Mathematics Turkish Journal of Mathematics 

Volume 28 Number 1 Article 5 

1-1-2004 

An Algorithm to Recognise Small Seifert Fiber Spaces An Algorithm to Recognise Small Seifert Fiber Spaces 

J. HYAM RUBINSTEIN 

Follow this and additional works at: https://journals.tubitak.gov.tr/math 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
RUBINSTEIN, J. HYAM (2004) "An Algorithm to Recognise Small Seifert Fiber Spaces," Turkish Journal of 
Mathematics: Vol. 28: No. 1, Article 5. Available at: https://journals.tubitak.gov.tr/math/vol28/iss1/5 

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for 
inclusion in Turkish Journal of Mathematics by an authorized editor of TÜBİTAK Academic Journals. For more 
information, please contact academic.publications@tubitak.gov.tr. 

https://journals.tubitak.gov.tr/math
https://journals.tubitak.gov.tr/math/vol28
https://journals.tubitak.gov.tr/math/vol28/iss1
https://journals.tubitak.gov.tr/math/vol28/iss1/5
https://journals.tubitak.gov.tr/math?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol28%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol28%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://journals.tubitak.gov.tr/math/vol28/iss1/5?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol28%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:academic.publications@tubitak.gov.tr


Turk J Math
28 (2004) , 75 – 87.

c© TÜBİTAK

An Algorithm to Recognise Small Seifert Fiber Spaces

J. Hyam Rubinstein

Abstract

The homeomorphism problem is, given two compact n-manifolds, is there an
algorithm to decide if the manifolds are homeomorphic or not. The homeomor-
phism problem has been solved for many important classes of 3-manifolds - es-
pecially those with embedded 2-sided incompressible surfaces (cf [12], [15],[16]),
which are called Haken manifolds. It is also well-known that the homeomor-
phism problem is easily solvable for two 3-manifolds which admit geometries
in the sense of Thurston [36], [31]. Hence the recognition problem, to decide
if a 3-manifold has a geometric structure, is a significant problem. The recog-
nition problem has been solved for all geometric classes, except for the class
of small Seifert fibered spaces, which either have finite fundamental group or
have fundamental groups which are extensions of Zby a triangle group and
have finite abelianisation. Our aim in this paper is to give an algorithm to
recognise these last classes of 3-manifolds, i.e to decide if a given 3-manifold is
homeomorphic to one in this class. A completely different solution has been an-
nounced recently by Tao Li [22]. Also Perelman’s announcement of a solution
of the geometrisation conjecture would enable a complete solution of the home-
omorphism problem; by identifying which geometric structure a given manifold
admits. However it is worth noting that practical algorithms for the homeo-
morphism and recogntion problems, which can be implemented via software,
are very useful for experimentation in 3-manifold topology. (See for example
[5], [39]).

1. Introduction

A basic problem in the topology of 3-manifolds is to decide if a given closed orientable
3-manifold has one of the eight geometries of Thurston [31],[36],[37]. We will refer to
this as the recognition problem. Six of these geometries have all examples which admit
Seifert fibre structures, namely S3 , S2×R, H2×R, PSL(2, R), R3, Solv, while all examples
admitting Nil geometric structures are Haken. The methods of Haken, as extended by
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Jaco and Oertel [11], [12],[13],[19], (cf also [21]) give an algorithm to recognise any 3-
manifold in these seven geometries, which is Haken or reducible, i.e contains a 2-sided
embedded incompressible surface or an embedded 2-sphere which does not bound a 3-cell.
The aim of the current paper is to complete the recognition problem for all 3-manifolds
which admit one of the first six geometries and are non Haken and irreducible. Such
examples occur only for S3 and PSL(2,R) geometries. Note that as known previously, the
results of [26],[27], [35],[33],[34],[21], [18], solve the recognition problem for the 3-sphere,
all lens spaces and prism manifolds. (Note all the 3-manifolds in the latter class contain
embedded incompressible Klein bottles. So one can either use methods of [21] to find such
surfaces and then check the complements are solid tori, or show that the manifolds have
double covers which are lens spaces, by [34] or [18]. Then by [25] the original manifolds
must be lens spaces or prism manifolds.) Consequently, the remaining examples are all
Seifert fibre spaces with three exceptional fibres, with S2 as orbit surface. Finding an
algorithm to decide if a given 3-manifold is homeomorphic to one of these ‘small’ Seifert
fibre spaces will be the subject of this paper.

Since a key part of the algorithm is to decide if a 3-manifoldM has a Heegaard splitting
of genus 2, we investigate the details of finding genus 2 splittings in the final section of
the paper. In particular, assuming that a 0-efficient triangulation of M has been found
([20]), we show that in a suitable almost normal projective solution space, if there is a
genus 2 almost normal Heegaard surface, then there is one of bounded weight. So this
gives a computable bound on the complexity of finding such surfaces, if they exist in the
3-manifold. For the issue pf practicality of the algorithm in this paper, finding genus 2
Heegaard surfaces is one of the more computationally expensive parts of the process.

In a talk at the Technion in January 1999, Casson spoke about the computational com-
plexity of finding the connected sum decomposition of 3-manifolds. In [18], the complexity
of determining the characteristic variety decomposition of a 3-manifold is investigated.
The algorithm here is needed to complete the technique in [18] and is the slowest part
of the method. So finding a more practical procedure is of considerable interest. In [26]
a theoretical algorithm is given for finding genus 2 Heegaard splittings, but it is clearly
not useful for implementation. In the final section, we address this algorithmic problem
and give an improved and simplified method, using the theory of 0-efficient triangulations
[JR].

Deciding if a 3-manifold is a small Seifert fibre space is also of interest in determining
the range of boundary slopes giving exceptional Dehn surgeries of knots in the 3-sphere
(cf [8]).

We would like to thank Dave Bachman for helpful comments.

2. Involutions and genus two Heegaard splittings of small Seifert fibre spaces

In this section, we collect together some well-known facts about genus two Heegaard
splittings, small Seifert fibre spaces and involutions of 3-manifolds. Note first that a
Seifert fibre space has a foliation by embedded circles, with the property that every circle
fibre has a small solid torus regular neighbourhood which is filled by loops in the foliation.
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Moreover the foliation on such a solid torus is either the product foliation ( in which case
we call the original fibre regular or else is formed by gluing the ends of a cylinder D2 × I
by a map (z, 0)→ (e

2πiq
p z, 1) where p, q are relatively prime positive integers with p ≥ 2.

Here D is the unit disk in the complex plane. The circle fibres near the original are formed
by gluing together p intervals of the form {(z, t); 0 ≤ t ≤ 1} where z 6= 0. The original
circle fibre consists of all points of the form {(0, t); 0 ≤ t ≤ 1} and is exceptional with
multiplicity p. The orbit surface is formed by projecting each fibre to a point and has a
cone point corresponding to each exceptional fibre.

Definition 2.1. An embedded or immersed torus T →M is called incompressible if the
induced map π1(T )→ π1(M) is one-to-one.

Definition 2.2. A vertical torus T in a Seifert fibre space is a union of regular fibres.
Consequently, under the projection map from the Seifert fibre space to its orbit space,
given by projecting each Seifert fibre to a point, T is the inverse image of an immersed
or embedded loop in the orbit space.

A closed orientable manifold is called atoroidal if it has no immersed or embedded
incompressible tori. We note the following useful result due to Waldhausen. We only give
a special case as needed below.

Theorem 2.1. Suppose that M is a closed orientable Seifert fibre space with S2 as orbit
space and at least 4 exceptional fibres. Then M is Haken, i.e contains an embedded incom-
pressible vertical torus. In fact, any vertical torus which projects to a simple closed curve
in the orbit surface, with at least two exceptional fibres on each side, is incompressible.

Another important result on Seifert fibre spaces was proved by Scott in [32]

Theorem 2.2. Suppose that M is a closed 3-manifold with π1(M) infinite and M is
finitely covered by a Seifert fibred space. Then M is Seifert fibred.

Definition 2.3. A handlebody is a small closed regular neighbourhood of a bouquet of
circles embedded in R3 or in any orientable 3-manifold. A Heegaard splitting of a closed
orientable 3-manifold M is obtained by expressing M as a union of two handlebodies
H+, H− which have a common boundary surface S. Then S is called a Heegaard surface
for M .

Definition 2.4. A vertical Heegaard splitting of a Seifert fibre space with three ex-
ceptional fibres is formed by joining small fibred regular neighbourhoods of two of the
exceptional fibres by a small horizontal tube.

Note that a hozizontal tube is a small regular neighbourhood of an arc which projects
one-to-one to an embedded arc in the orbit surface, connecting two cone points and
missing the third one.

See [3] for a discussion of Heegaard splittings of small Seifert fibred spaces. In partic-
ular, in [3] and [23], it is shown that there are finitely many splittings of genus 2 up to
isotopy. See also [30] for a comprehensive discussion about finiteness of genus 2 Heegaard

77



RUBINSTEIN

splttings of 3-manifolds. As well as possibly several non isotopic vertical splittings, which
can arise by different choices of exceptional fibres, there are sometimes other splittings,
called horizontal, depending on the choice of small Seifert fibre space. However we will
not have to consider the latter class of splittings in the method below.

Next, as is well-known, for any Heegaard splitting S of genus two of a closed orientable
3-manifoldM , there is a canonical involution g of M preserving S and the pair of handle-
bodies H+, H− which are the closures of the components of M \S (see [2] and [38]). The
quotient of M via the action of g is the 3-sphere, with S,H+, H− mapping respectively
to a 2-sphere and a pair of complementary 3-balls, so that the fixed set Γ of g projects to
a knot or link Γ′ in the 3-sphere. Moerover Γ′ is 3-bridge, i.e there is a projection of S3

to R so that the knot or link has precisely 3 maxima at value 1 and 3 minima at value
−1 and no other critical points with respect to this projection. It is quite easy to check
that the involution g can be found algorithmically, once the Heegaard splitting has been
constructed. We will give the details of this algorithm in the final section.

Our approach is to use the fact that the 3-bridge knots or links and their symmetries,
that are associated with genus 2 splittings of small Seifert fibre spaces are completely
understood by work of [3], [6], [23]. These knots or links are often called Montesinos.

We finish this section with a summary of the method, with the details in the next two
sections, assuming that a given vertical Heegaard splitting of genus 2 and its canonical
involution g have been found. We will distinguish three cases, depending on whether two
or more, one, or zero of the exceptional fibres of the Seifert fibring are of even multiplicity.
The first case is extremely easy, since then there is a 2-fold cover which is Haken, in nearly
all instances. In the second case, we use the fact that rotation r halfway along the Seifert
fibring gives a second involution which commutes with g. So there is an induced involution
on the 3-sphere, denoted by r′, which has a circle of fixed points C, meeting Γ′ in two
points. This is a strong inversion of the 3-bridge knot or link and can be found readily
by standard techniques, as in for instance [21]. Once we have found such a circle C, the
lift to M of C must be the exceptional fibre of even multiplicity. It is easy to check if the
complement of this loop is Seifert fibred and so this case is then finished.

The most difficult case is the third one, where each exceptional fibre has odd multi-
plicity. Consequently, rotation r along the Seifert fibring by π induces an involution r′

on the 3-sphere leaving Γ′ invariant, with fixed circle C disjoint from Γ′. So the 3-bridge
knot or link is periodic (with period 2) and again this involution r′ acting on the knot
complement can be found by standard techniques. (Note that symmetries of such knots
have been studied in [?]). Our idea is to keep iterating this process. Essentially this means
we are finding smaller and smaller rotations rk along the circles of the Seifert fibering by
an angle of π × 21−k, for k = 1, .... The period of rk is 2k. The final step is to show that
for some k sufficiently large, rk is isotopic to the identity, since the translate of S by rk
becomes isotopic to S. In this case it is follows by [10] or [7] that the isotopy is essentially
the Seifert fibring and we are done.
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3. Exceptional fibres of even multiplicity

Case 1. Two or more exceptional fibres of even multiplicity
Let M denote a Seifert fibre space with S2 as orbit surface and three exceptional

fibres F1, F2, F3 with PSL(2,R) or S3 geometry. We assume in this case that F1 and
F2 have even multiplicities m1 and m2, with the multiplicity of F3 being some integer
m3 > 1. Then clearly there is a non-zero element of H1(M,Z2) so that the induced
map π1(M) → Z2 takes the classes of F1 and F2 to non zero images, while the class
of F3 is mapped to zero. (Note that since we are mapping to an Abelian group, this
is independent of the choice of paths joining the exceptiona fibres to the base point of
π1(M).) Let M ′ denote the induced 2-fold covering space of M . Then there are at most
four exceptional fibres in the lifted Seifert fibring of M ′, namely the lifts F ′1 and F ′2 of
F1 and F2 respectively, with two lifts F̃3 and F 3 of F3. Clearly the multiplicities of the
these lifted fibres are m1

2 , m2
2 , m3 and m3 respectively.

If neither m1 nor m2 is equal to 2, then it follows immediately that M ′ is a Haken 3-
manifold with an embedded incompressible vertical torus, by Theorem 1. We can clearly
test to see if H1(M,Z2) is non zero, find all such possible double coverings M ′ and decide
if any are a Haken Seifert fibre space, using [19] or [21]. We summarise the argument
for the benefit of the reader. In these papers, there is an algorithm to find an embedded
incompressible (vertical) torus, if one exists. Splitting M along such a torus, when one is
found, we want to check if the two pieces are Seifert fibred with boundary fibrings which
match up. The methods of [19] or [21] can be used to find properly embedded (vertical)
incompressible annuli in the two pieces, which are not isotopic into the boundary torus, if
such annuli exist. If we eventually end up with (vertical) solid tori, after a finite number
of steps findiing such annuli and splitting along them, then we can verify if the original
manifold admits a Seifert fibring. An obstruction is if two Seifert fibred spaces are glued
along a boundary annulus or torus so that the Seifert fibrings do not match. Consequently,
we can decide if any of the double coverings is a Seifert fibre space or none of them are.

If some double covering of M is Seifert fibred, then it follows by Theorem 2 that M
must be a Seifert fibre space, as required. So this completes the argument if neither of
m1 nor m2 is equal to 2.

If say m1 is equal to 2 but m2 > 2, then although M ′ has three exceptional fibres,
H1(M ′, Zm3) is non zero. So we can find a cyclic covering M∗ of index m3 of M ′ which
has m3 exceptional fibres. So again we are done unless M is a (2, 3, 4) Seifert fibre space.
This follows since m3 > 3 implies that M∗ will be a Haken Seifert fibre space and we can
test all double coverings M ′ to see if any have non zero H1(M ′, Zm3). We are again using
Theorem 2.

Finally we must deal with the case of finite fundamental group, namely the binary
octahedral spaces with (2, 3, 4) multiplicities of exceptional fibres. (The case of multiplic-
ities (2, 2, n) is that of prism manifolds and these have been discussed previously). Here
we can proceed using the result of [28], that there is a regular dihedral cover of order 6
by a prism manifold, for such Seifert fibre spaces. We can clearly use a similar approach
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to the previous paragraph, to test for such a covering space. Prism manifolds have been
discussed before. Moreover by [28], once such a prism manifold covering has been found,
then it follows that the original manifold is a binary octahedral space. This completes
the discussion of Case 1.

Case 2. One exceptional fibre of even multiplicity
We use the previous notation, namely M has three exceptional fibres F1, F2, F3 with

multiplicities m1, m2, m3 with m1 even and m2, m3 odd. Let r denote rotation by π
along the Seifert fibring (where an ordinary fibre has length 2π and an exceptional fibre
of multiplicity p has length 2π

p .) Let g denote the canonical involution associated to a
genus two vertical Heegaard splitting of M . Let Γ be the fixed set of g and let Γ′ be the
3-bridge knot or link given by the projection of Γ to the 3-sphere, viewed as the orbit
space of g. We suppose that the knot or link Γ′ has been found, as has also the Heegaard
surface S and the involution g.

It is well known that r and g must commute. In fact, a convenient way of showing
this is to view the exceptional fibres as projecting to points on the equator of the orbit 2-
sphere. We can then describe g by a map which interchanges the Northern and Southern
hemispheres of the 2-sphere, i.e. regular fibres projecting to one hemisphere are mapped
to regular fibres projecting to the other one, by g. All fibres projecting to the equator
are then mapped to themselves under g but with orientations reversed. So g has exactly
two fixed points on each such fibre. It is now obvious that r and g do commute. We can
now let r′ denote the involution given by the induced action of r on S3 = M/g, with C
and C ′ being the fixed sets of r and r′ respectively.

The key to this case is to describe an algorithm which finds r′ and C ′ from g and Γ′.
Notice that here C = F1, since rotation by π along the regular fibres, will fix precisely the
points of any exceptional fibre of even multiplicity. So, once r′ and C ′ have been found,
we can lift them to r and C. The latter is one of the exceptional fibres of M . We can
then test if M is a Seifert fibre space by checking if M \ C is Seifert fibred, which can
be done exactly as in Case 1 above. Note that Case 1 could have also been done by this
method, in that we would have found two or all three of the exceptional fibres as fixed
set of r. However, the method given for Case 1 is simpler to implement and more efficient
computationally.

Now the isotopy class of r′ acting on Q = S3 \Γ′ can be found by using the hyperbolic
geometry library of algorithms SNAPPEA, of J. Weeks ([39]). By Thurston [36], either
there is a complete hyperbolic metric of finite volume or a Seifert structure on Q. The
reason is that a Montesinos knot or link complement is either atoroidal or is a torus knot
or link complement. In the first case there is a hyperbolic structure and in the second, we
can proceed as in Case 1 to find the Seifert structure. In the latter case, it follows that
Q is obtained by gluing two solid tori together and r′ acts as a standard rotation of each
solid torus with two unknotted arcs of fixed points. So it is easy to find C ′ as required.

Finally, in the hyperbolic case, by Mostow rigidity, there is a hyperbolic isometry of
order 2 in the isotopy class of r′. Now this involution will preserve the Ford domain D
of the cusps of Q and using SNAPPEA, the ideal polyhedron D can be constructed. The
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involution must induce a permutation of the faces of D and so can be found. Note that
Epstein and Penner [9] prove the existence and uniqueness of this canonical ideal cell
decomposition of Q.

4. All exceptional fibres of odd multiplicity

If M has no exceptional fibres of even multiplicity, the rotation r by π along the Seifert
fibring has no fixed points and commutes with the involution g associated with a vertical
Heegaard splitting, as explained in Case 2 above. So there is an induced involution r′ on
S3 = M/g as before. Consequently r′ has an unknotted circle C ′ of fixed points, which
is disjoint from the knot or link Γ′, using our previous notation. In fact, if C ′ intersected
Γ′, then r would have fixed points in M . Moreover, it is well known by an old result of
Livesay that if there is an involution on S3 with a circle of fixed points, then the circle
must be unknotted, i.e bounds an embedded disk. So Γ′ is called a periodic knot or link.

We can use exactly the same procedure as in Case 2 of the previous section to decide
if any given genus 2 Heegaard splitting S of M has an associated involution g, so that
the projection of the fixed set of g to S3 is a periodic knot or link. Lifting the symmetry
r′ of the projected branch set will give a free involution r of M . We can then quotient
M by this involution to give a new manifold M1 = M/r. Repeating, it can be checked
if M1 has Heegaard genus 2 and the procedure can be iterated. We produce a sequence
M1, ...,Mk of manifolds all covered by M with respective degrees 2, ..., 2k.

If at any stage, the process stops, then we can conclude that M is not a small Seifert
fibre space with all exceptional fibres having odd multiplicity. On the other hand, if M
is such a space, then the regular covering projection from M to Mk will have a cyclic
covering transformation group of order 2k. On the other hand, from the next section, it
follows that there is an explicit bound n to the number of inequivalent genus 2 splittings
of M . Hence once 2k > n, then some non trivial covering translation ri will have the
property that ri(S) is isotopic to S, where S is a fixed genus 2 splitting of M .

Now we can iterate this process and find a sequence ri1 , ..., rij of covering translations
of M ( of increasing orders) which all have the property that they are isotopic to maps
φ1, ..., φj which map S to itself. Now as is well known, g is central in the mapping class
group of S. Therefore, the maps φm restricted to S can be assumed to commute with g.
Moreover then the same can be assumed for the maps φm on the handlebodies H+, H−
and so φm induces a map φm

′ on Q = S3 \ Γ′. since the latter manifold can be assumed
hyperbolic, as discussed previously, it has a finite mapping class group which can be
determined by SNAPPEA, using the uniqueness of the Ford domain.

We conclude that by choosing a product riarib or riarib−1 if necessary, we can find a
covering transformation r∗ which is isotopic to the identity ofM by a map F : M×I →M .
The induced isotopy F ′ : M/ < r∗ > ×I → M/ < r∗ > is an isotopy from the identity
to the identity. Moreover the basepoint of M/ < r∗ > must traverse a non contractible
loop α under the action of F ′, since this loop lifts to a path in M . We conclude that the
homotopy class of α is a non trivial central element in π1(M/ < r∗ >) and so the quotient
manifold and hence M are Seifert fibred spaces as required, by [7] or [10].
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5. Finding genus two Heegaard splittings

In this section, we describe an improved algorithm to find genus two Heegaard splittings
of an arbitrary closed orientable triangulated 3-manifoldM . The first step is to summarise
facts about normal and almost normal surfaces and 0-efficient triangulations. Then we
show how to express the least weight almost normal class of such a Heegaard surface S
as a bounded weight solution of a suitable projective solution space.

Definition 5.1. A normal surface L is a closed surface mapped into M so that L is a
finite union of elementary disks. Each such disk is properly embedded in a tetrahedron
of the triangulation and has either 3 or 4 boundary arcs, i.e is a triangle or quadrilateral.
FInally each boundary arc is embedded in a different face of the tetrahedron.

Note that tetrahedra need not be embedded, i.e there can be self-identifications of
vertices, edges or faces. The same is true for elementary disks and moreover normal
surfaces may be embedded, immersed or can have branch points. We will mainly be
interested in embedded surfaces. Also elementary disks can be moved around by proper
isotopies and we call such isotopy classes, normal disk-types. A very simple example is
a vertex linking embedded normal 2-sphere Sv, which is obtained by the union of all the
triangular elementary disks cutting off a given vertex v of the triangulation.

Definition 5.2. A closed orientable 3-manifoldM has a 0-efficient triangulation, if there
are no embedded normal projective planes and there is a single embedded normal 2-sphere,
which is vertex linking for the unique vertex in the triangulation.

The main theorem of [20] is then an algorithmic procedure to convert any given trian-
gulation of a closed orientable irreducible 3-manifold into a 0-efficient triangulation.

There is a natural way of adding normal surfaces.

Definition 5.3. If L1, L2 are two normal surface, their Haken sum is the surface L1 +
L2 = L1 ∪L2. A curve C of L1 ∩L2 is called regular if none of the elementary disk pairs
meeting along C are pairs of incompatible quadrilaterals, i.e quadrilaterals with edges on
different faces of a tetrahedron. If C is a regular curve, then a regular exchange is uniquely
defined along C and is given by a standard cut-and-paste between the elementary disks,
so as to give new elementary disks.

Definition 5.4. A normal surface L is called fundamental if it cannot be written as a
sum L = L1 + L2, for non-empty normal surfaces L1, L2.

Normal surfaces can be conveniently described by their coordinates, i.e a 7t vector of
non-negative integers, where each coordinate gives the number of a particular elementary
disk-type and t is the number of tetrahedra. For there are clearly 4t elementary triangular
disks and 3t elementary quadrilaterals. Haken sum is then just usual vector addition. The
weight of a normal surface is just the sum of all the coordinates.

An important observation of Haken is that normal surfaces form a cone in the integer
lattice Z7t. The reason is that normal surfaces are defined by a homogeneous system
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of 6t linear equations, called the compatibility equations. For on one side of a face, if
one picks out a given isotopy class of arc joining two given edges, then the total number
of triangular and quadrilateral disks on one side of this face with the given arc in their
boundaries, must equal the total number of elementary disks on the other side of the
face with the same arc-type in their boundaries. (If there is self-identification of faces,
then possibly some elementary disks might have two copies of the same arc-type in their
boundary, in which case each such disk will contribute two to the sum).

Now the solution space of the compatibility equations is a vector subspace of R7t. The
normal surfaces correspond then to non-negative integer solutions and so lie in a cone in
the non-negative octant of R7t. Finally Haken introduced the idea of adding an extra
equation, requiring that the sum of all the coordinates of a vector should be 1. Adding
this converts integer solutions into rational ones and it is simple to convert backwards.
The compatibility equations plus this extra equation and the non-negativity constraints
on coordinates give the so-called projective solution space P, which is a compact con-
vex polytope in R7t. It turns out, for a single vertex 0-efficient triangulation, that the
dimension of P is 2t, but we will not need this fact.

Normal surfaces can be formed by shrinking, i.e isotopy of embedded surfaces so as
to decrease the number of intersections with the faces and edges of the triangulation.
In particular there are well-known moves, such as a disk compression where a surface
meets a face in a simple closed curve. Another important move is when there is an arc
of intersection of a surface and a face, so that the arc has both ends on the same edge,
forming a bigon. In this case, the arc can be pushed across the edge, reducing the number
of intersections of the surface and the edge by 2. In [20], various barriers are described,
which are surfaces and subcomplexes with the property that if a disjoint surface is shrunk
to a normal surface, then the shrinking process can be done in the complement of the
barrier.

Almost normal surfaces arise from sweepouts. A sweepout is an isotopy of a Heegaard
surface S across M , starting and ending at a graph, which can be viewed as a spine of
the two handlebodies H+, H− bounded by S. A more complex process than shrinking is
done to the sweepout, resulting in an isotopy of the Heegaard surface into minimax form.
Before describing this, we need to comment on the definition of strong irreducibility of
Heegaard splittings, due to Casson Gordon. This is the remarkable property that any
essential compressing disk for H+ must intersect any essential compressing disk for H−.
( An essential compressing disk is one which is not isotopic into S). Then by [26], [27].
[33], if S is a strongly irreducible Heegaard splitting of M , then S is isotopic to an almost
normal surface.

Definition 5.5. An almost normal surface S is a union of elementary triangular and
quadrilateral disks except for a single piece which is either a properly embedded octagon
or a properly embedded annulus in a tetrahedron. The octagon has every boundary arc
running between two different edges ( before self identification of the tetrahedron) and
similarly the annulus has both boundary curves being the same as the boundary of an
elementary triangular or quadrilateral disk. Finally there is a boundary compression of
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the annulus, i.e an embedded disk with one boundary arc on the annulus and running
between the two boundary curves and the other boundary arc on the boundary of the
tetrahedron.

Next we describe the algorithm to find a genus 2 Heegaard splitting S of M , with a
0-efficient triangulation. Notice we now may assume that M is irreducible, atoroidal and
is not a lens space, the 3-sphere or a prism manifold. By [26] or [33], S is isotopic to
an almost normal surface, since it is easy to see that S is strongly irreducible. ( If S
were weakly reducible, then M would be a connected sum of lens spaces and so would be
reducible, contrary to assumption). This process is algorithmic and can be summarised as
follows; start with any sweepout of M and decrease the number of intersections with the
triangulation to achieve a least (global) maximum in the family of surfaces. The resulting
minimax surface(s) will be almost normal.

The conclusion is that once S has been isotoped to be almost normal, then all the com-
ponents of intersection of S and the tetrahedra of the triangulation are normal triangles,
quadrilaterals or one special piece which is either an octagon or two normal disks with
a boundary parallel tube attached. In the latter case, S is a normal torus with a tube.
If we can bound the weight of the normal torus, then there are finitely many possible
choices for it. Hence we can check all of these and all possible boundary parallel tubes
and see if any give Heegaard surfaces.

In the latter case, we have an octagon and can form the normal solution space consisting
of vectors of normal triangles, quadrilaterals and multiples of this particular octagon. It is
easy to see ( cf [18], [11],[19]) that normal surface techniques carry over into this setting.
So there is a cone consisting of non negative solutions of the compatibility equations in
the non negative octant. Intersecting this cone with the hyperplane of vectors whose
coordinates sum to one, gives a compact convex polyhedron called the projective solution
space PA of almost normal surfaces. again the key issue is to find a bound on the weight
of almost normal genus 2 surfaces, which are in the isotopy classes of Heegaard splittings.

Now a standard argument of Haken ( cf for example [19]), shows that there are finitely
many fundamental solutions in PA and these can be found algorithmically and have
bounded weight. The definition of fundamental is the same using almost normal surfaces
as for normal surfaces. Now if S is isotopic to a fundamental solution in PA, then this is
of bounded weight as required. So the key problem remaining is when the least weight
almost normal surface in the isotopy class of S is not fundamental. The situation when
S is isotopic to a normal torus T with an unknotted tube attached is siimilar. In that
case, if T is fundamental in P, then its weight is bounded as desired. So again we need
to study the case when the least weight T is not fundamental.

Now to establish the claim, assume that the least weight almost normal class of S (or
normal class of T ) can be decomposed into a Haken sum of normal surfaces U and V . We
focus on the case S; the case of T is dealt with by a very similar argument.

Notice that Euler characteristics add under Haken summation, so either;
(1) χ(U) = −2 and χ(V ) = 0
(2) χ(U) = χ(V ) = −1
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(3) χ(U) = 1 and χ(V ) = −3
(4) χ(U) = 2 and χ(V ) = −4, without loss of generality.
In case (2), both classes U and V represent non orientable surfaces of genus 3. We

claim that if a pair of normal and almost normal surfaces of this type are combined to
form an embedded orientable surface S of genus 2, then there is a closed non orientable
surface K disjoint from S. For the surfaces U, V must be homologous ( as Z2 cycles)
and then meet along one or three orientation reversing loops. The orientable surface S
constructed by all regular cut-and-pastes is disjoint from both non orientable surfaces
U ′, V ′ formed by cut-and-pasting U, V along only 2-sided loops of intersection. So S is
not a Heegaard surface.

In case (3), U represents a normal or almost normal real projective plane. By 0-
efficiency, we see that M = RP 3 and this case has been excluded. (We can shrink the
boundary 2-sphere of a small regular neighbourhood of U to the vertex of the triangula-
tion. Here U is a barrier surface).

In the case (4), U represents a normal or almost normal 2-sphere. Since the triangula-
tion is 0-efficient, there is only the single vertex linking normal 2-sphere which could be
this class. But then the sum of U and V is not connected, so this case does not occur.

Finally in case (1), we need to follow the more complicated argument in [26]. Here
V could be a torus or Klein bottle. The Klein bottle can be ruled out, since M is
assumed to be atoroidal, then M must be a prism manifold, which has been excluded (
cf [29]). So V is an almost normal or normal torus. Now in [26], it is shown that there
are a bounded number of such tori or almost normal summands of a least weight almost
normal representative of S. Moreover here we are assuming that every such summand
is itself fundamental. Hence we see that there is indeed a bound on the weight of S as
required.

The case of a normal torus T with an unknotted tube attached follows exactly the
same pattern and the discussion is now complete.

Conjecture 5.1. We conjecture that the class of a least weight genus 2 almost normal
surface representing a Heegaard splitting is actually fundamental in the almost normal
projective solution space. Similary if the least weight representative is a normal torus
with an unknotted tube attached, then the torus should be fundamental. Possibly, the class
of the surface might be a vertex solution of the polytope PA or P respectively.

Remark 5.1. We can view the above as also an algorithm to recognise if a given knot
or link Γ′ in S3 is Montesinos. For we can build the branched double cover M of S3 over
Γ′ and test if it is Seifert fibred or not. By results of Meeks Scott [24], all involutions on
Seifert fibred spaces are shown to be fibre preserving. So once we know that M is Seifert
fibred, it is easy to decide if Γ′ is Montesinos or not. (There are various easy cases to
exclude, such as the case of an involution coming from a horizontal Heegaard splitting.)
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