Turkish Journal of Chemistry

Volume 27 | Number 6

Article 5

1-1-2003

Phenolic, Megastigmane, Nucleotide, Acetophenon and Monoterpene Glycosides from Phlomis samia and P. carica

FUNDA NURAY YALÇIN

TAYFUN ERSÖZ

PINAR AKBAY

İHSAN ÇALIŞ

ALİ ARSLAN DÖNMEZ

See next page for additional authors

Follow this and additional works at: https://journals.tubitak.gov.tr/chem

Part of the Chemistry Commons

Recommended Citation

YALÇIN, FUNDA NURAY; ERSÖZ, TAYFUN; AKBAY, PINAR; ÇALIŞ, İHSAN; DÖNMEZ, ALİ ARSLAN; and STICHER, OTTO (2003) "Phenolic, Megastigmane, Nucleotide, Acetophenon and Monoterpene Glycosides from Phlomis samia and P. carica," Turkish Journal of Chemistry. Vol. 27: No. 6, Article 5. Available at: https://journals.tubitak.gov.tr/chem/vol27/iss6/5

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for inclusion in Turkish Journal of Chemistry by an authorized editor of TÜBİTAK Academic Journals. For more information, please contact academic.publications@tubitak.gov.tr.

Phenolic, Megastigmane, Nucleotide, Acetophenon and Monoterpene Glycosides from Phlomis samia and P. carica

FUNDA NURAY YALÇIN, TAYFUN ERSÖZ, PINAR AKBAY, İHSAN ÇALIŞ, ALİ ARSLAN DÖNMEZ, and OTTO STICHER

Phenolic, Megastigmane, Nucleotide, Acetophenon and Monoterpene Glycosides from *Phlomis samia and P. carica*

Funda Nuray YALÇIN, Tayfun ERSÖZ, Pınar AKBAY, İhsan ÇALIŞ

Hacettepe University, Faculty of Pharmacy, Department of Pharmacognosy
TR-06100 Ankara, TURKEY
e-mail: funyal@hacettepe.edu.tr

Ali A. DÖNMEZ

Hacettepe University, Faculty of Science, Department of Biology, TR-06532 Ankara, TURKEY

Otto STICHER

ETH-Zurich, Department of Applied BioSciences, Institute of Pharmaceutical Sciences, Winterthurerstr. 190, CH-8057 Zürich, SWITZERLAND

Received 29.11.2002

Phytochemical investigations on the aerial parts of *Phlomis samia* resulted in the isolation of a simple phenolic glucoside, 2,6-dimethoxy-4-hydroxyphenol-1-O- β -D-glucopyranoside (1); a megastigmane glucoside, phlomuroside (=3-hydroxy-5,6-epoxy- β -ionol-9-O- β -D-glucopyranoside) (2); and a nucleotide glycoside, uridine (3). From the aerial parts of *P. carica*, the same phenolic glucoside, 2,6-dimethoxy-4-hydroxyphenol-1-O- β -D-glucopyranoside (1); as well as an acetophenon glucoside, picein (4); and 2 monoterpenoid glucosides, —betulalbuside A (5) and 1-hydroxylinaloyl-6-O- β -D-glucopyranoside (6)—were isolated and identified. The structure elucidation of the isolates was based on spectroscopic evidence.

Key Words: Acetophenon glucoside, betulalbuside A, 2,6-dimethoxy-4-hydroxy- phenol-1-O- β -D-glucopyranoside, 1-hydroxylinaloyl-6-O- β -D-glucopyranoside, Lamiaceae, megastigmane glucoside, monoterpenoid glucosides, nucleotide glycoside, *Phlomis samia*, *P. carica*, phenolic glucoside, phlomuroside, picein, uridine.

Introduction

In a previous communication, we reported the isolation of a number of iridoid, phenylethanoid, lignan and monomeric phenylpropanoid glycosides from the overground parts of 2 *Phlomis* taxa, *P. samia*, and *P. carica*¹. In continuing work on the same species, a simple phenolic glucoside, 2,6-dimethoxy-4-hydroxyphenol-1-O- β -D-glucopyranoside (1), together with a megastigmane glucoside, phlomuroside (=3-hydroxy-5,6-epoxy- β -ionol-9-O- β -D-glucopyranoside) (2) and a nucleotide glycoside, uridine (3), from *P. samia*. In addition, 2,6-dimethoxy-4-hydroxyphenol-1-O- β -D-glucopyranoside (1), along with an acetophenon glucoside,

picein (4), as well as 2 monoterpenoid glucosides, betulalbuside A (5) and 1-hydroxylinaloyl-6-O- β -D-glucopyranoside (6) from P. carica, were isolated by means of various chromatographic techniques. The current study describes the isolation and structure elucidation of isolates (1-6) from the title plants.

Experimental

General Experimental Procedures and Plant Materials: The general experimental procedures as well as the plant materials were the same as reported elsewhere¹.

Extraction and Isolation: The extraction and isolation procedure was reported previously¹. Compounds **1-6** were isolated as given below:

P. samia: Fr B₇ (150 mg), obtained as reported previously¹, was subjected to C_{18} -MPLC (Lichroprep RP-18). Elution with a 5% stepwise gradient of MeOH in H_2O (0-40%) afforded compounds 1 (1.1 mg), 2 (8 mg), and 3 (3 mg).

P. carica: Fr B₁ (65 mg), as reported previously¹, was fractionated on C₁₈-MPLC (Lichroprep RP-18) eluting with a 5% stepwise gradient of MeOH in H₂O (10-20%) to yield compounds 1 (4 mg) and 4 (6 mg). Fr B₂ (200 mg), obtained as described previously¹, was rechromatographed on C₁₈-MPLC (Lichroprep RP-18) with a 5% stepwise gradient of MeOH in H₂O (5-40%) to give a mixture of 5 and 6 (8 mg). Despite all efforts, this mixture could not be separated by any chromatographic technique.

Results

2,6-dimethoxy-4-hydroxyphenol-1-O- β -D-glucopyranoside (1): UV λ_{max} (MeOH) nm: 214, 225, 278; IR ν_{max} (KBr) cm⁻¹: 3400, 2935, 1580, 1632; ¹H NMR (CD₃OD, 300.13 MHz), data were identical to those reported in the literature²⁻⁴.

Phlomuroside (2): UV λ_{max} (MeOH) nm: 210; IR v_{max} (KBr) cm⁻¹: 3400, 2950, 1640, 1250; ¹H (CD₃OD, 300.13 MHz) and ¹³C (CD₃OD, 75.5 MHz) NMR: Table 1.

Uridine (3): UV λ_{max} (MeOH) nm: 220; IR v_{max} (KBr) cm⁻¹: 3400, 3200, 2950, 1650, 1250; ¹H (CD₃OD, 300.13 MHz) and ¹³C (CD₃OD, 75.5 MHz) NMR: Table 2.

Picein (4): UV λ_{max} (MeOH) nm: 263; IR v_{max} (KBr) cm⁻¹: 3371, 1661, 1605, 1590, 1511; ¹H NMR (CD₃OD, 300.13 MHz) data were identical to those reported in the literature^{5,6}.

Betulalbuside A (5): 1 H (CD₃OD, 300.13 MHz), and 13 C (CD₃OD, 75.5 MHz,) NMR: Table 3.

1-hydroxylinaloyl-6-O- β -D-glucopyranoside (6): ¹H (CD₃OD, 300.13 MHz), and ¹³C (CD₃OD, 75.5 MHz,) NMR: Table 3.

Discussion

Some fractions previously obtained from the polyamide CC fractions of the *n*-BuOH extracts of *P. samia* and *P. carica*¹ were refractionated by RP-18 MPLC to yield compounds **1-6** (Figure 1). Compounds **1** and **4** were identified by comparing their spectroscopic data with those reported in the literature as 2,6-dimethoxy-4-hydroxyphenol-1-O- β -D-glucopyranoside (**1**)²⁻⁴ and picein (**4**)^{5,6}. The structure elucidation of compounds **2**, **3**, **5** and **6** was based on the following evidence.

Figure 1. Compounds (1-6) isolated from P. samia and P. carica.

Compound 2 was obtained as a colorless amorphous powder. The UV spectrum of 2 showed a maximum at λ_{max} 210 nm and the IR spectrum exhibited absorption bands for OH (3400 cm⁻¹), C-H (2950 cm⁻¹), C=C (1640 cm⁻¹), and -C-O- (1250 cm⁻¹) functions. The ¹³C and ¹H NMR spectra of **2** (Table 1) showed the presence of a β -glucopyranosyl moiety due to the signals at δ_C 102.6 and δ_H 4.35 (d, J=7.8 Hz). The ¹³C NMR spectrum exhibited 19 distinct carbon resonances, 6 of which were assigned for the β -glucopyranosyl unit. In the DEPT-135 spectrum, 4 methyl, 3 methylene, and 9 methine carbon resonances were assigned for 2. The remaining quaternary carbons were ascribed to 3 quaternary cyclic carbons, 2 of which are oxygenated (δ_C 68.1, 71.2). Likewise, the carbon resonance at δ_C 64.5 (d) was assigned to an oxygen-bearing carbon atom at C-3. Moreover, the chemical shift values of δ_C 68.1 (s) (assigned as C-5) and δ_C 71.2 (s) (assigned as C-6), were characteristic for a 5,6-epoxy function. In the ¹H NMR spectrum, the singlet signals at δ_H 0.97, 1.12 and 1.19 were assigned to the tertiary methyl groups at C-13, C-12 and C-11, respectively, whereas a doublet signal at δ_H 1.28 (J= 6.4 Hz) was attributed to a secondary methyl function at C-10. The 13 C NMR resonances at δ_C 20.2 (C-13), 25.1 (C-12), 30.1 (C-11) and 21.0 (C-10) supported the presence of methyl groups. In addition, both the chemical shift values and the coupling constants of the proton resonances at δ_H 5.90 (d, J= 15.5 Hz) and 5.73 (dd, J = 15.5/6.5 Hz) indicated the presence of trans-olefinic protons in 2. This assumption was based on the carbon resonances at δ_C 127.8 (d, C-7) and 137.2 (d, C-8). Therefore, the ¹³C NMR, DEPT-135 and ¹H-¹H COSY spectra revealed that the aglycone of compound **2** is a megastigmane of 3-hydroxy-5,6-epoxy- β -ionol structure^{7,8}. The relative configuration of the epoxy function was determined based on the NOESY experiment. The nOe correlation observed between H-3 and H-13 suggested the β -configuration of the epoxy group at C-5 and C-6. The attachment of the glucose unit was assigned as C-9, due to the strong downfield shift of the C-9 signal (δ_C 76.9). The absolute configuration of C-9 was assigned as R by comparing the ¹³C NMR data at C-9 (δ_C 76.9) and C-10 (δ_C 21.0) to those closely similar megastigmanes⁷⁻⁹. Consequently, the structure of **2** was identified as (3 S, 5 S, 6 R, 9 R)-3-hydroxy-5,6-epoxy- β -ionol-9-O- β -D-glucopyranoside (=phlomuroside)^{8,10}.

Table 1. 13 C (CD₃OD, 75.5 MHz) and 1 H (CD₃OD, 300.15 MHz) NMR data of phlomuroside (2).

C/H atom	Mult.	$\delta_C \text{ (ppm)}$	$\delta_H \text{ (ppm) } J \text{ (Hz)}$
Aglycon			
1	\mathbf{C}	36.0	-
2	CH_2	48.0	$1.22 \ dd \ (12.4/11.0)$
			$2.26 \ dd \ (14.2/3.1)$
3	CH	64.5	$3.73 \mathrm{m}$
4	CH_2	41.6	2.27 dd (14.1/6.5))
			$1.61 \mathrm{dd} (14.2/9.2)$
5	\mathbf{C}	68.1	-
6	\mathbf{C}	71.2	-
7	CH	127.8	5.90 d (15.5)
8	CH	137.2	5.73 dd (15.5/6.5)
9	CH	76.9	• • • • • •
10	CH_3	21.0	` ,
11	CH_3	30.1	$0.97 \mathrm{\ s}$
12	CH_3	25.1	$1.12 \mathrm{\ s}$
13	CH_3	20.2	$1.19 \mathrm{\ s}$
Glucose			
1'	CH	102.6	4.35 d (7.8)
2'	СН	75.3	3.17 dd (7.8/10.2)
3'	СН	78.1	$3.30 \mathrm{\ br\ s}$
4'	CH	71.3	3.33 d (7.6)
5'	СН	77.9	3.22 t (9.3)
6'	CH_2	62.5	$3.68 \mathrm{dd} (11.9/4.9)$
· ·	~2	=-0	3.82 dd (11.9/2.4)

br s: broad singlet

Compound 3 was obtained as an amorphous powder. The IR spectrum showed absorption bands at 3400 (OH), 2950 (C-H), 1650 (C=O), 1250 (C-O) and 3200 (N-H) cm⁻¹ and the UV spectrum exhibited a maximum at 220 nm. In the ¹H NMR (Table 2) spectrum of 3 the anomeric proton signal at δ_H 5.40 (d, J=4.4 Hz) showed the presence of a sugar unit in 3. However, the ¹³C NMR (Table 2) spectrum of 3 exhibited 9 carbon resonances, 5 of which were assignable for the sugar unit, indicating the presence of a pentose moiety. A comparison of the ¹H and ¹³C NMR data of the sugar residue with those given in the literature revealed the pentose unit in 3 to be an α -ribose¹¹. On the other hand, the downfield shifted proton resonances, appearing as an AB system ($J_{AB}=8.1$ Hz) at δ_H 5.69 and 8.02, were assigned to H-5 and H-6, respectively. Furthermore, the quaternary carbon resonances at δ_C 166.1 (C-5) and 152.0 (C-6) were attributable to 2 carbonyl functions. The complete interpretation of the NMR data together with the IR

Table 2. 13 C (CD₃OD, 75.5 MHz) and 1 H (CD₃OD, 300.15 MHz) NMR data of uridine (3).

C/H atom	DEPT	$\delta_C \text{ (ppm)}$	$\delta_H \text{ (ppm) } J \text{ (Hz)}$
Aglycon			
1	-		-
2	\mathbf{C}	152.0	-
3	-		-
4	\mathbf{C}	166.1	-
5	CH	102.6	5.69 d (8.1)
6	CH	142.7	8.02 d (8.1)-
Ribose			
1'	CH	102.6	5.40 d (4.4)
2'	CH	75.4	$4.16^{(a)}$
3'	CH	71.3	$4.16^{(a)}$
4'	CH	86.4	4.01 m
5'	CH_2	62.3	$3.85 \mathrm{dd} (12.2/2.7)$
			3.75 dd (12.5/2.7)

⁽a) Signal pattern unclear due to overlapping

Table 3. ¹³C (CD₃OD, 75.5 MHz) and ¹H (CD₃OD, 300.13 MHz) NMR data and HMBC correlations of betulalbuside A (**5**) and 1-hydroxylinaloyl-6-O- β -D-glucopyranoside (**6**). ^(*).

			5		6	
C/H Atom	DEPT- 135	$\delta_C \; (\mathrm{ppm})$	$\delta_H \text{ (ppm) } J \text{ (Hz)}$	$\delta_C \text{ (ppm)}$	δ_H (ppm) J (Hz)	HMBC (H→C)
Aglycon						
1	CH_2	75.9	4.20 d (11.4)	69.0	$3.90 \mathrm{\ br\ s}$	C-2, C-3, C-9, C-1'
_	~		4.03 d (11.4)			C-2, C-3, C-9
2	C	132.9	(()	135.8	(()	
3	CH	130.1	5.48 dt (1.3/7.3)	127.0	5.40 dt (1.3/7.3)	C-9, C-1
						C-9,C-1
4	CH_2	23.5	2.10 m	23.2	$2.20 \mathrm{\ m}$	C-5, C-2, C-3
-	CIT	40.0		41.0	1.05	C-5, C-6, C-2, C-3
5	CH_2	42.9	1.51 m	41.2	1.65 m	C-3, C-4, C-6, C-7, C-10
	a	7. 0		01.0		C-3, C-4, C-6, C-7, C-10
6	C	75.2	F 01 11 (15 5 (11 0)	81.3	0.10 11 (15 5 (11 0)	G 7 G 2 G 10
7	CH	146.2	5.91 dd (17.7/11.0)	144.5	6.10 dd (17.7/11.0)	C-5, C-6, C-10
0	CII	110.1	F 00 11 (177/1F)	115.0	F 00 11 (177/1F)	C-5, C-6, C-10
8	CH_2	112.1	5.22 dd (17.7/1.5)	115.0	5.22 dd (17.7/1.5)	C-6, C-7
0	CII	141	5.03 dd (10.8/1.5)	10.7	5.16 dd (11.0/1.3)	C-6, C-7
9	CH_3	14.1	$1.67 \mathrm{\ s}$	13.7	$1.66 \mathrm{\ s}$	C-1, C-2
10	CII	97.C	1.07 -	02.5	1.94 -	C-1, C-2
10	CH_3	27.6	$1.25 \mathrm{\ s}$	23.5	$1.34 \mathrm{\ s}$	C-5, C-6, C-7
Glucose						C-5, C-6, C-7
1'	СН	102.6	4.24 d (7.8)	99.3	4.32 d (7.8)	C-1
1	CII	102.0	4.24 u (1.6)	99.3	4.32 d (1.6)	C-1
2'	СН	75.1	$3.10 - 3.35^{(a)}$	75.1	$3.10 - 3.35^{(a)}$	
3'	CH	77.9	$3.10 - 3.35^{(a)}$	77.9	$3.10 - 3.35^{(a)}$	
$\frac{3}{4'}$	CH	71.7	$3.10 - 3.35^{(a)}$	71.7	$3.10 - 3.35^{(a)}$	
5'	CH	78.2	$3.10 - 3.35^{(a)}$	78.2	$3.10-3.35^{(a)}$	
$\frac{5}{6'}$	CH CH ₂	62.8	3.66 dd (11.9/5.7)	62.8	3.79 dd (11.9/2.4)	
6'	_	62.8 62.8	3.86 dd (11.9/2.3)	62.8 62.8	3.63 dd (11.9/5.6)	
U	CH_2	02.8	3.60 dd (11.9/2.3)	02.8	5.05 dd (11.9/5.0)	

 $^{^{(*)}{\}rm HMBC}$ data: plain values for 5, bold values for 6.

br s: broad singlet

 $^{^{(}a)}$ Signal pattern unclear due to overlapping

absorption band observed at 3200 cm⁻¹, characteristic to the N-H function, revealed that **3** was a nucleotide glycoside¹². Based on its NMR data and a comparison of the data given in the literature, compound **3** was identified as uridine¹²⁻¹⁴.

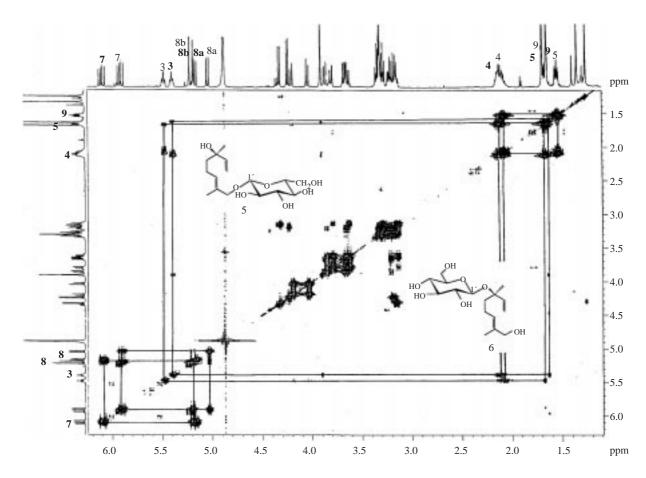
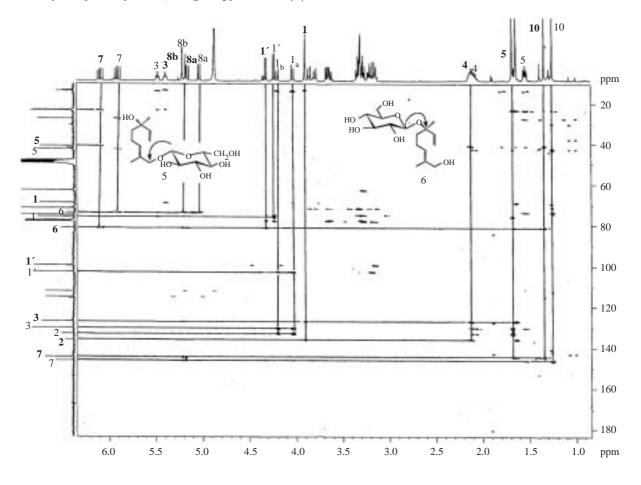



Figure 2. ¹H, ¹H-DQF-COSY spectrum^(*) of the mixture of 5 and 6 (CD₃OD, 500 MHz). ^(*)5: plain numbers; 6: bold numbers.

Compounds 5 and 6 were obtained as a mixture (1:1). Although this mixture could not be separated chromatographically, detailed 1D- and 2D-NMR experiments allowed the unambigious assignment of all carbon and proton resonances. In the ¹H NMR (Table 3) spectrum the singlet signals at δ_H 1.25, 1.34, 1.66 and 1.67 were assigned to the tertiary methyl groups. A complete interpretation of the remaining NMR data relied on the results of DQF-COSY, HSQC and HMBC experiments. Anomeric proton signals appeared at δ_H 4.24 (d, J=7.8 Hz) and 4.32 (d, J=7.8 Hz) and the resonances in the region of δ_H 3.10-3.90 together with the corresponding carbon resonances inferred from the HSQC spectrum suggested the presence of 2 β -glucopyranose units. A phase-sensitive gradient double-quantum COSY experiment (Figure 2) allowed us to establish the spin system sequences for both the sugar residues and the aglycon part. A detailed interpretation of the NMR data showed the presence of 2 monoterpeneoid units (5, 6). Thus, the proton resonances appearing as 2 sets of an ABX system at 5.22 (1H, dd, J=17.7/1.5) and 5.03 (1H, dd, J=10.8/1.5) as well as 5.22 (1H, dd, J=17.7/1.5) and 5.16 (1H, dd, J=11.0/1.3) were ascribed to the vinylic protons at C-8 for 5 and 6, respectively. An additional 2 sets of proton resonances at δ_H 5.91 (1H, dd,

J = 17.7/11.0 Hz) and 6.10 (1H, dd, J = 17.7/11.0 Hz), which were vicinally coupled to H₂-8 protons, were assigned to H-7 of the monoterpenoid units (5, 6), respectively. Furthermore, in the ¹H-¹H COSY spectrum, H-3 (δ_H 5.48 dt, J=1.3/7.3 Hz) of 5 was correlated to the vicinally coupled C-4 methylene protons (δ_H 2.10, 2H, m), which in turn were coupled to the vicinally coupled C-5 methylene protons (δ_H 1.51, 2H, m). Similar COSY correlations were observed for compound 6, where H-3 (δ_H 5.40 dt, J = 1.3/7.3Hz) was correlated to the vicinally coupled C-4 methylene protons (δ_H 2.20, 2H, m), which were mutually coupled to the vicinally coupled C-5 methylene protons (δ_H 1.65, 2H, m) as in the case of 5. However, the ¹H NMR resonances of 5 did not exhibit any ¹H-¹H COSY interactions with those of 6, suggesting that these 2 monoterpenoid units are 2 distinct compounds. On the other hand, a prominent ¹H-¹³C HMBC (Figure 3) experiment permitted the determination of the attachment of the glucopyranose units. Thus, a HBMC cross-peak observed from the anomeric proton of the first glucose unit (δ_H 4.24) to the C-1 (δ_C 75.9, t) carbon atom of 5 showed the attachment of the glucose unit at C-1 in compound 5. Likewise, heteronuclear long-range coupling observed between the anomeric proton of the second glucose moiety (δ_H 4.32) and the C-6 (δ_C 81.3, s) carbon atom of compound 6 proposed the glucose unit to be glycosylated at C-6 in **6**. Therefore, the structures of the compounds in the mixture were identified as betulably $A (5)^{15}$ and 1-hydroxylinaloyl-6-O- β -D-glucopyranoside (6)¹⁵.

Figure 3. ¹H, ¹³C-HMBC spectrum^(*) of the mixture of **5** and **6** (CD₃OD, 500 MHz). ^(*)**5**: plain numbers; **6**: bold numbers.

Conclusion

Continuing our work on the previously investigated Phlomis species P. samia and P. carica, in addition to the previously isolated glycosides¹, we characterized a phenolic glucoside, 2,6-dimethoxy-4-hydroxyphenol-1-O- β -D-glucopyranoside (1), together with a megastigmane glucoside, phlomuroside (=3-hydroxy-5,6-epoxy- β -ionol-9-O- β -D-glucopyranoside) (2), and a nucleotide glycoside, uridine (3) from the aerial parts of P. samia by means of RP-18 MPLC. Chromatographic separations by RP-18 MPLC on P. carica resulted in the isolation of the same phenolic glucoside, 2,6-dimethoxy-4-hydroxyphenol-1-O- β -D-glucopyranoside (1), along with an acetophenon glucoside, picein (4), and 2 monoterpenoid glucosides, betulalbuside A (5) and 1-hydroxylinaloyl-6-O- β -D-glucopyranoside (6). Although, phlomuroside (2) was previously isolated from Egyptian P. aurea¹⁰ samples, this is the first case of the isolation of a megastigmane glycoside from a Turkish Phlomis species. Previously, betulalbuside A (5) was reported from P. armeniaca¹⁶ and P. sieheana¹⁷. However, this is the first case of the occurrence of 2,6-dimethoxy-4-hydroxyphenol-1-O- β -D-glucopyranoside (1), uridine (3), picein (4) and 1-hydroxylinaloyl-6-O- β -D-glucopyranoside (5) in the genus Phlomis. In our work, no additional glycoside could be detected in P. monocephala.

Acknowledgments

This work was financially supported by the Scientific and Technical Research Council of Turkey (TÜBİTAK, Project No. SBAG-2304).

References

- 1. F.N. Yalçın, T. Ersöz, P. Akbay, İ. Çalış, A.A. Dönmez and O. Sticher, Turk. J. Chem. 27, 295-305 (2003).
- 2. H. Otsuka, M. Takeuchi, S., Inoshiri, T. Sato and K. Yamasaki, Phytochemistry, 28, 883-886 (1989).
- 3. R. Saijo, G.I. Nonaka, and I. Nishioka, Phytochemistry, 28, 2443-2446 (1989).
- 4. K. Ishimaru, H. Sudo, M. Satake and K. Shimomura, Phytochemistry, 29, 3823-3825 (1990).
- 5. P. Junior, Planta Med., 50, 444-445 (1984).
- 6. H. Kırmızıbekmez, *Globularia* Türleri Üzerinde Farmakognozik Çalışmalar, H.Ü. Sağlık Bilimleri Enstitüsü, Doktora Tezi, Ankara (2002).
- 7. H. Otsuka, M. Yao, K. Kamada and Y. Takeda, Chem. Pharm. Bull., 43, 745-759 (1995).
- 8. H. Sudo, T. Ide, H. Otsuka, E. Hirata, A. Takushi, T. Shinzato and Y. Takeda, Chem. Pharm. Bull., 48, 542-546 (2000).
- 9. Y. Takeda, H. Zhang, T. Matsumoto, H. Otsuka, Y. Oosio, G. Honda, M. Tabata, T. Fujita, H. Sung, E. Sezik and E. Yeşilada, **Phytochemistry**, **44**, 117-120 (1997).
- M.S. Kamel, M.M. Khaled, H.A. Hassanean, K. Ohtani, R. Kasai and K. Yamasaki, Phytochemistry, 55, 353-357 (2000).
- 11. P.K. Agrawal, **Phytochemistry**, **10**, 3307-3330 (1992).

- 12. E. Pretsch, T. Clerc, J. Seibl and W. Simon, Aminoacids, "Tables of Spectral Data for Structure Determination of Organic Compounds" (Ed. K. Biemann), 2nd ed., Springer-Verlag, Berlin (1976).
- 13. A.J. Jones, D.M. Grant, M.W. Winkley and R.K. Robins, J. Am. Chem. Soc., 92, 4079-4087 (1970).
- 14. B. Ancian, D. Canet and P. Mutzenhardt, Chem. Phy. Lett., 336, 410-414 (2001).
- 15. İ. Çalış, A. Yürüker, H. Rüegger, A.D. Wright and O. Sticher, **Helv. Chim. Acta**, **76**, 2563-2569 (1993).
- 16. İ. Saracoğlu, M. Inoue, İ. Çalış and Y. Ogihara, Biol. Pharm. Bull., 18, 1396-1400 (1995).
- 17. T. Ersöz, Ü.Ş. Harput, İ. Çalış and A.A. Dönmez, **Turk. J. Chem.**, **26**, 1-8 (2002).