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Abstract: In this work, we examine the reheating constraints to symmetry-breaking mechanism, which is
associated with Coleman-Weinberg inflation in the early universe. We consider the Coleman-Weinberg inflation
potential, where the inflaton has a v ̸= 0 after inflation. Setting Treh = 105 GeV, we first show wreh dependency
on ns , r , and N∗ for AV case. Then, we demonstrate the results of ns , r , N∗ , α = dns/d ln k for different
reheating temperatures and compare the results with the latest BICEP/Keck data. We also present that ns− r

and ns−N∗ planes and the effect of reheating temperature which is in a wide range, on inflationary predictions
for both AV and BV cases. Finally, we indicate how N∗ and α change according to the reheating temperature
values.

Keywords: Cosmology, inflation, reheating

1. Introduction
The theory of inflation was first proposed in 1979 by Guth, and the theory began to develop in the
early 1980s [1–4]. Inflation is thought to explain the origin of the large-scale structure of the universe,
why the universe is isotropic, homogeneous and flat, as well as why no magnetic monopole has occurred
in the universe. Inflation also causes dilution of objects such as magnetic monopoles, which are likely
to result from symmetry-breaking in the early universe, thus providing an explanation for why such
objects are not currently observed. Furthermore, inflationary models are based on the scalar field
which is slowly-rolling ϕ , with a require flat potential V (ϕ) . Most of the inflationary scenarios that
have been examined so far are based on inflaton, see [5].

On the other hand, when inflationary epoch ends, the energy density of the inflaton field (ϕ)
turns into radiation, and the radiation phase in standard cosmology begins. This transfer process is
called reheating [6–12]. When this reheating process completes, the universe becomes completely filled
with radiation in thermal equilibrium. The temperature at which the universe is in thermal equilibrium
and radiation dominates is called the reheating temperature, Treh . At the end of inflationary period,
until the universe is reheated, ϕ oscillates around the minimum of inflation potential. This happens
within the reheating phase, at which ϕ decays into Standard Model (SM) particles which populate the
universe, they interact with each other, and finally reaching thermal equilibrium. In addition to this,
as the inflaton oscillates, either the inflaton decays directly into SM particles or the inflaton decays into
∗Correspondence: nilay.bostan@tenmak.gov.tr
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other particles and these particles into SM particles. Thus, reheating process is essential for standard
hot Big Bang, it provides remarkable explanation for the origin of the particles in the universe. This
phase is also the conversion period, until the inflation ends, where the ϕ decays and it passes its
all energy to the SM particles. In addition, in general, the inflation models can reach the reheating
temperature up to large values of Treh ∼ 1016 GeV, which is the GUT scale and for lower values, such
as Treh = 1 MeV, which is the scale of Big Bang nucleosynthesis (BBN). In addition, reheating phase
is parameterized with wreh , called equation-of-state parameter. For instance, wreh = −1/3 at which
the inflation end, and then radiation dominated period begins at wreh = 1/3 , it also indicates the
instantaneous reheating. Moreover, wreh = 0 means that reheating happens by means of the decay of
inflaton to particles with mass. In the case of wreh = 0 , coherent oscillations of the inflaton dominates
the reheating process and wreh = 0 is equivalent to the value of presureless dust, matter which also
has wreh = 0 .

In this work, we have given the inflationary predictions for the Coleman-Weinberg potential,
which is one of the pivotal symmetry-breaking type potentials, we calculate the predictions for different
Treh values. We present the results of ns and r with the consideration of the standard thermal history
after inflation. We also show the compatible regions of the ns and r within the recent BICEP/Keck
data. Furthermore, we consider the nonminimal coupling of gravity, including ξϕ2R term between the
Ricci scalar and inflaton. In curved space-time, this term is essential for the renormalizable scalar field
theory [13–15]. In addition, regarding ξ parameter in this term, the inflationary predictions vary, it
also directly effects whether inflation takes place or not accordingly [16–24]. It is important to mention
here, in this work, we analyze the Coleman-Weinberg potential in Palatini formulation of gravity. As
is widely known, for a nonminimally coupled inflation, the predictions of metric formulation of gravity
gives different results for the cosmological parameters than the Palatini one. In the literature, a vast
number of studies consider inflation with nonminimal coupling in metric or Palatini formulation, for
details, see the following papers [25–37]. Furthermore, there are another methods in the literature
for the inflation. One of them is the affine approach, affine inflation, see [38, 39]. Affine gravity [40]
is based on the connection with no notion of metric. This framework needs the scalar fields which
have nonvanishing potentials, as a result it is deemed that affine gravity is important while working on
inflation. Another one is the inflation in symmergent metric-Palatini gravity that is the new framework
that combines gravity and the standard model so that the gravity arises from the matter loops and
restores the broken gauge symmetries all the way, for the recent study, see [41].

The paper is organized as follows: we first briefly explain the nonminimally coupled inflation
to gravity by considering Palatini formulation (Section 2), we then discuss symmetry-breaking type
Coleman-Weinberg inflation potential and show our results for this potential in Palatini gravity with
details for different Treh values in Section 3. Finally, in Section 4, we discuss our results and conclude
the paper.
2. Inflation with nonminimal coupling to gravity
In this section, we begin considering nonminimally coupled inflation with a canonical kinetic term and
a potential VJ(ϕ) in Jordan frame. In this instance, Lagrangian density in Jordan frame is described
as follows:

LJ/
√
−g =

1

2
K(ϕ)R− 1

2
gµν∂µϕ∂νϕ− VJ(ϕ), (2.1)
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here, we use the units, with the reduced Planck scale MP = 1/
√
8πG ≈ 2.4×1018 GeV equals to 1, G

is the gravitational constant. K(ϕ) is the nonminimal coupling function, and in this work, we define
this function with the following form [27]

K(ϕ) = 1 + ξ(ϕ2 − v2), (2.2)

where v is the vacuum expectation value (VEV) of the inflaton. VJ(ϕ) is the Jordan frame potential.
Note that, here, ξ is the dimensionless numbers. Also, after inflation, K(ϕ) → 1 or ϕ → 0 . In this
work, we consider the well-known inflationary potential, which is one of the important symmetry-
breaking potentials, namely the Coleman-Weinberg (CW) potential. We examine this potential for
two different cases:

• Above the VEV (AV): ϕ > v ,

• Below the VEV (BV): ϕ < v .

On the other hand, it is more convenient to compute the inflationary predictions in the Einstein
frame. Utilizing Weyl rescaling, gE,µν = gJ,µν/K(ϕ) , we can convert the Jordan frame to Einstein
frame (E ). It is noteworthy that in the Einstein frame, all matter couplings become ϕ dependent.
Consequently, since gJ,µν = K(ϕ)gE,µν , the inflaton can decay into matter by K(ϕ) during the
reheating phase at the end of inflation. By using Weyl rescaling, one can obtain Einstein frame
Lagrangian density from Jordan frame with the following form

LE/
√
−gE =

1

2
RE − 1

2K(ϕ)
gµνE ∂µϕ∂νϕ− VE(ϕ) → in Palatini formulation, (2.3)

where

VE(ϕ) =
VJ(ϕ)

K(ϕ)2
→ Einstein frame potential. (2.4)

In the next section, we introduce observable parameters of inflation with detail.

2.1. Observable parameters of inflation
The slow-roll parameters in terms of canonical scalar field (σ ) can be found by using Einstein frame
potential with the following descriptions [42]

ϵ =
1

2

(
Vσ

V

)2

, η =
Vσσ

V
, ζ2 =

VσVσσσ

V 2
, (2.5)

where the subscripts σ ’s indicate derivatives. In the case of the slow-roll approximation, inflationary
predictions can be expressed in the following forms

ns = 1− 6ϵ+ 2η , r = 16ϵ,

α =
dns

d ln k
= 16ϵη − 24ϵ2 − 2ζ2 , (2.6)
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where ns is the (scalar) spectral index, r , the tensor-to-scalar ratio, and α is the running of the
spectral index. In addition, in the slow-roll approximation, the number of e-folds is given with this
form

N∗ =

∫ σ∗

σe

V dσ

Vσ
. (2.7)

The subscript “∗” indicates the quantities at the scale corresponding to k∗ exited the horizon. σe
gives the inflaton value at the end of inflation, its value can be found by using ϵ(σe) = 1 .

Furthermore, N∗ should be within approximately 55 − 60 to solve the horizon problem. The
exact value of N∗ should depend on the evolution of the universe, thus we assume a standard thermal
history after inflation and consider that N∗ takes the following form [43]

N∗ ≈ 64.7 +
1

2
ln ρ∗ −

1

3(1 + ωreh)
ln ρe +

( 1

3(1 + ωreh)
− 1

4

)
ln ρreh, (2.8)

where ρe = (3/2)V (ϕe) and ρreh are the energy densities at the end of inflation and at the end
of reheating, respectively. ρreh can be found by using the Standard Model value of the number of
relativistic degrees of freedom, g∗ = 106.75 . Also, ρ∗ ≈ V (ϕ∗) is the energy density at the pivot scale.
ρreh and ρ∗ have the definitions as follows:

ρreh =
(π2

30
106.75

)
T 4
reh, ρ∗ =

3π2∆2
Rr

2
, (2.9)

here, Treh is the reheating temperature, r , the tensor-to-scalar ratio, which we already defined above.
Also, ∆2

R corresponds to the amplitude of curvature perturbation that is given as follows:

∆2
R =

1

12π2

V 3

V 2
σ

, (2.10)

which should be consistent with ∆2
R ≈ 2.1 × 10−9 from the Planck results [44] for the pivot scale

k∗ = 0.002 Mpc−1 . As the last one, ωreh is the equation-of-state parameter during reheating. In
this work, particularly, we will show the inflationary predictions, ns , r , N∗ , α of Coleman-Weinberg
potential taking ωreh = 1/3 and ωreh = 0 for different Treh values by using Eq. (2.8), we display
the results for very broad ranges of Treh . The potential, which is considered in this work, is related
to symmetry-breaking in the early universe; therefore, we take v ̸= 0 after inflation, as well as, we
display the results in the broad ranges of v for both AV and BV cases.

Moreover, we can write the slow-roll parameters in terms of ϕ , and the definitions can be written
as follows [45]:

ϵ = Kϵϕ , η = Kηϕ + sgn(V ′)K ′
√

ϵϕ
2
,

ζ2 = K

(
Kζ2ϕ + 3sgn(V ′)K ′ηϕ

√
ϵϕ
2

+K ′′ϵϕ

)
, (2.11)

here, we define

ϵϕ =
1

2

(
V ′

V

)2

, ηϕ =
V ′′

V
, ζ2ϕ =

V ′V ′′′

V 2
. (2.12)
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Also, Eqs. (2.7) and (2.10) can be found in terms of ϕ in these forms

N∗ = sgn(V′)

∫ ϕ∗

ϕe

dϕ

K(ϕ)
√
2ϵϕ

, (2.13)

∆R =
1

2
√
3π

V 3/2

√
K|V ′|

. (2.14)

3. Coleman-Weinberg inflation
The symmetry-breaking due to the Coleman-Weinberg mechanism has been related with inflation
since 1980s at which new inflation models were first introduced [2, 3, 46–48]. The effective potential
in Jordan frame is written as follows:

VJ(ϕ) = Aϕ4

[
ln

(
ϕ

v

)
− 1

4

]
+

Av4

4
. (3.1)

We can write the potential in Einstein frame by using the nonminimal coupling function which is
defined in Eq. (2.2) as

VE(ϕ) =
Aϕ4

[
ln

(
ϕ
v

)
− 1

4

]
+ Av4

4[
1 + ξ(ϕ2 − v2)

]2 . (3.2)

For this potential, minimal coupling (ξ = 0) case is already considered in several works [49–52].
This potential in Palatini and metric formulation is also examined in these studies [35, 53] by using
the assumption of instant reheating, wreh = 1/3 . Note that here, for wreh = 1/3 , N∗ does not depend
on the reheating temperature at all. Furthermore, the Coleman-Weinberg potential with nonminimal
coupling to gravity for wreh = 0 and different Treh values are considered with detail in [54], they use
metric formulation of gravity and only for selected v values. On the other hand, in this work, we
present our results for Palatini formulation. We first show how to vary ns , r , and N∗ according to
the wreh values, we show the results while setting Treh = 105 GeV and for AV case. Then, we show
our results for both AV and BV cases for wreh = 1/3 and wreh = 0 for different Treh values, and
the effect of wide ranges of Treh values on the inflationary predictions. As a final step, we show Treh

dependency on N∗ and α by taking wreh = 0 .

3.1. Results
In this section, we present our results for the Coleman-Weinberg potential in Palatini formulation
using the Einstein frame potential which is given in Eq. (3.2). We first display wreh − ns , wreh − r

and wreh − N∗ predictions for ϕ > v , ξ = 10−1.5 and v = 0.01 in Figure 1 by setting Treh = 105

GeV. According to Figure 1, ns and N∗ increase while increasing wreh , but r decreases accordingly.
For instance, we find that for wreh = 1 → ns ∼ 0.974 , r ∼ 0.021 and N∗ ∼ 65 but for wreh = 1/5

→ ns ∼ 0.969 , r ∼ 0.027 and N∗ ∼ 57 . In addition to this, for the Coleman-Weinberg potential, in
Figures 2 and 3, we display ns − r predictions and v − ns values for different Treh values for ϕ > v ,
ξ = 10−1.5 cases in Figure 2, and ϕ < v , ξ = −10−3 in Figure 3. In the figures, we select the v
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ranges widely, for AV case: v in approximately
[
10−15 − 102

]
, and for BV case: v in approximately[

8− 105
]
. Also, we compare our results with the latest data given by BICEP/Keck [55], where blue

(red) contours indicate the 95% (68%) CL contour. For ϕ > v , the predictions can be inside the 68%

CL only for wr = 1/3 and wr = 0 with Treh = 109 GeV for v ≲ 1 values. While v increasing, ns − r

predictions increase, and the results are ruled out for the BICEP/KECK data. Also, for smaller Treh

values, Treh ≲ 107 GeV, the predictions cannot enter the 1-σ region, but the predictions can remain
inside 95% CL for v ≲ 1 values. On the other hand, for ϕ < v , the ns − r predictions can be inside
68% CL contour at v ≳ 25 . In addition, for both lower and higher Treh values, the patterns of ns − r

predictions are quite similar for the results of ϕ < v . Contrary to ϕ > v values, there is no solution
to have a reasonable inflationary predictions for v ≲ 1 values and r takes very smaller values than
the results of ϕ > v cases.

0.01 0.05 0.10 0.50 1 5

0.968

0.970

0.972

0.975

0.978

0.980

wreh

n s

Treh=105 [GeV]

0.01 0.05 0.10 0.50 1 5

0.018

0.020

0.022

0.025

0.028
0.030
0.032

wreh

r

Treh=105 [GeV]

0.01 0.05 0.10 0.50 1 5

60

70

80

wreh

N
*

Treh=105 [GeV]

Figure 1. wreh − ns , wreh − r , and wreh −N∗ predictions for ϕ > v , ξ = 10−1.5 and v = 0.01 , and here we
set Treh = 105 GeV.

Figure 4 shows that ns − r and ns −N∗ predictions for ϕ > v , v = 0.01 and ξ = 10−1.5 values
in top panel, and bottom panel shows the same predictions but for ϕ < v , v = 60 and ξ = −10−3 . In
these figures, color coded represents the corresponding Treh values in the regions. According to our
results, for ϕ > v values, ns − r predictions can be inside the CL regions depending on Treh values.
Clearly, for higher Treh values, ns − r predictions are more consistent with the data than smaller
values of Treh for ϕ > v case. On the other hand, the predictions slightly change depending on Treh

values for ϕ < v case and for this case, the predictions are very close to each other for both high
and low Treh values, such as for Treh = 1016 GeV and Treh = 102 GeV. Also, for both ϕ > v and
ϕ < v cases, depending on the increase of Treh values, both ns and N∗ increase but r values decrease
accordingly.
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Figure 2. The results of ns − r , v − ns , and v − r for different Treh values and ϕ > v , ξ = 10−1.5 cases.
In the top left panel, we compare the predictions with the latest data given by BICEP/Keck [55], where blue
(red) contours indicate the 95% (68%) CL contour.

Figure 3. The results of ns − r , v − ns , and v − r for different Treh values and ϕ < v , ξ = −10−3 cases.
In the top left panel, we compare the predictions with the latest data given by BICEP/Keck [55], where blue
(red) contours indicate the 95% (68%) CL contour.
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Figure 4. Top panel shows ns − r (left) and ns −N∗ (right) predictions for ϕ > v , v = 0.01 and ξ = 10−1.5

values, bottom panel shows the same predictions but for ϕ < v , v = 60 and ξ = −10−3 . Color coded represents
the corresponding Treh values in the regions.

We also present that Treh − N∗ and Treh − α values for ϕ > v , v = 0.01 and ξ = 10−1.5

values for Coleman-Weinberg potential in Palatini formulation for wreh = 0 . The results are shown
in Figure 5. It is clearly seen that while Treh increasing, N∗ increases accordingly. To be able to
satisfy N∗ ∼ 55− 60 values, Treh ≳ 1013 GeV. Also, for N∗ ∼ 45− 50 , Treh values are in the regions,
approximately

[
10−3, 105

]
GeV. It can be concluded that for lower Treh values, we have lower e-fold

numbers accordingly. Finally, Treh dependency is very tiny on the α predictions. The change is not
very sharp, thus we can say that α values are close to each other for both higher and lower Treh

values.

Figure 5. The plots show Treh −N∗ (left) and Treh − α (right) for ϕ > v , v = 0.01 and ξ = 10−1.5 values
for wreh = 0 .
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4. Conclusion
We present the results of the symmetry-breaking type Coleman-Weinberg inflation potential in Palatini
formulation. Regarding our results, we find that ns and N∗ increase while increasing wreh , but r

decreases accordingly. In addition, we show the inflationary predictions in the wide ranges of v for
both AV and BV cases. According to our results, the ns − r predictions are only within the 1-σ CL
region for wreh = 1/3 and wreh = 0 with Treh = 109 GeV for v ≲ 1 values in AV case. For the
BV case, the behavior of ns − r predictions in broad ranges of Treh values are very similar to each
other, remaining in 1-σ CL region at v ≳ 25 . We also show the results of inflationary parameters,
ns , r , and N∗ , at v = 0.01 (symmetry-breaking scale) for ϕ > v and v = 60 for ϕ < v with the
corresponding Treh values in the regions. We find that for higher Treh values, ns − r predictions are
in a good agreement with the data than smaller values of Treh for both AV and BV cases. In addition,
the predictions have a tiny change depending on Treh values for ϕ < v case and for this case, the
predictions are very close to each other for both high and low Treh values. We also present for both
ϕ > v and ϕ < v cases, depending on the increase of Treh values, both ns and N∗ increase but r

values decrease accordingly.
We finally show the results of Treh −N∗ and Treh − α values for AV case and for wreh = 0 , it

can be seen that as Treh grows, N∗ grows accordingly. To satisfy N∗ ∼ 55 − 60 values, Treh ≳ 1013

GeV. Also, for N∗ ∼ 45 − 50 , Treh values are in the regions, ∼
[
10−3, 105

]
GeV. We can conclude

that for smaller Treh values, we have smaller e-fold numbers accordingly. Last but not least, Treh

dependency on α is very small, as well as, α predictions are very close to each other if we compare
the α values in low and high Treh values.
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