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On Local Hörmander-Beurling Spaces

Jairo Villegas∗

Abstract

In this paper we aim to extend a result of Hörmander’s, that Blocp,k(Ω) ⊂ Cm(Ω) if

(1+|·|)m
k

∈ Lp′ , to the setting of vector valued local Hörmander-Beurling spaces,

as well as to show that the space
T∞
j=1 Blocpj ,kj (Ω,E) (1 ≤ pj ≤ ∞, kj = ejω,

j = 1, 2, . . . ) is topologically isomorphic to Eω(Ω, E). Moreover, it is well known

that the union of Sobolev spaces Hlocs (Ω) (= Bloc
2,(1+|·|2 )s/2

(Ω)) coincides with the

space D′F (Ω) of finite order distributions on Ω. We show that this is also verified

in the context of vector valued Beurling ultradistributions.

Key Words: Hörmander space, Hörmander-Beurling space, Beurling ultradistri-

butions, local space, Fourier-Laplace transform.

1. Introduction

It is well-known that Hörmander spaces Bp,k play a crucial role in the theory of linear
partial differential operators (see [4], [5]). In [10] we have extended these spaces to the
vector-valued case and have studied some of their properties.

In this paper we continue on our study of these vector valued spaces, introducing and
analyzing certain properties of such local spaces Blocp,k(Ω, E). We show that⋃

k∈Kω
Blocp,k(Ω, E) = D′ω,F (Ω, E),
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and if kj = ejω, j = 1, 2, . . . space
⋂∞
j=1 Blocpj ,kj(Ω, E) is topologically isomorphic to

Eω(Ω, E), thereby extending Theorem 10.1.25 of [5] and Theorems 2.3.9 and 2.3.11 of [1]
to the vector valued context. Applications of spaces

⋂∞
j=1 Blocpj ,kj(Ω) to analysis of linear

partial differential operators can be found, for example, in sections 10.5, 10.6, 11.1 and
12.8 of [5].

The motivating theme for this work is the study of linear partial differential operator
and apply it to the solution of vector valued differential equations and dependence of
parameters of solutions of scalar valued equations.

Notation. The linear spaces we use are defined over C. Let E and F be locally convex
spaces. Then Lb (E, F ) is the locally convex space of all continuous linear operators
equipped with the bounded convergence topology. We write E ↪→ F if E is a linear

subspace of F and the canonical injection is continuous. We replace ↪→ by
d
↪→ if E is

also dense in F . The topological dual of E is denoted by E′ and is given the strong
topology so that E′ = Lb (E,C). Cm, D, S, D′ and S′ have the usual meaning (see [8]).
In the vector valued case we write Cm (E), D (E), S (E), D′ (E) and S′ (E) (see [9]).
Let 1 ≤ p ≤ ∞, k : Rn −→ ]0,∞[ a Lebesgue measurable function, and E a Banach
space. Then Lp (E) is the set of all Bochner measurable functions f : Rn −→ E for which

‖f‖p =
(∫
Rn ‖f(x)‖pE dx

)1/p is finite (if p = ∞ we assume ‖f‖∞ = ess supx∈Rn ‖f‖E <

∞). Lp,k (E) denotes the set of all measurable Bochner functions f : Rn −→ E such
that kf ∈ Lp (E). Putting ‖f‖Lp,k(E) = ‖kf‖p for f ∈ Lp,k (E), Lp,k (E) becomes a

Banach space isometrically isomorphic to Lp (E). When E is the field C, we simply write

Lp and Lp,k. If f ∈ L1 (E) the Fourier transformation of f , f̂ or Ff , is defined by

f̂ (ξ) =
∫
Rn f (x) e−iξxdx.

2. Spaces of vector-valued ultradistributions

In this section we collect some basic facts about vector-valued ultradistributions. The
results are “elementary”in the sense that the usual scalar proofs carry over to the vector-
valued setting by using obvious modifications only. Comprehensive treatments of the
theory of (scalar or vector-valued) ultradistributions can be found in [1], [2], [3] and [6].
Our notations are based on [1].

Let M be the set of all continuous real-valued functions ω (x) on Rn such that
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ω (x) = σ (|x|) where σ (t) is an increasing continuous concave function on [0,∞[ with
the following properties:

(i) σ (0) = 0, (ii)
∫∞

0
σ(t)
1+t2dt <∞ (Beurling’s condition), (iii) there exists a real number a

and a positive number b such that σ (t) ≥ a+b log (1 + t) for t ≥ 0. The main assumption
is (ii), which is essentially the Denjoy-Carleman non-quasi-analyticity condition (see [1,
Sec.1.5]).

If ω ∈M, then Kω is the set of all positive functions k on Rn for which there exists a
constant λ > 0 such that k (x+ y) ≤ eλω(x)k (y) for all x and y in Rn. If k, k1, k2 ∈ Kω
and s is a real number then log k is uniformly continuous, ks ∈ Kω, k1k2 ∈ Kω and

Mk(x) = supy∈Rn
k(x+y)
k(y) ∈ Kω (see [1, Th. 2.1.3]).

If ω ∈ M and E is a Banach space, we denote by Dω (E) the set of all functions

f ∈ L1 (E) with compact support, such that ‖f‖λ :=
∫
Rn ‖f̂(x)‖Eeλω(x)dx < ∞, for

all λ > 0. For each compact subset K of Rn, Dω (K,E) = {f ∈ Dω(E) : suppf ⊂ K},
equipped with the topology induced by the family of norms {‖·‖λ : λ > 0}, is a Frechet
space and Dω (E) with the inductive limit topology Dω (E) = ind−→

K

Dω (K,E) becomes a

strict (LF)-space. Let Sω (E) be the set of all functions f ∈ L1 (E) such that both f and f̂
are infinitely differentiable functions on Rn with ~pα,λ (f) = supx∈Rn eλω(x) ‖∂αf (x)‖E <

∞ and ~qα,λ (f) = supx∈Rn eλω(x)‖∂αf̂(x)‖E < ∞ for all multi-indices α and all positive
numbers λ. Sω (E) with the topology induced by the family of seminorms {~pα,λ, ~qα,λ}
is a Frechet space and the Fourier transformation F is an automorphism of Sω (E). A
continuous linear operator from Dω into E is said to be a ultradistribution with values
in E. We write D′ω (E) for the space of all E-valued ultradistributions endowed with the
bounded convergence topology. If Ω is any open set in Rn, Dω(Ω, E) is the subspace
of Dω(E) consisting of all functions f with suppf ⊂ Ω. Dω(Ω, E) is endowed with the
corresponding inductive limit topology. D′ω(Ω, E) = Lb(Dω(Ω), E) is the space of all ul-
tadistributions on Ω with values in E. A continuous linear operator from Sω into E is said
to be an E-valued tempered ultradistribution. S′ω (E) is the space of all E-valued tem-
pered ultradistributions equipped with the bounded convergence topology. The Fourier
transformation F is an automorphism of S′ω (E). If u ∈ Lloc1 and

∫
Rn ϕ (x)u (x)dx = 0

for all ϕ ∈ Dω, then u = 0 a.e ( see [1]).

Now, let Ω be any open subset of Rn, ω any weight in M and E a Banach space.
Generalizing the definition of Eω(Ω) (see [1, Def. 1.5.1]), we are led to consider the space
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Eω(Ω, E) of all functions f : Ω −→ E such that, for every compact set K in Ω, there
exists g ∈ Dω(Ω, E) satisfying g = f on K (see [6]). Obviously, all functions Eω(Ω, E)
are infinitely differentiable on Ω and the function f : Ω −→ E belongs to Eω(Ω, E) if

and only if ϕf ∈ Dω(Ω, E), whenever ϕ ∈ Dω(Ω). Here ϕf(x) =

ϕ(x)f(x) x ∈ Ω

0 x /∈ Ω
.

Eω(Ω, E) is considered endowed with the topology generated by the fundamental system
of seminorms {‖·‖λ,ϕ : λ > 0, ϕ ∈ Dω(Ω)} (if f ∈ Eω(Ω, E), ‖f‖λ,ϕ = ‖ϕf‖λ =∫
Rn ‖ϕ̂f(x)‖Eeλ ω(x)dx). With this topology, Eω(Ω, E) is a Frechet space. By using the

restriction g → g |Ω , Dω(Ω, E) is continuously injected in Eω(Ω, E). Dω(Ω, E) is dense
in Eω(Ω, E) and f : Ω → E belongs to Eω(Ω, E) if and only if e′ ◦ f ∈ Eω(Ω) for every
e′ ∈ E′.

Finally, let us recall that if ω ∈ M, k ∈ Kω, 1 ≤ p ≤ ∞ and E is a Banach space, we
denote by Bp,k(E) (see [7] and [10]) the set of all E-valued tempered ultradistributions T

for which there exists a function f ∈ Lp,k (E) such that 〈u, T̂〉 =
∫
Rn u(x)f (x) dx, u ∈ Sω.

Bp,k (E) with the norm

‖T‖p,k =


(

(2π)−n
∫
Rn ‖k(x)T̂(x)‖pEdx

)1/p

if p <∞

ess supx∈Rn ‖k(x)T̂ (x)‖E if p =∞

becomes a Banach space isometrically isomorphic to Lp,k (E) and, therefore, to Lp (E).

(In the previous formulae we have written T̂ (x) instead of f (x) we shall frequently
commit this abuse of notation.) Spaces Bp,k(E) are called Hörmander-Beurling spaces
with values in E.

3. Some properties of local Hörmander-Beurling spaces

In this section we will define local Hörmander-Beurling spaces Blocp,k(Ω, E) generalizing

local spaces Blocp,k(Ω) considered by Björck in [1] and vector-valued local Hörmander-
Beurling spaces discussed in [7].

Definition 3.1 Let ω ∈ M, k ∈ Kω, Ω an open set in Rn, 1 ≤ p ≤ ∞ and E a
Banach space. We denote by Blocp,k (Ω, E) the space of all vector valued ultradistributions
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T ∈ D′ω (Ω, E) such that, for every ϕ ∈ Dω (Ω), the map ϕT : Sω −→ E defined by
〈u, ϕT 〉 = 〈uϕ, T 〉, u ∈ Sω, belongs to Bp,k (E). Space Blocp,k (Ω, E) is endowed with the
topology generated by seminorms {‖·‖p,k,ϕ : ϕ ∈ Dω(Ω)}, where ‖T‖p,k,ϕ = ‖ϕT‖p,k for

T ∈ Blocp,k (Ω, E).

Remark 3.2 1. Blocp,k (Ω,C) is the local space Blocp,k (Ω) considered by Björck in [1], and
our definition coincides with Definition 7 of [7] when ω (x) = log (1 + |x|).

2. The topology on Blocp,k (Ω, E) defined by seminorms above is metrizable. In fact, if

T ∈ Blocp,k (Ω, E)\{0} and ϕ ∈ Dω(Ω) is such that 〈ϕ , T 〉 6= 0 it suffices to take θ ∈ Dω(Ω)
so that θ ≡ 1 on suppϕ to have ‖T‖p,k,θ > 0, showing that the considered topology is
Hausdorff. On the other hand, if (Kv)∞v=1 is any fundamental sequence of compact subsets

of Ω and ϕv ∈ Dω(Ω) is such that ϕv ≡ 1 on Kv and suppϕv ⊂
◦
Kv+1, v = 1, 2, · · · then

the topology on Blocp,k (Ω, E) is also generated by seminorms {‖·‖p,k,ϕv : v = 1, 2, · · ·}.
Indeed, if ϕ ∈ Dω(Ω) and Kv is such that suppϕ ⊂ Kv, it follows that ϕT = ϕ(ϕv T ) for
T ∈ Blocp,k (Ω, E); and using [10, Prop.4.1] we have

‖T‖p,k,ϕ = ‖ϕT‖p,k = ‖ϕ(ϕv T )‖p,k ≤ ‖ϕ‖1,Mk
‖ϕv T‖p,k = ‖ϕ‖1,Mk

‖T‖p,k,ϕv

establishing our assertion. (Note then the estimates
‖·‖p,k,ϕv ≤ ‖ϕv‖1,Mk

‖·‖p,k,ϕv+1
, v = 1, 2, · · · .)

3. It can be shown that if ω ∈ M, k ∈ Kω, Ω an open set in Rn, E is a Banach
space and 1 ≤ p ≤ ∞, the space Blocp,k(Ω, E) is a Frechet space. Moreover, Eω (Ω, E) ↪→
Blocp,k (Ω, E) ↪→ D′ω (Ω, E) y Dω (Ω, E) is dense in Blocp,k (Ω, E) if p <∞.

In [5, Th. 10.1.25] it is proved that if k is a Hörmander weight such that (1+|·|)m
k ∈ Lp′ ,

it follows that Blocp,k(Ω) ⊂ Cm(Ω) for every open subset Ω of Rn. In the following
proposition, we show that this is also true here when ω ∈ M and k ∈ Kω. First, we
will establish a well-known lemma.

Lemma 3.3 Let ω ∈ M, Ω an open set in Rn, m ≥ 0 and E a Banach space. If
T ∈ D′ω(Ω, E) is such that, for every ϕ ∈ Dω(Ω), there exists fϕ ∈ Cm(Ω, E) with
ϕT = fϕ in D′ω(Ω, E), it follows T ∈ Cm(Ω, E).
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Proof. Let (Ki)∞i=1 be any fundamental sequence of compact subsets of Ω and let
ϕi ∈ Dω(Ω) such that ϕi = 1 in Ki, i = 1, 2, · · · . By hypothesis, there is for each i a
function fi := fϕi ∈ Cm(Ω, E) with ϕi T = fi in D′ω(Ω, E). We check that fj = fi for

j > i: In fact, for every ϕ ∈ Dω(
◦
Ki), we have

∫
◦
Ki

[fj(x)− fi(x)]ϕ(x)dx = 〈ϕ, fj〉 − 〈ϕ, fi〉

= 〈ϕ, ϕj T 〉 − 〈ϕ, ϕi T 〉
= 〈ϕϕj − ϕϕi, T 〉 = 0,

and it follows (see Section 2) that fj = fi in
◦
Ki.

We can then define a function f on Ω putting f(x) := fi(x) if x ∈
◦
Ki. Obviously

f ∈ Cm(Ω, E). Let us see that f and T coincide on D′ω(Ω, E). Take any Dω(Ω)-

locally finite partition of unity (θi)∞i=1, for which supp θi ⊂
◦
Ki, i = 1, 2, · · · . Then,

for every ϕ ∈ Dω(Ω), there is a positive integer r such that ϕ =
∑r

i=1 ϕθi and so
〈ϕ, T 〉 =

∑r
i=1 〈ϕθi, T 〉 =

∑r
i=1 〈ϕθiϕi, T 〉 =

∑r
i=1 〈ϕθi, ϕiT 〉 =

∑r
i=1 〈ϕθi, fi〉 =∑r

i=1 〈ϕθi, f〉 = 〈ϕ, f〉 and the proof is complete. 2

Remark 3.4 Let ω ∈ M, k ∈ Kω, E a Banach space, 1 ≤ p ≤ ∞ and (1+|·|)m
k ∈ Lp′

(m is a non-negative integer and 1
p

+ 1
p′ = 1). Then Bp,k(E) is continuously embed-

ded in Cb0(E). In fact, if u ∈ Bp,k(E) functions t 7→ û(t) tα eitx, |α| ≤ m belong to
L1(E) for each x ∈ Rn (using Hölder’s inequality, we have that

∫
Rn
∥∥û(t) tα eitx

∥∥
E
dt ≤

(2π)n/p ‖u‖p,k
∥∥∥ (1+|·|)m

k

∥∥∥
p′

). Therefore the function x 7→ (2π)−n
∫
Rn û(t)eitxdt is in

Cb0(E). But the vector ω-tempered ultradistribution associated to this function coincides
with u since for each θ ∈ Sω, we have by virtue of Fubini’s theorem for vector valued
functions that
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(2π)−n
∫
Rn
θ(x)

(∫
Rn
û(t)eitxdt

)
dx = (2π)−n

∫
Rn
û(t)

(∫
Rn
θ(x)eitxdx

)
dt

= (2π)−n
∫
Rn
û(t)˜̂θ(t)dt

= (2π)−n
〈˜̂
θ, û

〉
= 〈θ, u〉 .

Hence, finally u ∈ Cb0(E) and max|α| ‖∂α u‖∞ ≤ (2π)−n/p
′ ‖u‖p,k

∥∥∥ (1+|·|)m
k

∥∥∥
p′

.

Proposition 3.5 Let ω ∈ M, k ∈ Kω, 1 ≤ p ≤ ∞, m non-negative integer and E a

Banach space. If (1+|·|)m
k ∈ Lp′ , then Blocp,k(Ω, E) ⊂ Cm(Ω, E).

Proof. By using the above remark, it is quite easy to see that Bp,k(E) ↪→ Cm0 (E).
Hence, if T ∈ Blocp,k(Ω, E), we have that, for every ϕ ∈ Dω(Ω), ϕT coincides on S′ω(E) and
a fortiori on D′ω(Ω, E), with the ultradistribution associated to some function in Cm0 (E).
By applying the above lemma, the conclusion that T ∈ Cm(Ω, E) follows easily. 2

Theorem 3.6 Let Ω be any open subset of Rn, E a Banach space, ω ∈M, kj ∈ Kω and
1 ≤ pj ≤ ∞, (j = 1, 2, . . .). If the space

H =
∞⋂
j=1

Blocpj ,kj(Ω, E)

is endowed with the topology given by seminorms ‖·‖pj ,kj,ϕ, j = 1, 2, . . . , ϕ ∈ Dω(Ω),

then H becomes a Frechet space. In particular, if kj = ejω, j = 1, 2, . . . , H is naturally
topologically isomorphic to Eω(Ω, E).

Proof. If (Kv)∞v=1 is any fundamental sequence of compact subsets of Ω and ϕv ∈

Dω (Ω) is such that ϕv = 1 on Kv and suppϕv ⊂
◦
Kv+1, v = 1, 2, . . ., then the topology

on H is generated by the collection of seminiorms {‖·‖pj ,kj,ϕv : j, v = 1, 2, · · ·} and it
is therefore metrizable. Completeness of H follows immediately from completeness of
Blocpj ,kj(Ω, E). Let us prove now that if kj = ejω, j ≥ 1, then H ' Eω (Ω, E). From the
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inequality a + b log(1 + |x|) ≤ ω(x) (a ∈ R, b > 0) it follows that for each j, there is

an ` such that (1+|·|)j
e` ω ∈ Lp′j . Now, applying the above proposition, we see that T ∈ H

is also in C∞(Ω, E). Moreover, if T ∈ H it is also easily verified that e′ ◦ T ∈ Eω(Ω)
for all e′ ∈ E′ (use [1, Th. 2.3.9]). Consequently, every T ∈ H coincides with the
ultradistribution corresponding to an element of Eω(Ω, E) (see Section 2). We deduce
that natural application

Eω(Ω, E) −→ H

f 7−→ {ϕ ∈ Dω(Ω)→
∫

Ω

ϕ(x)f(x)dx ∈ E}

is continuous. Since we deal with Frechet spaces this isomorphism is topological and the
proof is complete. 2

Remark 3.7 1. If E = C the above proposition reduces to Theorem 2.3.9 of [1].

2. Applications of spaces
⋂∞
j=1 Blocpj ,kj(Ω) to analysis of linear partial differential operators

can be found, for example, in sections 10.5, 10.6, 11.2 and 12.8 of [5].

It is well known that the union of local Sobolev spaces Hlocs (Ω) (= Bloc
2,(1+|·|2)s/2

(Ω))

coincides with space D′ F (Ω) of all finite order distributions on Ω. We will see now that
this is also true in the context of vector-valued Beurling’s ultradistributions, thereby
generalizing [1, Th. 2.3.11]. For this, we put

D′ω,F (Ω, E) := {T ∈ D′ω(Ω, E) : ∃λ > 0, ∀K b Ω ∃CK > 0

‖〈ϕ, T 〉‖E ≤ CK ‖ϕ‖λ ∀ϕ ∈ Dω(K)}.

Theorem 3.8 Let ω ∈M, p ∈ [1,∞], Ω an open set in Rn and E a Banach space. Then
we have ⋃

k∈Kω
Blocp,k(Ω, E) = D′ω,F (Ω, E).

Proof. Assume that k ∈ Kω and T ∈ Blocp,k(Ω, E). Now let then K be a compact subset
of Ω and ϕ ∈ Dω(Ω) such that ϕ = 1 on K (see [1, Th.1.3.7]). Since ϕT ∈ Bp,k(E)
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(see [10, Prop. 4.1]) and 1
k(x) ≤ ceλ ω(x) (c, λ > 0), we have for every θ ∈ Dω(K),

ψ := (2 π)−n ˜̂
θ that

‖〈θ, T 〉‖E = ‖〈θϕ, T 〉‖E = ‖〈θ, ϕT 〉‖E

=
∥∥∥〈ψ̂, ϕT〉∥∥∥

E
=
∥∥∥〈ψ, ϕ̂T〉∥∥∥

E
=
∥∥∥∥∫
Rn
ϕ̂T (x)ψ(x)dx

∥∥∥∥
E

≤ (2 π)−n
∫
Rn

∥∥∥ϕ̂T (x)
∥∥∥
E

∣∣∣θ̂(−x)
∣∣∣ dx

≤ c

∫
Rn
‖ϕ̂T (x)k(x)‖E |θ̂(−x)|eλ ω(x)dx

{β>0}
= c

∫
Rn

∥∥∥ϕ̂T (x)k(x)
∥∥∥
E
e−β ω(x)

∣∣∣θ̂(−x)
∣∣∣ e(λ+β)ω(x)dx

?
≤ c |‖θ|‖λ+β

∫
Rn

∥∥∥ϕ̂T (x)k(x)
∥∥∥
E
e−β ω(x)dx,

and using Hölder inequality, obtain

‖〈θ, T 〉‖E ≤ c |‖θ|‖λ+β ‖ϕT‖p,k
(∫

Rn
e−p

′β ω(x)dx

)1/p′

.

? (If ω ∈ M, ϕ ∈ L1, λ ∈ R, then (according to [1, Def.1.3.25]), |‖ϕ|‖λ = supξ∈Rn |ϕ̂(ξ)|eλω(ξ)).
The last integral is finite for a sufficiently large β so that we finally obtain ‖〈θ, T 〉‖E ≤
CK ‖θ‖λ+β (by [1, Cor. 1.4.3] we know that the families of norms {‖·‖λ : λ > 0} and
{|‖·|‖λ : λ > 0} are equivalent on Dω(K) but examining the proof of Theorem 1.4.1 of
[1] we deduce that ∀λ > 0 ∃C = C(n, λ,K) such that |‖ϕ|‖λ ≤ C ‖ϕ‖λ, ∀ϕ ∈ Dω(K)),
where constant CK depends only on the compact set K. Therefore T ∈ D′ω,F (Ω, E).
Let us prove now the reverse inclusion. So let T ∈ D′ω,F (Ω, E) and λ > 0 such that, for ev-
ery compact K ⊂ Ω, there exists CK > 0 with ‖〈ϕ, T 〉‖E ≤ CK ‖ϕ‖λ, for all ϕ ∈ Dω(K).
We should find k ∈ Kω such that T ∈ Blocp,k(Ω, E). For the time being let us take β > 0

and write k(x) = e−β ω(x). We will show that ϕT ∈ Bp,k(E), for every ϕ ∈ Dω(Ω) if β
is chosen sufficiently large. Given such ϕ we know that the Fourier-Laplace transform of

ϕT , denoted here by ϕ̂TL (ϕ̂TL(ζ) =
〈
e−i ζ(·), ϕT

〉
=
〈
ϕe−i ζ(·), T

〉
, ζ ∈ Cn), is an entire

analytic function with values in E (see [6]). Moreover, if suppϕ ⊂ K b Ω, we have that∥∥∥ϕ̂TL(x)
∥∥∥
E

=
∥∥〈ϕe−i x(·), T

〉∥∥
E
≤ CK

∥∥ϕe−i x(·)∥∥
λ

= CK ‖ϕ‖λ ≤ CK ‖ϕ‖λ eλω(x) (x ∈
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Rn) and it follows that ϕ̂TL |Rn ∈ Lp,k(E), since,

(∫
Rn

∥∥∥ϕ̂TL(x)
∥∥∥p
E
kp(x)dx

)1/p

≤ CK ‖ϕ‖λ
(∫

Rn
ep(λ−β)ω(x)dx

)1/p

<∞,

if β is large enough (usual modification if p =∞). Finally, from〈
θ, ϕ̂TL |Rn

〉
=

∫
Rn
θ(x)

〈
e−i x(·)ϕ, T

〉
dx =

∫
Rn

〈
θ(x)e−i x(·)ϕ, T

〉
†
=

〈∫
Rn
θ(x)e−i x(·)ϕdx, T

〉
=
〈
θ̂ϕ, T

〉
=

〈
θ̂, ϕT

〉
=
〈
θ, ϕ̂T

〉
, (θ ∈ Sω),

it follows that ϕ̂TL |Rn = ϕ̂T in S′ω(E). Therefore, ϕT ∈ Bp,k(E) with k = e−β ω and the
proof is complete. 2

† (The function Rn → Dω(K) : x 7→ θ(x)e−i x(·)ϕ(·) is Bochner integrable (since it is
continuous and for each γ > 0,

∥∥θ(x)e−i x(·)ϕ(·)∥∥
γ
∈ L1 because θ ∈ Sω))).
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[4] Hörmander L., Linear Partial Differential Operators. Springer-Verlag. Berlin-Heidelberg-

New York. 1963.
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