Molecular analysis of the section Sphagnum (Sphagnaceae): First study on Turkish Bryophytes using nucleotide sequences of the trnL intron region

MESUT KIRMACI

ASLI SEMİZ

ADİLE SARI

ÖZDEN ÖZGÜN ACAR

UĞUR ÇATAK

See next page for additional authors

Follow this and additional works at: https://journals.tubitak.gov.tr/botany

Part of the Botany Commons

Recommended Citation
KIRMACI, MESUT; SEMİZ, ASLI; SARI, ADİLE; ACAR, ÖZDEN ÖZGÜN; ÇATAK, UĞUR; and FİLİZ, FÜLYA (2022) "Molecular analysis of the section Sphagnum (Sphagnaceae): First study on Turkish Bryophytes using nucleotide sequences of the trnL intron region," Turkish Journal of Botany: Vol. 46: No. 5, Article 6. https://doi.org/10.55730/1300-008X.2724
Available at: https://journals.tubitak.gov.tr/botany/vol46/iss5/6

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for inclusion in Turkish Journal of Botany by an authorized editor of TÜBİTAK Academic Journals. For more information, please contact academic.publications@tubitak.gov.tr.
Molecular analysis of the section Sphagnum (Sphagnaceae): First study on Turkish Bryophytes using nucleotide sequences of the trnL intron region

Authors
MESUT KIRMACI, ASLI SEMİZ, ADİLE SARI, ÖZDEN ÖZGÜN ACAR, UĞUR ÇATAK, and FULYA FİLİZ

This article is available in Turkish Journal of Botany: https://journals.tubitak.gov.tr/botany/vol46/iss5/6
Molecular analysis of the section Sphagnum (Sphagnaceae): first study on Turkish bryophytes using nucleotide sequences of the trnL intron region

Mesut KIRMACI1,*, Ashi SEMİZ2, Adile SARI3, Özden ÖZGÜN ACAR4, Uğur ÇATAK1, Fulya FİLİZ5
1Aydın Adnan Menderes University, Faculty of Art and Science, Department of Biology, Aydın, Turkey
2Pamukkale University, Faculty of Technology, Department of Biomedical Engineering, Denizli, Turkey
3Pamukkale University, Denizli Vocational School of Technical Sciences, Department of Electronic and Automation, Denizli, Turkey
4Pamukkale University, Seed Breeding & Genetic Application and Research Centre, Denizli, Turkey

Abstract: The genus Sphagnum is one of the richest taxa among the Turkish bryophytes. Up to now, it has been represented by 27 taxa in six sections (Sphagnum, Acutifolia, Squarrosa, Subsecunda, Cuspidata, and Rigida). In this study, an identification key for the section Sphagnum was prepared, and the section was investigated using phylogenetic analyses, with a main focus on Turkish bryophytes. This study provides the first sequence data of the trnL intron region for five species of the section Sphagnum from Turkey (namely S. centrale, S. divinum, S. medium, S. palustre, and S. papillosum) to be used in future studies and gives valuable information about their phylogenetic relationships. However, further studies on Turkish members of the section Sphagnum using more specimens and molecular markers should be performed to obtain more detailed information regarding the phylogenetic relationships among them.

Key words: Bryophyta, molecular taxonomy, peatland, bog

1. Introduction
Eight hundred eighty-seven bryophytes (three species of hornworts, 163 species and intraspecific taxa of liverworts and 721 species and intraspecific taxa of mosses) from Turkey according to the checklist prepared in 2005 by Erdağ and Kürschner have been reported. Based on 2015 data, this number was updated to 1030 (835 mosses; 759 species, 76 varieties, 191 liverworts; 179 species, 2 subspecies, 10 varieties and 4 hornworts) by the same researchers (Erdağ and Kürschner, 2017). This increase from 2005 to 2015 reveals the potential of Turkish bryophytes. The genus Sphagnum is one of the richest taxa among the Turkish bryophytes. In the last decade, several new taxa have been added to the list of Turkish Sphagnas (Tonguç, Yayıntaş, 2013; Kirmaci and Kürschner, 2013; Abay and Keçeli, 2014; Kirmaci and Kürschner, 2017; Ören et al., 2017; Kürschner et al., 2019a, 2019b; Kirmaci et al., 2019; Erata and Batan, 2020). Recently, the first author finished a revision project supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) on this genus in Turkey. Up to now, it has been represented by 27 taxa in six sections, i.e. Sphagnum, Acutifolia, Squarrosa, Subsecunda, Cuspidata, and Rigida. The section Sphagnum is easily identified with spiral fibrils on cortical cells of stems. Also, the members of the section are normally large with distinct capitula. Stem leaves are relatively large lingulate or spatulate and branch leaves distinctly concave and often strongly overlapping to give branches a turgid appearance, the apex strongly hooded (Daniels and Eddy, 1985). Until now, five taxa, i.e. S. centrale C.E.O. Jensen, S. palustre L., S. papillosum Lindb., S. divinum Flatberg & K.Hassel and S. magellanicum Limpr, have been given from the section Sphagnum in Turkey. The last two taxa known as S. magellanicum previously were newly added to Turkish bryoflora, and it was reported that S. divinum was the most frequent member of the section, while S. medium was rarer (Kürschner et al., 2019a, 2019b). Hassel et al. (2018) and Kyrkjeeide et al. (2016) showed S. magellanicum relationship with S. divinum and S. medium with their study. And also, Hassel et al. (2018) stated that S. magellanicum was limited to South America and it could not be found in Europe and the Old World. After these papers, all taxa in the Herbarium of Adnan Menderes University (Aydın) that have already been identified as S. magellanicum were rechecked and revised to S. medium or S. divinum based on this work. S. papillosum was collected during the revisional project and identified as new record for Turkey. Later, it was reported from Anzer Valley (Rize) by Erata et al. (2021) as second distributional locality.

* Correspondence: mkirmaci@gmail.com

490
As the classical morphology-based taxonomy studies are sometimes insufficient to identify closely related taxa, molecular methods, which depend on nucleotide sequences of RNA and DNA and sequences of amino acids of a protein (Patwardhan et al., 2014), have been increasingly used in the solution of systematic problems since the 1990s and applied to all organism groups with the development of new techniques (i.e. Shaw et al., 2019; Mishra et al., 2022; Sari, 2022). Compared with flowering plants, there are fewer molecular analysis-based studies on bryophytes; however, in Turkey, there is no study on this subject. Therefore, this study aimed to analyse the phylogenetic relationships of some species from the section *Sphagnum*, with a main focus on the species collected from Turkey, and to test the adequacy of existing keys for identifying these specimens to species level. The importance of the study is that molecular methods were used on Turkish bryophytes for the first time. In addition, a section key based on morphological characters was given in the present study.

2. Materials and methods

2.1. Sampling methods

All specimens were collected during a revision project on the genus *Sphagnum* of Turkey supported by TÜBİTAK between 2013 and 2017. Information belonging to taxa including elevation, geographic coordinates, and general vegetation were noted during the field trips, and all taxa were photographed in their habitats. Taxa were identified using relevant studies, floras, and revision studies and kept at the Herbarium of Adnan Menderes University (Herbarium code: AYDN).

2.2. Locality details

Sphagnum centrale C.E.O. Jensen

1. Artvin, Arhavi, Sazak Bog (to Arhavi 21 km), 1650 m; 41°13'14.2"N 41°20'00.5"E, 28.08.2016; MKIR 7414, coll. and det. M: Kırmacı.

2. Artvin, between Arhavi and Sırt Plateau, Sazak Bog, 1590 m; 41°13'41.8"N 41°19'38.2" E, 28.08.2016; MKIR 7388, coll. and det. M: Kırmacı.

3. Artvin, Murgul, Şevval Mountain, 2200 m; 41°09'59"N 41°29’56.5" E, 29.08.2016; MKIR 7456, coll. and det. M: Kırmacı.

4. Artvin, Boṛçka, Klaskur Plateau, 2340 m; 41°21’07.2” N 41°21’07.2” E, 30.08.2016; MKIR 7470, coll. and det. M: Kırmacı.

5. Giresun, grassland, 2280 m; 40°49’31.1” N 39°02’06.9” E, 2016; MKIR 7542, coll. and det. M: Kırmacı.

9. Rize, İkizdere, Çimil Plateau, 2110 m; 40°43’47.9”N 40°48’14.5” E, 2012; MKIR 6305b, coll. and det. M: Kırmacı.

10. Rize, Çamlıhemşin, Aşağı Kavrun, 950 m; 40°54’29.9” N 41°08’20.9” E, 2012; MKIR 6321 coll. and det. M: Kırmacı.

12. Rize, Çamlıhemşin, Koçdüzü Plateau, 2340 m; 41°00’12.4”N 41°10’47.1”E, 31.08.2016; MKIR 7473, coll. and det. M: Kırmacı.

13. Rize, Çamlıhemşin, Elevit Plateau, 2280 m; 40°51’35.5” N 41°02’17.4”E, 2016; MKIR 7547, coll. and det. M: Kırmacı.

14. Rize, Çamlıhemşin, between Elevit and Trovit Plateau, 2400 m; 40°51’44.2”N 41°02’46” E, 2016; MKIR 7557, coll. and det. M: Kırmacı.

15. Rize, Çamlıhemşin Trovit Plateau, 2440 m; 40°51’43.8”N 41°02’06” E, 2016; MKIR 7561, coll. and det. M: Kırmacı.

19. Trabzon, Çaykara, between Sultanmurat and Barma Plateau, 1870 m; 40°41’7.2”N 40°09’03.6” E, 25.08.2016; MKIR 7326, coll. and det. M: Kırmacı.

Sphagnum divinum Flatberg & Hassel

1. Artvin, between Arhavi and Sırt Plateau, Sazak Bog, 1590 m; 41°13’41.8”N 41°19’38.2” E, 28.08.2016; MKIR 7414, coll. and det. M: Kırmacı.

2. Artvin, Arhavi, Sazak Bog (to Arhavi 21 km), 1650 m; 41°13’14.2”N 41°20’00.5”E, 28.08.2016; MKIR 7414, coll. and det. M: Kırmacı.

3. Artvin, Murgul, Şevval Mountain, 2200 m; 41°09’59”N 41°29’56.5” E, 29.08.2016; MKIR 7456, coll. and det. M: Kırmacı.

4. Artvin, Boṛçka, Klaskur Plateau, 2340 m; 41°21’07.2” N 41°21’07.2” E, 30.08.2016; MKIR 7470, coll. and det. M: Kırmacı.

5. Giresun, grassland, 2280 m; 40°49’31.1” N 39°02’06.9” E, 2016; MKIR 7542, coll. and det. M: Kırmacı.

9. Rize, İkizdere, Çimil Plateau, 2110 m; 40°43’47.9”N 40°48’14.5” E, 2012; MKIR 6305b, coll. and det. M: Kırmacı.

10. Rize, Çamlıhemşin, Aşağı Kavrun, 950 m; 40°54’29.9” N 41°08’20.9” E, 2012; MKIR 6321 coll. and det. M: Kırmacı.

491

Sphagnum medium Limpr.
2. Trabzon, Sürmene-Köprübaşi, Ağacıbaşı Plateau, 1940 m; 40°41’41.5”N 40°04’59.6”E, 2012; MKIR 6121, coll. and det. M: Kırmacı.

Sphagnum palustre L.
1. Canakkale, Çan, Söğütlular Village, Çiğer lake bog, 650 m, 39°52’37”N 26°55’40”E, MKIR 7577, coll. and det. M: Kırmacı.
2. Giresun, Yeşilpinar Village, Maden neighbourhood, 210 m; 40°54’33.7”N 38°53’17.5”E, 29.10.2015; MKIR 6989, coll. and det. M: Kırmacı.
5. Rize, Çamlıhemşin, Elevit Plateau, 2280 m; 40°51’35.5”N 41°02’17.4”E, 2016; MKIR 7549, coll. and det. M: Kırmacı.

Sphagnum papillosum Lindb.
2. Trabzon, Yeşilpinar Village, Maden neighbourhood, 210 m; 40°54’33.7”N 38°53’17.5”E, 29.10.2015; MKIR 6989, coll. and det. M: Kırmacı.

2.3.2. PCR amplification
PCR reactions were performed in a single tube with gene primers specific for the intron region of the chloroplast tRNA gene (trnL): forward 5’-CGAAATCGGTAGACGTACG-3’, reverse 5’-ATTGTGAACCTGGTACACGAG-3’ (Taberlet et al., 1991). The DNA was amplified in a 25 µl reaction mixture containing 0.4 mM forward and reverse primers, 0.3 mM dNTPs, 2 mM MgCl2, and 2.5 units of hot start Taq DNA polymerase (ABM, Canada) in Reaction Buffer.

The PCR conditions consisted of incubation for 5 min at 95 °C, followed by 30 cycles at 94 °C for 1 min, 60 °C for 1 min, 72 °C for 3 min and final extension at 72 °C for 6 min. All analyses were done at least three times. The PCR products were visualized on a 1% agarose gel (90 V, 40 min), and successful amplifications were purified with the PureLink PCR Purification Kit (Invitrogen, Carlsbad, CA, USA) according to the instructions provided by the manufacturer. Sequence analyses of the purified DNAs were performed by GATC Biotech (Ebersberg, Germany).

2.3.3. Sequence alignment and phylogenetic analyses
In this study, seven specimens representing five species of the section *Sphagnum*, were sequenced and these sequences were deposited in GenBank (accession numbers MW547007-MW547013). In addition, sequences of 30 specimens representing 21 species of the section *Sphagnum* as well as *S. compactum* (from the section *Rigida*), *S. fallax* (from the section *Cuspidata*), and *S. subsecundum* (from the section *Subsecunda*) selected as outgroup to root generated phylogenetic trees were obtained from GenBank (Table). Nucleotide sequences of the trnL intron region of seven specimens were checked by eye and edited using MEGA 6 (Tamura et al., 2013), and the sequences of 40 specimens (including outgroup) were aligned by ClustalW using MEGA X version 10.0.5 (Kumar et al., 2018). Nucleotide saturation was determined by plotting the absolute number of transitions and transversions against genetic distance values with a TN93 distance model using DAMBE software (Xia and Xie, 2001), and the quality of the phylogenetic information was evaluated. Evolutionary distances were calculated using the Tamura–Nei method (Tamura and Nei, 1993). Neighbour-joining (NJ) tree of the calculated distances were created in PAUP *4.0b10* (license code: ADU B418788) (Swofford, 2002) and MEGA X version 10.0.5 with 10,000 bootstrap replicates. Maximum likelihood (ML) analysis was performed in RAXMLGUI 1.0 (Silvestro and Michalak, 2012) and MEGA X version 10.0.5. Data analyses were performed using GTR+GAMMA model. Branch reliability of ML trees was calculated with 10,000 bootstrap replicates. Bayesian inference (BI) analysis was performed in MrBayes v.3.2.5 (Ronquist et al., 2012) under the general time reversible model with a gamma distribution and proportion of
Table. List of species used in the phylogenetic analyses and their GenBank accession numbers.

<table>
<thead>
<tr>
<th>Genus</th>
<th>Section</th>
<th>Species</th>
<th>Isolate no.</th>
<th>Collection no.</th>
<th>Accession no.</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphagnum</td>
<td>Cuspidata</td>
<td>Sphagnum fallax</td>
<td>SB356</td>
<td>99959</td>
<td>AF192595</td>
<td>Shaw, 2000</td>
</tr>
<tr>
<td></td>
<td>Rigida</td>
<td>Sphagnum compactum</td>
<td>comp1196</td>
<td>9712</td>
<td>AY298049</td>
<td>Shaw et al., 2003</td>
</tr>
<tr>
<td></td>
<td>Sphagnum</td>
<td>Sphagnum affine</td>
<td>aff1210</td>
<td>26521</td>
<td>AY297995</td>
<td>Shaw et al., 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>aff1211</td>
<td>28884</td>
<td>AY297996</td>
<td>Shaw et al., 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sphagnum alaskense</td>
<td>SB4569</td>
<td>13960</td>
<td>MF362353</td>
<td>Shaw et al., 2019</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sphagnum amoenooides</td>
<td>SB4519</td>
<td>2697</td>
<td>MF362354</td>
<td>Shaw et al., 2019</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sphagnum austinii</td>
<td>SB536</td>
<td>9730</td>
<td>AF192576</td>
<td>Shaw, 2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aust1005</td>
<td>6669</td>
<td>AY298017</td>
<td>Shaw et al., 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sphagnum australe</td>
<td>EK193</td>
<td>0511-1013</td>
<td>KF864545</td>
<td>Karlin, 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EK194</td>
<td>0511-0719</td>
<td>KF864548</td>
<td>Karlin, 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sphagnum billbuckii</td>
<td>bibl876</td>
<td>26642</td>
<td>AY298027</td>
<td>Shaw et al., 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sphagnum brevirameum</td>
<td>SB621</td>
<td>26844</td>
<td>AY192627</td>
<td>Shaw, 2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sphagnum buckianum</td>
<td>buck879</td>
<td>20513</td>
<td>AY298030</td>
<td>Shaw et al., 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sphagnum centrale</td>
<td>TR045</td>
<td>MKIR 7326</td>
<td>MW547007</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cen1220</td>
<td>VIT 21149</td>
<td>AY298045</td>
<td>Shaw et al., 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cent1062</td>
<td>7686</td>
<td>AY298046</td>
<td>Shaw et al., 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sphagnum cristatum</td>
<td>SB140</td>
<td>47127</td>
<td>MF362359</td>
<td>Shaw et al., 2019</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sphagnum cuculliforme</td>
<td>curcu846</td>
<td>53745B</td>
<td>AY298053</td>
<td>Shaw et al., 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sphagnum divinum</td>
<td>TR004</td>
<td>MKIR 6156c</td>
<td>MW547009</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TR073</td>
<td>MKIR 7415</td>
<td>MW547010</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sphagnum henryense</td>
<td>SB657</td>
<td>65925</td>
<td>AF192637</td>
<td>Shaw, 2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sphagnum imbricatum</td>
<td>imbr1344</td>
<td>40308</td>
<td>AY298137</td>
<td>Shaw et al., 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sphagnum magellanicum</td>
<td>mag1351</td>
<td>2011</td>
<td>AY298165</td>
<td>Shaw et al., 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mag666</td>
<td>1505</td>
<td>AY298166</td>
<td>Shaw et al., 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mag690</td>
<td>5858</td>
<td>AY298167</td>
<td>Shaw et al., 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sphagnum medium</td>
<td>TR062</td>
<td>MKIR 7265</td>
<td>MW547011</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sphagnum monzonense</td>
<td>monz1054</td>
<td>1277</td>
<td>AY298183</td>
<td>Shaw et al., 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sphagnum palustre</td>
<td>TR019</td>
<td>MKIR 6989</td>
<td>MW547008</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pal1206</td>
<td>28678</td>
<td>AY298204</td>
<td>Shaw et al., 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pal1209</td>
<td>28667</td>
<td>AY298205</td>
<td>Shaw et al., 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MR1473</td>
<td>160</td>
<td>MF362362</td>
<td>Shaw et al., 2019</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sphagnum papillosum</td>
<td>TR036</td>
<td>MKIR 7414h</td>
<td>MW547012</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TR035</td>
<td>MKIR 7424</td>
<td>MW547013</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pap1063</td>
<td>27582</td>
<td>AY298206</td>
<td>Shaw et al., 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pap1348</td>
<td>2005</td>
<td>AY298207</td>
<td>Shaw et al., 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sphagnum patens</td>
<td>pat1020</td>
<td>7474</td>
<td>AY298208</td>
<td>Shaw et al., 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sphagnum perichaetiale</td>
<td>SB74</td>
<td>9213</td>
<td>AF192575</td>
<td>Shaw, 2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sphagnum reclinatum</td>
<td>recl854</td>
<td>12751</td>
<td>AY298246</td>
<td>Shaw et al., 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sphagnum steerei</td>
<td>SB367</td>
<td>8574</td>
<td>AF192574</td>
<td>Shaw, 2000</td>
</tr>
<tr>
<td>Subsecunda</td>
<td></td>
<td>Sphagnum subsecundum</td>
<td>SB1554</td>
<td>12312</td>
<td>EU431653</td>
<td>Shaw et al., 2008</td>
</tr>
</tbody>
</table>
invariable sites. Two simultaneous runs of four chains were performed for one million generations. Convergence of the BI analysis was maximised by ensuring that the average standard deviation of split frequencies fell below 0.01 and that potential scale reduction factors of all parameters approached 1.0. Produced trees were visualized and edited using FigTree v.1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/). Besides, SplitsTree4 v.4.14.2 (Huson and Bryant, 2006) was used to reconstruct a neighbour-net phylogenetic network for *Sphagnum* species using the default settings in the software with 1000 bootstrap replicates.

3. Results and discussion

3.1. Morphological analysis

The key of Turkish *Sphagnum* section which was rearranged using the Hölzcr, 2010; Kırmacı and Kürschner, 2013 and Hassel et al., 2018 is presented below.

1. Exterior walls of the green cells smooth throughout ... 2

2. Green cells in section elliptic, central, enclosed; plants often reddish ... 3

3. Divergent branch leaf hyalocysts at proximal end convex surface with large pores, many to most filling half or more of cell breadth; ombrotrophic mires (bogs) ………….. 4

3*. Divergent branch leaf hyalocysts at proximal end convex surface with rather small pores, mostly filling out less than half of cell breadth. Divergent branch leaves broadly ovate to circularovate; stem leaves ca. 1.2–1.8 mm, wide rectangular to somewhat spathulate; chlorocyst cell walls of divergent branch leaves in transverse section thin walled; stem leaf hyalocysts with scattered to sometimes abundant membrane gaps and perfect pores in distal leaf-half; ombrotrophic to oligotrophic (poor fen) and sometimes mesotrophic (intermediate fen), hummock-dominated vegetation ……... *S. divinum*

4. Green cells in section oval-triangular to trapeziform, thin-walled all around; hyaline cells of stem leaves commonly with fibres, variously green, brownish or yellowish; in mesotrophic marshes, stream and wet woodland …... *S. palustre*

4*. Green cells in section urn-shaped, oval to nearly triangular, sometimes lenticular to narrowly elliptical, strongly thickened walls at the concave surface; hyaline cells of stem leaves rarely with fibres; plants robust, pale to yellowish-green or yellowish-brown, branches cuspidate; plants in mesotrophic peatlands and swamps.….. *S. centrale*

S. papillosum which was newly added to Turkish bryophyte flora is clearly separated from other members of the section using anatomical characters. The most prominent feature of the taxon is the papillose thickening in the cell walls, which can be easily seen in the lateral crosssection. It is also generally easy to recognize with its short thick branches and characteristic soil yellow colour. However, shadow forms are partly similar to *S. palustre* and are not always distinguishable in the field. The well-developed species of *S. palustre* are distinguished from *S. papillosum* by having 3–4 pendant branches per fascicle. However, compact forms that are likely to be confused with *S. papillosum* have only (1–) 2 pendant branches, so this difference in practice is not very valid. While the compact forms of both species are similar in appearance to *S. compactum* DC., they differ in having much larger stem leaves and more hooded leaves.

In the last decade, several new records have been added to the genus *Sphagnum* in Turkey. Today, it is the third richest genus with 27 taxa (including *S. papillosum*) after the genus *Grimmia* (32) and *Orthotrichum* (30) (Kürschner and Erdğ, 2020). Members of the genus *Sphagnum* which are known as peat or bog mosses have quite specific habitat preferences. Generally, they are found in ombrotrophic bogs which are acidic and poor in mineral salts. Turkey has very limited blanket bogs (Ağcabaşı Peatland, Barma Yaylası Peatland, Yilanıtaş Yaylası Peatland/Trabzon, Kabaca–Petek Yaylası Peatland, Sazak Peatland/Artvin, and Çiğer Gölü Peatland/Çanakkale) (Kirmacı et al., 2019). Active living bog is a priority habitat as listed on Annex I of the EU Habitats Directive. Although Ağaçbaşı Peatland and Barma Yaylası Peatland are sensitive areas to be precisely protected, unfortunately any raised bogs have not been designated as Special Areas of Conservation and Natura 2000 sites in Turkey up to now. These areas, which are limited in number, need to gain emergency protection status.

3.2. Molecular analysis

In phylogenetic analyses, the trnL intron region of seven specimens representing five species of the section *Sphagnum* were sequenced after species identifications were made. For an aligned dataset of 661-bp nucleotide sequence of specimens from the section *Sphagnum*, 629 characters were conserved, and 21 were variable. Of the variable characters, 4 were singleton, and 17 were parsimony informative. Mean base frequencies for A, C, G, and T were found to be 0.3601, 0.1638, 0.1543, and 0.3218, respectively. Moreover, GC and GT percentages varied from 0.0000 to 0.0209, with an overall mean distance of 0.0059. The
transition/transversion bias was estimated to be 6.350. The transition/transversion ratio was 21.254 for purines and 18.760 for pyrimidines, with an overall transition/transversion bias of 8.713. It was determined in the substitution saturation analysis that both transitions and transversions linearly increased with increasing genetic distance and transitions outnumbered transversions. The index of substitution saturation (0.1111) was significantly lower than the critical index of substitution saturation for symmetrical trees (0.7415) as well as for asymmetrical trees (0.4891). The findings of the substitution saturation analysis indicated that the sequences of this gene did not undergo substantial saturation, had sufficient signal for phylogenetic tree reconstruction, and hence could be used for phylogenetic analyses (Xia et al., 2003).

In this study, *trnL* sequences of 40 specimens were used as a phylogenetic marker to identify phylogenetic relationships among species in the section *Sphagnum*. All the three methods (NJ, ML, and BI) resulted in similar topologies with resultant bootstrap values varying from poor to strong supports at nodes of the trees; however, the BI method was computationally more robust than the NJ and ML methods (Figures 1 and 2). In all tree topologies, three main clusters of species from the section *Sphagnum* were revealed, which have high bootstrap support (BS) and posterior probability (PP) values. All the constructed trees placed Cluster I containing *S. austrole* as basal to the studied species of the section (BS = 85 for NJ, BS = 91 for ML, and PP = 1.000 for BI). Well-supported Cluster II consisting of *S. steerei*, *S. austinei*, *S. affine*, and *S. imbricatum* (BS = 88 for NJ, BS = 92 for ML, and PP = 0.997 for BI) was sister to well-supported Cluster III consisting of the remaining species of the section (BS = 90 for NJ, BS = 92 for ML, and PP = 0.978 for BI). In Cluster III, two *S. papillosum* specimens from Turkey were placed in a group with two *S. papillosum* specimens from Japan and USA, which formed a separate clade in the cluster (BS = 63 for NJ and ML and PP = 0.867 for BI). *S. billbuckii* and *S. brevivirame* specimens were placed in a group (BS = 62 for NJ, BS = 64 for ML, and PP = 0.978 for BI), and this group was clustered together with *S. buckianum*, *S. perichaetiale*, *S. reclinatum*, *S. patens*, *S. cuculliforme*, and *S. amoenoides* specimens and *S. palustre* specimen from Brazil (BS = 63 for NJ, BS = 64 for ML, and PP = 0.835 for BI), *S. palustre*, *S. divinum*, *S. centrable*, and *S. medium* specimens from Turkey were placed in a group with *S. palustre* specimens from Bhutan and *S. magellanica*, *S. centrable*, *S. alaskense*, *S. henryense*, *S. monzonense*, and *S. cristatum* specimens; however, this group lacked high BS and PP values and was not well resolved by the three phylogenetic analyses.

Further, for better understanding and visualising the relationships among the species from the section *Sphagnum*, a neighbour-net phylogenetic network was constructed in the study using SplitsTree4 software that makes a phylogenetic network with reticulations rather than constructing a bifurcating topology in a conventional single phylogenetic tree. Compared to the routinely bifurcating phylogeny, a phylogenetic network is known to be more useful in describing and visually presenting complicated relationships. As seen in Figure 3 demonstrating the relationships among the studied species, the centre of the constructed network was slightly netted. This pattern implied some conflicting deep splits. Nevertheless, three main clusters were recognised in the constructed network (Figure 3) as revealed by the topologies of the NJ, ML, and BI methods (Figures 1 and 2).

Sphagnum is one of the largest genera of bryophytes with a worldwide distribution (Shaw et al., 2003). It is known that *Sphagnum* species are excellent ecosystem engineers, and they dominate peatland habitats where they occur by creating the environmental conditions that contribute to their dominance (e.g., Turetsky et al., 2008). In this study, we analysed the phylogenetic relationships of some of the species from the section *Sphagnum* of this genus using nucleotide sequence of the *trnL* intron region, with a main focus on the species collected from Turkey and used in the phylogenetic analyses for the first time. It is possible to consider this study as a preliminary study on this subject, since the number of analysed specimens is limited, and the number of used markers is few. Although this was the case, the nucleotide saturation analyses provided compelling evidence that the selected sequences did not undergo substantial saturation and could be used for phylogenetic studies. In addition, it was reported in a comprehensive study on the genus *Sphagnum* that nucleotide sequences from the plastid genome alone provided highly resolved, well-supported, and compatible estimates of phylogenetic relationships (Shaw et al., 2016). The selected marker in the study (the *trnL* intron region) is a locus from the plastid genome, and hence the results of the phylogenetic analyses in this study can be considered as accurate and valid.

Two specimens identified in this study as *S. papillosum*—which is a species newly added to Turkish bryophyte flora—were genetically clustered within a group together with two others from the same species from Japan and USA in our phylogenetic analyses. When the sequences of these two *S. papillosum* specimens were assessed by submitting to BLAST search in NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi) to verify the sequence similarity, it was found that the sequences of the specimens from Turkey showed 100% similarity with the sequence of the specimen from Japan and 99.69% similarity with the sequence of the specimen from USA. These findings are informative with respect to confirmation of species identification and strongly support the accuracy of identification of the specimens.
Figure 1. Neighbour-joining (NJ) reconstruction of the phylogenetic relationships of some species from the section Sphagnum based on trnL intron region sequences. NJ bootstrap values of >50% after 10,000 replicates are shown above branches. Specimens collected and sequenced in this study are demonstrated in bold.

based on morphological and anatomical characters. The phylogenetic analyses in the present study implied that S. palustre from Turkey was more closely related to S. palustre from Bhutan than the same species from Brazil but did not provide detailed information regarding the phylogenetic relationships of S. palustre, S. centrale, S. divinum, and S.
Figure 2. Maximum likelihood (ML) reconstruction of the phylogenetic relationships of some species from the section *Sphagnum* based on *trnL* intron region sequences. ML bootstrap values of >50% after 10,000 replicates (in black) and BI posterior probabilities (in red) are shown above branches. Specimens collected and sequenced in this study are demonstrated in bold.
medium specimens collected from Turkey and sequenced to be used in the phylogenetic analyses for the first time. As a matter of fact, these four species were not resolved as distinct species by nucleotide sequences obtained from the trnL intron region in the analyses. This may be regarded as a weakness of this study and attributed to relatively small sample size and/or only one molecular marker used in the analyses. Therefore, further phylogenetic studies with a greater sampling of Sphagnum diversity of Turkey and the surrounding region and with the inclusion of more sequence data from additional molecular markers are highly recommended for more detailed information regarding the phylogenetic relationships of Sphagnum species.

4. Conclusion
Taken together, this study provides the first sequence data of the trnL intron region for five species of the section Sphagnum from Turkey (namely S. centrale, S. divinum, S. medium, S. palustre, and S. papillosum) to be used in future studies and gives valuable information about their phylogenetic relationships, albeit with small specimen size and only one molecular marker. However, further studies on Turkish members of the section Sphagnum using more specimens and molecular markers should be performed to obtain more detailed information regarding the phylogenetic relationships among them.

Acknowledgements
We would like to thank the Scientific and Technological Research Council of Turkey (TÜBİTAK) for the financial support given to our project (TBAG 113Z631); Aydın Adnan Menderes University and Pamukkale University for allowing us to use their laboratories; and Dr. Olaf WERNER (University of Murcia, Spain) for his valuable contribution to the interpretation of the molecular part.

References

