A new Achillea (Asteraceae) species from southwestern Turkey

GÜRKAN SEMİZ
TUNA UYSAL
MERYEM BOZKURT
BATIKAN GÜNAL

Follow this and additional works at: https://journals.tubitak.gov.tr/botany

Recommended Citation
SEMİZ, GÜRKAN; UYSAL, TUNA; BOZKURT, MERYEM; and GÜNAL, BATIKAN (2022) "A new Achillea (Asteraceae) species from southwestern Turkey," Turkish Journal of Botany. Vol. 46: No. 4, Article 7. https://doi.org/10.55730/1300-008X.2718
Available at: https://journals.tubitak.gov.tr/botany/vol46/iss4/7

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for inclusion in Turkish Journal of Botany by an authorized editor of TÜBİTAK Academic Journals. For more information, please contact academic.publications@tubitak.gov.tr.
A new *Achillea* (Asteraceae) species from southwestern Turkey

Gürkan SEMİZ\(^1\)*, Tuna UYSAL\(^2\), Meryem BOZKURT\(^2\), Batıkan GÜNAL\(^1\)

\(^1\)Department of Biology, Faculty of Arts and Science, Pamukkale University, Denizli, Turkey
\(^2\)Department of Biology, Faculty of Science, Selçuk University, Konya, Turkey

Abstract: *Achillea alimeana* Semiz & Uysal sp. nov. of sect. Santolinoidea DC. (Asteraceae), was described, diagnosed and illustrated as a new species. It was collected from Akdağ Mountains in Denizli Province. In this paper, the diagnostic characters of *A. alimeana* and its similar species were discussed in the morphological, palynological and molecular findings. As regards the new species, some notes on the ecology, conservation status, and distribution were submitted. A diagnostic key was given for related taxa.

Key words: Compositae, ITS, rDNA, palynology, Santolinoidea, SEM, Anatolia

1. Introduction

The Asteraceae (Compositae) is one of the largest flowering plant families in the world (Hattori and Nakajima, 2008). The transformation of systematics, particularly molecular analysis, has occurred on a large scale as a result of the family’s recent milestone. Currently, the family includes approximately 24,000–30,000 species in more than 1600 genera (Funk and Robinson, 2005; Kadereit and Jeffrey, 2007; Kubitzki, 2007) throughout the world.

The tribe *Anthemideae* Cass. has 111 genera and around 1800 species, according to the most current generic conspectus in Compositae (Oberprieler et al., 2007a). *Achillea* L. is a member of the *Anthemideae* tribe and is represented by about 115 taxa in the world (Aytaç et al., 2016). According to the last check list of the Flora of Turkey, *Achillea* has 6 sections and 60 taxa, so that 55% (33) of them are endemic to Turkey (Arabacı, 2012; Aytaç et al., 2016). Many sections of the tribe have more than 10 capitula on their inflorescence excepting sect. *Arthroplepis* Boiss. and sect. *Santolinoidea* DC. (Huber-Morath, 1975, 1986). Additionally, *Achillea* species in sect. *Santolinoidea* are characterized by typical leaf shapes, with primary leaflets appearing transverse to the rhachis, and segments being positioned imbricate, phyllaries persistent, not articulate at base (Huber-Morath, 1975; Valant-Vetschera and Kastner, 1998; 2000). Mainly, the genus is distributed in inner, eastern, and southeastern Anatolia, but *Achillea cretica* L., *Achillea nobilis* L. subsp. *densissima* (O. Schwarz ex Bässler) Hub.-Mor., and *Achillea grandifolia* Friv. are distribution in the southwestern parts of Anatolia (Aytaç et al., 2016).

According to the first detailed light microscopic studies of *Anthemideae* pollen (Wodehouse, 1926, 1935), it is described that the pollen is tricolporate, echinate having a coarse-granular two layered exine. Afterwards, many studies have carried out about the tribe palynology (Stix, 1960; Čigurjaeva and Tereškova, 1983; Benedí i González, 1987; Federončuk and Savitskii, 1988; De Leonardis et al., 1991; Oberprieler et al., 2009). These studies revealed that the presence of *Anthemis* L. type pollen grains, which are rather uniformly sphaeroidal, trizonocolporate and spiny with tenuimarginate, sharply pointed colpi and lalongate. The genus *Achillea* is represented by *Anthemis*-type pollens (Stix, 1960).

Phylogenetical studies including *Achillea* proposed a new subtribal classification within Compositae-*Anthemideae* (Oberprieler et al., 2007b; Himmelreich et al., 2008) and it was broadly adopted. The subtribes are divided into four groups based on their biogeographical patterns in the evolutionary reconstructions: (1) Southern Hemisphere Grade, (2) Asian-Southern Africa Grade, (3) Eurasian Grade, and (4) Mediterranean Clade (Oberprieler et al., 2009). As a result, *Achiella* was evaluated as a member of *Matricariinae* into the third grade.

During the field studies concerning floristic botany in southwestern Anatolia, some interesting specimens belonging to *Achillea* were collected from the Akdağ Mountain (C2, Çameli district of Denizli). All samples were compared with other similar *Achillea* taxa and their specimens which are deposited in various herbaria in Turkey (KNYA) and abroad such as BM and MNHN.
Additionally, the relevant literature was searched (Huber-
Morath, 1975, 1986; Richardson, 1976; Valant-Vetschera,
1996, 2000; Duman, 2000; Arabaci and Yildiz 2006a, 2006b,
Oberprieler et al., 2009). After the detailed comparisons
based on morphology, palynology and molecular studies,
it has been decided that our samples belonged to hitherto
undescribed species of sect. Santolinaidea and the new
species was related to Achillea aleppica DC. subsp. aleppica
and Achillea tenuifolia L.

2. Materials and methods

2.1. Plant materials
Specimens were collected from the Akdağ Mountain
in Çameli district (around Kargin Plateau), Denizli
Province in the southwestern Turkey by the first author.
The specimens were identified using the current literature
(Boissier, 1875; Huber-Morath, 1975, 1986; Duman,
2000; Arabaci, 2006, 2012) and compared with herbaria
materials stored in KNYA, BM and MNHN. Plant names
were checked using the IPNI database (2012), the study of
Brummit and Powell (1992) was used to check the author
names of plants and pollen morphology terminology was
employed in accordance with Punt et al. (2007).

2.2. Morphological and palynological studies
The morphological data were obtained from micro- and
macromorphological examinations of light binocular and
scanning electron microscopy (SEM) techniques. These
microscopes were used for the detailed description of
the new species. SEM was used to analyze the pollen and
seed morphologies at Pamukkale University. For the SEM
investigation, the pollen was treated with 70% ethanol
and then dried before being mounted on stubs with
gold-palladium. Samples were coated with Quarum 150
RS Au-Pd, and SEM photomicrographs were taken with
a Zeiss Supra 40 VP Electron Microscope at Pamukkale
University. For the seed SEM analyses, dehydration of at
least 10 seeds of the species was conducted by utilizing an
alcohol series, which comprised concentrations of 70%,
80%, 96%, and 100%, for the purpose of cleaning. The
achenes were then coated using gold-palladium, followed
by an examination that was conducted at magnifications
of 137, 486 and 554× using an SEM high-vacuum microscope
(Zeiss Supra 40 VP) to conduct an observation of the
surface structures. The terminology that was used for the
achene characteristics was that which was given by Stearn
(1983) as well as that of Koul et al. (2000).

2.3. Molecular studies
Molecular studies had been carried out based on the DNA
sequence analysis, ITS gene region of ribosomal DNA.
The DNA extractions on the new species and the closest
taxon were performed in our laboratory (MPSL-KNYA).
Achillea alimeana and morphologically related taxa were
identified. Next, the new taxon and A. aleppica subsp.
aleppica (A.Duran 6573) were isolated (Doyle and Doyle,
1987; Soltis et al., 1991; Cullings, 1992) and sequenced
(for ITS protocol; Uysal et al., 2016). Sequences of other
related species were downloaded from the gene bank
(Table 1). Sequences of all taxa were aligned in Bioedit
(version 7.0.5.3; Hall 1999). Parsimony analyzes with the
PAUP program and Bayesian analyzes with MrBayes were
performed from the data set obtained from ITS data. For
parsimony analysis; heuristic searches were performed
by utilizing PAUP software (version 4.0b10; Swofford,
2002), in addition to tree bisection and reconnection
branch swapping, and character states were categorized
as unweighted and unordered. For the bootstrap (BS)
analyses (Felsenstein, 1985), 1000 heuristic search
replicates were utilized and set at the default settings. Both
the retention index (RI) and consistency index (CI) were
given to the strict consensus tree, with the exclusion of
the uninformative characters. For Bayesian analysis, the
analyses were conducted by utilizing random starting

<table>
<thead>
<tr>
<th>Taxa</th>
<th>GenBank</th>
<th>Author, year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achillea alimeana</td>
<td>OL378196</td>
<td>Current study</td>
</tr>
<tr>
<td>A. aleppica subsp. aleppica</td>
<td>OL378197</td>
<td>Current study</td>
</tr>
<tr>
<td>A. pseudoleppica</td>
<td>DQ267612</td>
<td>Ehrendorfer and Guo 2006</td>
</tr>
<tr>
<td>A. vermicularis</td>
<td>DQ267613</td>
<td>Ehrendorfer and Guo 2006</td>
</tr>
<tr>
<td>A. teretifolia</td>
<td>AY603255</td>
<td>Guo et al., 2004</td>
</tr>
<tr>
<td>A. alpina</td>
<td>KX670802</td>
<td>Jung et al., 2016</td>
</tr>
<tr>
<td>A. tenuifolia</td>
<td>KM589804-KM589830</td>
<td>Tomasello et al., 2014</td>
</tr>
<tr>
<td>A. millefolium</td>
<td>MZ191016</td>
<td>Huixia and Kejian 2021</td>
</tr>
<tr>
<td>A. cretica</td>
<td>AY603252</td>
<td>Guo et al., 2004</td>
</tr>
<tr>
<td>Tanacetum vulgare</td>
<td>AY603264</td>
<td>Guo et al., 2004</td>
</tr>
</tbody>
</table>
trees, which were then run for $1 \times 10^5$ generations, for 2 independent 4 Metropolis-coupled chain runs. For every 1000 generations that were run, only 1 was recorded. The run output was examined for convergence, by considering the standard deviation of the split frequencies that were near 0.001. The first 1000 samples (20%) were considered to be burned-in and were removed after they were visually examined with regards to the likelihood score plots. In PAUP, a model search was performed according to the Akaike information criterion (AIC) with the automatic model selection command and the best fit evolution model was TPM3+I (ITS). Bayesian phylogenetic analyzes were performed with the MrBayes, under the TPM3+I model. The stationary of the runs, as well as the convergence between the runs, were examined by utilizing Tracer software (version 1.7.0; Rambaut et al., 2018).

3. Results

*Achillea alimeana* Semiz & Uysal sp. nov. (Figures 1–3; Table 2).

**Type:**—TURKEY. Denizli: Çameli, Akdağ Mountain, Kargın Plateau, on limestone, 1700–1900 m, 19 June 2020, G.Semiz GSE 2146 (holotype: PAUB!; isotype: KNYA!).

**Diagnosis:** The peduncle of the new species is distinct and longer than its relatives and it rises to 2 cm (not without peduncle, but further than 4 or 7 mm). The corymb width in *A. alimeana* is less compared to the other two close taxa and the furthest they can broaden to 2 cm (not as being 7 cm in *A. tenuifolia* and up 5 cm in *A. aleppica* subsp. *aleppica*). The ligules of *A. alimeana* are more number (5–6 many) and yellow (not 3–5 or 2–4, not golden yellow or ivory white). Additionally, the disc flowers of the new species are more than *A. aleppica* subsp. *aleppica* [not 6-15(-20)]. The fruits are similar in *A. alimeana* and *A. aleppica* in which are oblong or oblong-narrowly obovoid unlike *A. tenuifolia* with ovate-oblong one.

**Description:** Perennial herb with woody rootstocks. Stems erect ascending, numerous, 40–60 cm long, with short sterile shoots, branched from the base, with stria and adpressed to subadpressed floccose hairy. Leaves homomorphic, with arachnoid or floccose hairy, linear to filiform, median cauline ones 8–18(-20) × 0.8–1.2 mm, pinnatisect, segments ovate or semiorbicular, 0.5–0.8 × 0.2–0.5 mm, 1–3-denticulate, apiculate. Peduncles 2–22 mm. Capitula (2–)4-8(–10) per stem, (4.5–)5–6 × (3–)3.5–4 mm, broadly rounded at base, corymb extends to 2 cm. Involucre ovoid to hemispherical and angular, (3.8–)4–5 × (3.4–)4–5(–6) mm, arachnoid hairy. Phyllaries in 3–4 series, outer ones 10–12 mm, ovate-oblong, median ones oblong-orbicular, inner ones lanceolate, all phyllaries scarious-margined, outers ones pannose on the middle vein. Receptacle paleaceous; pala 1.5–2 × (1-)0.2–0.3 mm, linear-lanceolate, membranaceous. Ligules 5–6, yellow, 3–4.2 mm long, with three lobes; tube 2.3–2.5 mm long, lobes 1.2–1.7 × 1.2–1.5(-1.8) mm, almost orbicular in outline. Anthers cream, slightly exerted from the tube.

![Figure 1. Achillea alimeana A-A1: Plant habit B: Inflorescens B1-B2: Corymbs.](image-url)
Disc flowers creamish yellow, 20–30, 3.5–4 mm, slightly exserted from involucres; style orange, 1–2 mm long, stigma two-partite as long as style. Cypselae oblong to narrowly obovoid, 2–3 mm long, compressed dorsally; pappus absent.

**Phenology:**—Flowering June-July and fruiting July–September.

**Group B** [This key has been modified from Flora of Turkey (Volume 5, pp. 226-227)]

1. Ligules 3–8
5. Involucre oblong-cylindrical, about 2× as long as broad
6. Lowest phyllaries triangular-ovate to lanceolate, adpressed .......................................................... aleppica
6. Lowest phyllaries subulate, linear or linear-lanceolate, spreading ........................................... pseudoaleppica
5. Involucre ovoid to hemispherical, not more than 1.5× as long as broad
7. Stem terete, longitudinally striate or obtuse-angled, not furrowed; ligules white or yellow
7. Stem deeply furrowed; ligules yellow
8. Involucre hemispherical or somewhat depressed, 5–6 × (5-)6-8 mm
8. Involucre ovoid to hemispherical, 3–4.5 × 2.5–4(-5) mm
9. Leaves with loosely arranged, not imbricate, linear lanceolate, simple or tripartite, cuspidate segments, margins entire
10. Peduncle absent or sometimes up to 7 mm; fruit ovate-oblong .......................................................... tenuifolia
10. Peduncle up to 20 mm in length, fruit oblong to narrowly obovoid .................................................. alimeana
9. Leaves with dense or loosely imbricate, tripartite, oblong to lanceolate segments, margins denticulate .......... ................................................................................. lycaonica
1. Ligules 3–8 ........................................................... others

Pollen structure: — Pollen grains of A. alimeana are oblate spheroidal, tricolporate. P = (19.35)±22.01 ± 1.29(24.57), E = (20.09)±23.09 ± 1.48(25.05). Ornamentation is echinate to microperforate (Figure 4), P/E is oblate spheroidal (Erdtmann, 1957).

Achene structure: — Achene oblong-lanceolate, 1.76 ± 0.16 × 0.62 ± 0.08 mm, ribbed, glabrous, slime cells over the entire surface (Figure 2D).

Phylogeny: — The new taxa is phylogenetically taken place together with the taxa of Santolinoidea section (Figure 5). In phylogram, the most close of the new taxa is seen A. aleppica subsp. aleppica as well as other relatives comprising Achillea vermicularis Trin., Achillea pseudoaleppica Hub.-Mor., Achillea teretifolia Willd., A. cretica, respectively (PP:0.84/BS:78).

Etymology: — Ms. Alime Çetiner was a nature lover and made great motivational contributions to her husband Rasim Çetiner during the discovery of the species. Hereby,

Table 2. The morphological comparison of Achillea alimeana and related taxa.

<table>
<thead>
<tr>
<th>Character</th>
<th>A. alimeana</th>
<th>A. aleppica subsp. aleppica (Huber-Morath, 1975; Arabacı, 2006)</th>
<th>A. tenuifolia (Arabacı, 2006)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant</td>
<td>Erect-ascending, 40–60 cm</td>
<td>Ascending, 5–60 cm</td>
<td>Ascending 25–90 cm</td>
</tr>
<tr>
<td>Indumentum</td>
<td>Floccose hairs</td>
<td>Adpressed pilose</td>
<td>White tomentose</td>
</tr>
<tr>
<td>Stem</td>
<td>Branched, deeply furrowed</td>
<td>Simple, longitudinally striped</td>
<td>Branched, deeply furrowed</td>
</tr>
<tr>
<td>Leaves</td>
<td>Linear to filiform, median cauline ones 8–18 × 0.8–1.2 mm, pinnatisect, densely imbricate, with ovate or semi-orbicular, 1–3-denticulate and apiculate segments</td>
<td>Linear-filiform, median cauline (5-)10–40 × 0.8–1.5 mm, pinnatisect, segments densely, at last ± loosely, imbricate, 0.5 mm, 3-lobed, lobes broadly ovate to orbicular, denticulate</td>
<td>Linear, median cauline (1–)2–4 × 0.1–0.2–0.6(–1) cm, pinnatipartite, segments simple, 3-dentate or 3-lobed, cuspidate, loosely arranged, not imbricate, linear-lanceolate, rarely narrowly cuneate, margins entire</td>
</tr>
<tr>
<td>Peduncle</td>
<td>Up to 20 mm</td>
<td>Up to 4 mm</td>
<td>Up to 7 mm</td>
</tr>
<tr>
<td>Capitula</td>
<td>(2–) 4–8 × (–10) per stem, corymbs 2 cm broad</td>
<td>(4–) 6–120 per stem, corymbs 1–4.5 cm broad</td>
<td>(10–) 20–70 × (–100) per stem, corymbs 2-5(-7) cm broad</td>
</tr>
<tr>
<td>Involucrum</td>
<td>Ovoid to hemispherical and, angular, (3.8–) 4–5 × (3.4–) 4–5 (–6) mm</td>
<td>Oblong cylindrical, angular, 3.5–5.5 × 1.5–2.5 mm</td>
<td>Ovoid to hemispherical, 3–4.5 × 2.5–4.5 mm</td>
</tr>
<tr>
<td>Ligules</td>
<td>5–6, yellow</td>
<td>2–4, ivory white</td>
<td>3–5, pale or golden yellow</td>
</tr>
<tr>
<td>Disc flowers</td>
<td>creamish yellow, 20–30, 3.5–4 × 0.3–0.4 mm</td>
<td>yellow, 6–15 × (–20), 2.5–3 × 0.5 mm</td>
<td>yellow, 20–35, 3 × 0.5 mm</td>
</tr>
<tr>
<td>Palea</td>
<td>Linear-lanceolate, 1.5–2 × (1–) 0.2–0.3 mm</td>
<td>Lanceolate, 3.5 × 1 mm</td>
<td>Lanceolate, 3.5–4 × 1 mm</td>
</tr>
<tr>
<td>Cypselae</td>
<td>Oblong, 2–3 × 0.3–0.6 mm</td>
<td>Ovate-oblong, 1.4–2.5 × 0.4–1 mm</td>
<td>Oblong-oblanceolate, 1.5–2 × 0.5–0.8 mm</td>
</tr>
</tbody>
</table>
A. alimeana was named in honor of the deceased wife of Rasim Çetiner who is the forest engineer and also is known as a "citizen scientist".

Proposed Turkish name: The Turkish name of this species was given as “Hanım perçemi” according to the guidelines of Menemen et al. 2016.

Ecology:—Achillea alimeana grows on limestone under Pinus nigra J.F.Arnold subsp. pallasiana (Lamb.) Holmboe forest at altitudes of 1700–1900 m, together with Scutellaria brevibracteata Stapf subsp. brevibracteata, Echinophora tournefortii Jaub. & Spach, Echinops emiliae P.H.Davis, Nepeta nuda L. subsp. lydiae P.H.Davis and Salvia chrysophylla Stapf.

Conservational status: The specimens were collected at Denizli, near places of the summits of Akdağ Mountains (Çameli; Denizli Province). The distribution of A. alimeana can be defined as very local and is restricted to a single location (IUCN Criteria B1a). The current populations of the species are pure, with an occupied area of less than 10 km², and field observations suggest that the total number of individuals of this endemic species in a single locality does not exceed 250 (Criteria B2a). Based on our expertise, we believe that the species could be classified as critically endangered (CR), but we believe that further data are required to accurately quantify or estimate its threat category.

4. Discussion
It has been reported that the region of Central Anatolia is the main differentiation center of the Santolinoidea section for Turkish Flora (Huber-Morath, 1975). The locality (Denizli Province) of the new species situates a transition gateway between Aegean, Central Anatolia and Mediterranean Regions. Therefore, it can be thought that this transition point would be the most extreme southernwest position of the main differentiating center for Santolinoidea. Interestingly, another species Rindera cetineri Yıldırım and Linum punctatum Presl subsp. pycnocephalum (Boiss. & Heldr.) Gustavsson have also been discovered recently from the same locality with A. alimeana (Yıldırım, 2019; Semiz and Yılmaz, 2020). In point of bedrock, the species of Achillea may show different behaviors or choices, but they usually prefer stony rocky places, forest clearings and steppes. The members of Santolinoidea section spread in volcanic, limestone, conglomerate and limestone rocks. Especially, A. alimeana displays a distribution in the limestone cliffs of Pinus nigra forest clearings. In Achillea species, whether the stem structure is simple or branched, the number of capitula is important in the determination of the species. It is a rare feature in the genus that the stem shows continuous branching starts from the base. As well as being large and flamboyant, A. alimeana and A. tenuifolia are also the species that attract attention at first glance with their dense stem branching in their natural life. In terms of capitula number, the genus displays a broad variation, so that few species have one capitulum while others have 1–10 and sometimes more than 10 (Aytaç et al., 2016). A. alimeana has up to ten capitula in each stem. Achillea alimeana is related to A. tenuifolia and A. aleppica subsp. aleppica, but it has some important differences
from similar species in terms of characters such as stem structure and branching shape, leaf type, peduncle length, capitula number, coryms width, ligules numbers and fruits. *A. aleppica* was represented with two subspecies in Check List of the Flora of Turkey (Arabacı, 2012). The new species seems to be more close to *A. aleppica* subsp. *aleppica* comparing to the other subtaxon. For this reason, taxonomic and morphological relationships between the new species and this taxon were emphasized in here. The new taxon is also similar to *A. tenuifolia* in point of stem and branching and both of them have long and include deeply furrowed and many-branched stems; the ascendant and long lateral stems continue from the base to upwards repeatedly unlike *A. aleppica* subsp. *aleppica* which has usually simple stem. In point of the indumentum, *A. alimeana* is clearly different by having floccose hairs (not adpressed pilose or glabresecent). The new taxon and its relatives share a similar leaf shape but also there is a certain difference among them: the leaves are pinnatipartite or pinnatisect in all taxa and their segments are divided into three lobes. While the leaf segments in *A. alimeana* are neither loose nor tight, they are further tight in *A. aleppica* subsp. *aleppica*. As a common feature, the segments are ovate-orbicular and denticulate for both of them. Comparison to these taxa, the leaf segments are too loose, linear-lanceolate and entire in *A. tenuifolia*. Besides these, the new taxon has many specific morphologic characters which are discussed as a diagnosis in the text and the determinative features have been submitted comparatively in Table 2.

In recent years, palynology and molecular findings of flowering plants have been very supportive and effective in the given decision of the new species (Aytac et al., 2016; Uysal et al., 2016; Özbek, 2021; Özbek et al., 2021; Yin et al., 2021; Ertugrul et al., 2021). Pollen structure for two species of *Santolinaideae* section, recently published for Flora of
Turkey, has been reported as oblate-spheroidal (Aytac et al., 2016). It is also known that most of the species have pollen grains with the same characteristics (Akyaçın et al., 2011; Akyaçın et al., 2014). The pollens of *A. alimeana* are exactly suitable with the given literature; they are oblate-spheroidal. The pollen ornamentation of the new species is echinate in light microscopy and echinate-microperforate and microperforate in SEM. Therefore, we point out that many taxa of *Achillea* are fairly stable in the shapes of pollen grains and it is important to indicate that these features do not supply a serious conclusion in the description of the new species here. DNA sequence analyzes and the created phylogenetic trees have helped us to understand the phylogenetic relationships of the new species with the relatives within the relevant section. The new species is clearly related to *A. aleppica* subsp. *aleppica*. It is located in a more distant position with *A. tenuifolia*, the other species of the same section with which it is morphologically similar, and therefore shows comparatively a weaker phylogenetic relationship. Although morphologically *A. alimeana* and *A. tenuifolia* are similar in terms of capitula shape and branching characteristics, this morphologic similarity does not support at the same level in terms of phylogenetic relationships. As a result, *A. alimeana* is a new species for science and it has been described by a broad concept based on morphology, palynology and molecular data in this paper.

**References**


**The examined herbarium specimens and samples:**

*Achillea aleppica* subsp. *aleppica*: Erzincan, between Sarikonak village and Sarıcıçek upland, 8. km, 1300–1450 m, limestones places, 16 vi 2004 A. Duran 6573 (KNYA!). Karaman, Sertavul, *P. nigra* plantation area, limestone, 1040 m, 27 v 1975 R. Çetik 3839 (KNYA!). Sivas, between Divriği and Kemaliye, 67. km, 900 m, 30 v 2003, A. Duran 6155 (KNYA!). Konya, Beysêhir-Başçaravak junction, steppe, 1300 m, 19 v 2005, E. Yıldız 807 (KNYA!). Konya, Altınova State Farm, Sunîgöll, 09 vii 1963, R. Çetik 7961 (KNYA!). Konya, 500 m east of Altnapa Dam, 1325 m, H. Dural 86 (KNYA!). Konya, across Göcüköyü, Bademlik 1150 m, 25 vi 1983, H. Dural 1438 (KNYA!).

*Achillea aleppica* subsp. *zederebaueri*: Konya, Çaldağı, alpine, 1850 m, rocky places, 20 vii 1989, A. Tatlı 8896 (KNYA!).

*Achillea tenuifolia*: Ankara, Polatlı, Hacibey, 10 vii 1963, R. Çelik 7997 (KNYA!).

*Achillea teretifolia*: Konya, Altınova State Farm, 16 vi 1964, R. Çetik 7962 (KNYA!).

**Acknowledgments**

Our study was supported in part by the Scientific Research Coordination Unit of Pamukkale University under the project number 2020FEBE030 and the Scientific and Technological Research Council of Turkey (TÜBİTAK) under project number 117Z222.

1412


