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Constructing New K3 Surfaces

Selma Altınok

Abstract

This paper is concerned with a method based on birational geometry and pro-

duces dozens of new examples in codimensions 3, 4, 5 etc. The method is called

unprojection by Reid. Using this method we construct new examples of K3 surfaces

of codimensions 3 and 4 in weighted projective spaces from smaller codimension K3

surfaces whose rings are much simpler. This leads to the existence of almost all

candidates for codimension 3 K3 surfaces in the list1.

Introduction

K3 surfaces of codimensions 1 and 2 in weighted projective spaces were studied by
Reid, Fletcher and, independently, by Yonemura. There are 95 families of K3 surfaces
in codimension 1 and 83 families in codimension 2 (see Fletcher [6]). In 1997–98, we
studied K3 surfaces in codimensions 3 and 4, and produced 70 families of K3 surfaces in
codimension 3 and many examples in codimension 4 (see Altınok [1]). In 2001, Brown
and Reid wrote the K3 database program in the computer algebra system Magma Version
2.8, which reproduces Fletcher’s and Altınok’s lists for codim ≤ 3 K3 surfaces and a list
of codim 4 K3 surfaces effortlessly; see Altınok–Brown–Reid [3].

A technique, observed by Reid, is used to construct complicated new examples,
especially K3 surfaces in codimensions 3 and 4, from smaller codimension ones. The
technique is called unprojection. Many other examples arise from this technique, such
as K3 surfaces, surfaces of general type and Fano 3 folds. There is another technique

2000 Mathematics Subject Classification: Primary 14J17,14J28,14E05 Secondary 14M05.
1Available on http://www.maths.warwick.ac.uk/emiles/doctors/Selma.
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given by Kustin–Miller [8] through commutative algebra. They gave a construction of
big Gorenstein rings from simple ones by constructing a resolution structure of rings. This
was a first attempt to obtain a complete structure theorem on codimension 4 Gorenstein
rings. The general problem still remains open. In 1974, Buchsbaum–Eisenbud [4] solved
this problem for codimension 3 Gorenstein rings. They proved that an ideal I of codim 3
in a regular local ring A is Gorenstein if and only if it is the ideal of 2mth order Pfaffians
(or the submaximal Pfaffians) of some (2m + 1) × (2m + 1) skew-symmetric matrix M ,
and if R = A/I is Gorenstein, then the free resolution over A of R is self dual, which
gives us that the resolution of R is written as

0→ A
P t−→ F ∗

M−→ F
P−→ A

where F is a free A-module of rank 2m + 1, M a (2m+ 1) × (2m + 1) skew-symmetric
matrix, P a (2m+ 1)× 1 matrix and P t denotes the transpose of P . The generators of
I, called the relations of R, are the 2mth order Pfaffians or submaximal Pfaffians of M
which are given as the Pfaffians2 of the 2m× 2m submatrices obtained by omitting the
ith row and the ith column of M . A syzygy is a relation among the relations.

This work is mainly taken from my University of Warwick Ph.D thesis [1], written
under the supervision of Miles Reid. I would like to thank him for his support.

1. Definitions and notation

Here varieties are defined over an algebraically closed field k of characteristic zero.
A K3 surface is a projective surface X with KX = OX and H1(X,OX) = 0. By a

polarised K3 surface (X,D), we mean that X is a K3 surface having at worst Du Val
singularities and D an ample Weil divisor. The graded ring associated to (X,D) is

R(X,D) =
⊕
n≥0

H0(X,OX(nD)), with X = ProjR(X,D).

We study K3 surfaces, especially those whose rings R are simple. This means that R
can conveniently be expressed in terms of generators and relations such as hypersurfaces,
codimension 2 complete intersections, codimension 3 Pfaffians and known models for
codimension 4 rings embedded in weighted projective space.

2The Pfaffian of an even sized skew-symmetric matrix is the square root of its determinant.
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Let V be a surface. A singularity P ∈ V is called a Du Val singularity if it is locally
analytically isomorphic to one of the following normal forms:

An : x2 + y2 + zn+1 = 0 for n ≥ 1,

Dn : x2 + y2z + zn−1 = 0 for n ≥ 4,

E6 : x2 + y3 + z4 = 0,

E7 : x2 + y3 + yz3 = 0,

E8 : x2 + y3 + z5 = 0.

Type An singularities are also cyclic quotient singularities. To see this, let x1, x2 be
affine coordinates of A2 with weights a1, a2 respectively. A singular point of a surface V
is called a cyclic quotient singularity if it is locally analytically isomorphic to (A2, 0)/µn+1,
for some n, where µn+1 is a cyclic group of (n+ 1)th roots of unity and the group action
µn+1 × An → An is given by

ε(x1, x2) = (εa1x1, ε
a2x2).

We denote such a singularity by 1
r (a1, a2). When a1 = 1, a2 = −1, this gives rise to an

An type singularity.

The weighted projective space associated to the ring A is defined by

P(a0, . . . , aN) = ProjA

where A = k[x0, . . . , xN ] is a graded polynomial ring graded by wt(xi) = ai with
positive integers ai. For more details, see Dolgachev [5], Fletcher [6]. Taking Proj
of the graded rings R(X,D), it gives K3 surfaces embedded in weighted projective
spaces. We denote, in general, a variety embedded in weighted projective space by
X(d1 , . . . , dl) ⊂ P(a0, . . . , aN) where the di are the defining equations of the variety
and the ai refer to the weights of the homogeneous coordinates.

When no confusion can arise, we use either P or P(x0, . . . , xn) to denote P(a0, . . . , an).
Let qi be the point (0, . . . , 1, . . . , 0) ∈ P, where 1 is in the ith position. We call such
points vertices of P. The l-plane spanned by qi1 , . . . , qil will be denoted by qi1 . . . qil and
be called an (l − 1)-stratum. The 1-dimensional strata will also be called edges and the
2-dimensional strata faces.
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Let V be a closed variety of dimension m in P, and let π : An+1−0 → P be the
canonical projection. The punctured affine cone Cone∗(V ) over V is given by π−1(V )
and the affine cone Cone(V ) over V is the completion of Cone∗(V ) in An+1. Then V is
quasismooth if the affine cone Cone(V ) of V is smooth of dimension m + 1 except the
vertex 0. In other words, V has only cyclic quotient singularities.

2. Projection–unprojection

In [1] there are lists of candidates for polarised K3 surfaces in codim 3 and 4 produced
by using the Hilbert function theorem (see [2]). We work on particular candidates in these
lists to show their existence. Each example has a different type of construction but the
strategy is the same. The existence of other candidates can be proved in a more-or-less
similar way. One only has to take care of quasismoothness. The general strategy is to
reduce the codimension of candidates by projecting, then lift back by using birational
geometry (that is, unprojection). Especially, when we reduce the codimension 3 to the
codimension 2 case the surface we get is generally in Fletcher’s list (see [6]). What is nice
about unprojection is that it allows us to use Bertini’s theorem to prove quasismoothness.
We will see clear use of it in each example.

Now we demonstrate the simplest example of projection–unprojection between two K3
surfaces of codimensions 2 and 1. In the first part of the example we consider projection,
in the second part unprojection.

Example 2.1 (A) We start by assuming that a K3 surface X = X(3, 3) ⊂ P(1, 1, 1, 1, 2)
with an A1 singularity and a Q-ample Weil divisor D = OX(1), where D2 = 9/2, exists
then we want to construct a nonsingular K3 surface Y = X(4) ⊂ P3 with an ample divisor
D′, containing the line C : (x1 = x2 = 0).

Pick the point (0, 0, 0, 0, 1), which is an A1 singularity, and project away from this
point to get Y = X(4), as desired. We now give details of the construction. Let
x1, . . . , x4, y be homogeneous coordinates on P(1, 1, 1, 1, 2) with weights 1, 1, 1, 1, 2. Since
X has a singularity 1

2
(1,−1) locally at y = 1, it has two local coordinates, say x3, x4, so

that the defining equations of X can be written as

x1y = −a2 and x2y = a1,
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or equivalently,

y = −a2

x1
=
a1

x2

where a1 and a2 are general homogeneous polynomials of degree 3 in k[x1, . . . , x4]. That
means that y is a rational function on Y which has a pole along C. Projecting X away
from the point (0, 0, 0, 0, 1) gives

Y : (a1x1 + a2x2 = 0) ⊂ P3.

(B) We begin by constructing a nonsingular K3 surface Y = X(4) of codim 1 in P3,
containing the line C : (x1 = x2 = 0) and then obtain a quasismooth K3 surface X =
X(3, 3) of codim 2 with an A1 singularity in P(1, 1, 1, 1, 2) from Y by using birational
geometry.

Let x1, . . . , x4 be homogeneous coordinates on P3. Define the linear system L of all
homogeneous polynomials of degree 4 on P3 containing the line C and take a sufficiently
general element f = a1x1 + a2x2 ∈ L, where a1 and a2 are sufficiently general homo-
geneous polynomials of degree 3 in k[x1, x2, x3, x4]. Denote by Y the variety defined by
the equation f = 0 in P3. The base locus of the linear system L is the line C. By
Bertini’s theorem (see Remark III.10.9.2, [7]), Y is nonsingular away from C. Therefore
it is sufficient to check that Y is nonsingular along C. The singular locus of Y along C
is (a1(0, 0, x3, x4) = a2(0, 0, x3, x4) = 0) ⊂ P(x3, x4). But a1 and a2 are general polyno-
mials, therefore the singular locus is empty. Hence Y is a nonsingular K3 surface in P3,
containing the line C. Now set a new generator of degree 2

y =
a1

x2
= −a2

x1

and define a rational map ϕ : Y ⊂ P3 → X ⊂ P(1, 1, 1, 1, 2), where X is the complete
intersection x1y = −a2 and x2y = a1, by (x1, x2, x3, x4) 7→ (x1, x2, x3, x4, y). It can be
easily observed that ϕ is a birational map, and in fact an isomorphism Y \ C →̃ X \ q4,
where q4 = (0, 0, 0, 0, 1). Indeed, the inverse map is projection from q4. Thus it suffices
to see that Cone(X) is nonsingular at q4. The rank of the Jacobian matrix of Cone(X)
is two at this point. Therefore Cone∗(X) is nonsingular. The singularities of X arise due
to the singularities of P and occur only at the vertex q4 which is a singularity of type A1

in X. Here, unprojection is a map which contracts the curve C to an A1 type singularity.
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Type I Unprojection

Let Y be a projectively Gorenstein variety of codimension c embedded in weighted projec-
tive space P(a0, . . . , an), containing a projectively Gorenstein variety C of codimension
c+1. Let I(C) be the ideal of C generated by homogeneous polynomials hi for i = 1, . . . , l,
and I(Y ) the ideal of Y generated by fi for i = 1, . . . , k. Then there exists a rational
function v on Y which has a pole along C, that is,

v =
m1

h1
= · · · = ml

hl
,

for some homogeneous polynomials mi such that X defined by

f1 = · · · = fk = vh1 −m1 = · · · = vhl −ml = 0

is a projectively Gorenstein variety of codimension c + 1 in P(a0, . . . , an, an+1), where
wt(v) = an+1. This construction is called unprojection. (See Kustin–Miller [8], Theorem
1.5 and Papadakis–Reid [9]). In the proof of Kustin–Miller v and the mi are not given
explicitly. In our construction we use a simple trick in linear algebra to get them explicitly,
namely Cramer’s rule.

Note that a projectively Gorenstein variety means that the projective coordinate ring
of the variety is Gorenstein.

2.1. New examples in codimension 3

We can rewrite the resolution over A of a graded ring R of codimension 3 from the
introduction as

0→ A(−s) P t−→
5⊕
i=1

A(−ei) M−→
5⊕
i=1

A(−di) P−→ A→ R→ 0, (1)

where M is a 5× 5 skew-symmetric matrix and P is a 5× 1 vector such that the degrees
of the entries are given by the degrees di of the relations, and the degrees of the syzygies
are given by the ei. It can be easily observed that s− di = ei.

2.1.1. X(2, 3, 3, 3, 3)⊂ P(1, 1, 1, 1, 1, 2)

To prove the existence of a quasismooth K3 surface X = X(2, 3, 3, 3, 3) in P(1, 1, 1, 1, 1, 2)
with an A1 singularity, we construct a nonsingular K3 surface Y = X(2, 3) of codim 2 in
P4 containing the line C : (x1 = x2 = x3 = 0).
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The first question to ask is how we know that Y and C are the right choices. In
the first part of Example 2.1, we show that there is a way of getting Y and C. We
start by assuming that X is given and then project X away from the singular point
q5 = (0, 0, 0, 0, 0, 1) to get Y andC. We briefly describe the construction. Let x1, . . . , x5, y

be homogeneous coordinates on P(1, 1, 1, 1, 1, 2) with weights 1, 1, 1, 1, 1, 2. Since X has
a singularity 1

2
(1,−1), it has local coordinates, say x4, x5, at q5. In other words, there

are three linearly independent equations of X at q5: x1y = g1, x2y = g2, x3y = g3

for some homogeneous polynomials gi ∈ k[x1, . . . , x5]. Therefore we can write down a
5 × 5 skew-symmetric matrix M = (mij) whose submaximal Pfaffians are the defining
equations of X without loss of generality as follows:


0 x3 x2 m14 m15

0 x1 m24 m25

−sym 0 m34 m35

0 y

0

 .

Hence we can observe that mi4, mi5 for i = 1, 2, 3 are in k[x1, . . . , x5] and the degrees of
the mi4 or the mi5 are either one or two. This implies that the other two equations have
degrees 2,3 in k[x1, . . . , x5] and contain the line C : (x1 = x2 = x3 = 0), and we denote
Y by the zero locus of these two equations. We project X away from q5 to get Y . From
now on in all of our examples we write down Y immediately without any explanation.
One can work out the details as explained above.

Now we construct X from Y . Let x1, . . . , x5 be homogeneous coordinates on P4.
Define linear systems L1 and L2 of all homogeneous polynomials of degrees 2 and 3
respectively on P4, containing the line C. Let fi =

∑3
j=1 aijxj ∈ Li be sufficiently

general polynomials for i = 1, 2 where the aij are sufficiently general in k[x1, . . . , x5].
Define

Y : (f1 = f2 = 0) ⊂ P4.

Both of the linear systems have base locus C so that by Bertini’s theorem, the general
members of these linear systems are smooth outside C. To prove that Y is smooth on C,
it is sufficient to show that for sufficiently general aij, the Jacobian matrix of f1, f2, with
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respect to x1, x2, x3, has rank 2 at every point of the line C, that is,

rk

(
a11 a12 a13

a21 a22 a23

)
∣∣
C

= 2.

For example, take the matrix on C (
0 x5 x4

x2
5 x2

4 0

)
,

which has rank 2 at every point of C = P(x4, x5). Hence Y is nonsingular along C.
We want to find a rational function on Y which has a pole along C. Notice that Y

can be given by a system of linear equations

Mxt = 0, (2)

where M = (aij) is a 2 × 3 matrix and x = (x1, x2, x3). Now by Cramer’s rule, we can
solve (2) to get

yx =
∧2

M,

where
∧2

M is the vector of the 2×2 minors of M . Define X by five equations yx =
∧2

M

and Mxt = 0 which are also the submaximal Pfaffians of the following 5 × 5 skew-
symmetric matrix 

0 x1 −x2 a13 a23

0 x3 a12 a22

0 a11 a21

−sym 0 −y
0

 .

Let ϕ be the rational map ϕ : Y ⊂ P4 → X ⊂ P(1, 1, 1, 1, 1, 2) given by

(x1, x2, x3, x4, x5) 7−→ (x1, x2, x3, x4, x5, y).

Restricting ϕ to Y \C gives a birational morphism Y \C → X\q5. Its inverse is projection
from q5. To show that X is quasismooth, it is sufficient to show that the cone is smooth at
q5. It can easily be observed that yx =

∧2
M gives three linearly independent equations

locally at q5. This implies that X is quasismooth with an A1 singularity.
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2.1.2. X(6, 6, 6, 7, 7)⊂ P(1, 2, 3, 3, 3, 4)

The existence of a quasismooth K3 surface X = X(6, 6, 6, 7, 7)⊂ P(1, 2, 3, 3, 3, 4) with 3A2,
A3 singularities will be proved by constructing a quasismooth K3 surface Y = X(6, 6) ⊂
P(1, 2, 3, 3, 3) with 4A2 singularities containing the line C : (y = z1 = z2 = 0).

Let x, y, z1, z2, z3 be homogeneous coordinates on P(1, 2, 3, 3, 3) of weights 1, 2, 3, 3, 3
respectively. Let L be the linear system of all homogeneous polynomials of degree 6
containing C with respect to weights 1, 2, 3, 3, 3. Let f1, f2 ∈ L be sufficiently general
elements, that is,

f1 = a11y + a12z1 + a13z2, f2 = a21y + a22z1 + a23z2,

where aij are sufficiently general. A general K3 surface Y of codim 2 containing C in
P(1, 2, 3, 3, 3) is given by

Mxt = 0, (3)

where M is the 2× 3 matrix (aij) and x = (y, z1, z2).

By Bertini’s theorem, the singularities of general elements in the linear systems lie
on the base locus Cone(C). To show that Y is quasismooth it is sufficient to prove that
the cone is smooth along Cone∗(C). For sufficiently general aij, we can ensure that the
Jacobian matrix of fi, with respect to y, z1, z2, has rank 2 along Cone∗(C). Now we claim
that Y has 4A2 singularities. Indeed, the singularities of Y come from the singularities
of P and occur only on the vertices, edges and faces of P. It is not difficult to see that
the point q4 is the only vertex which gives rise to a singularity A2. Now we consider the
face q2q3q4 of P. The homogeneous polynomials f1, f2 on q2q3q4 can be written in the
homogeneous coordinates z1, z2, z3 of P(3, 3, 3). Since P(3, 3, 3) is isomorphic to P2 and
f1, f2 are of degree 2 in P2, by Bézout’s theorem, (f1 = f2 = 0) in P2 consists of exactly
four points counted with multiplicity, including the point q4. By the inverse function
theorem, x, y are local coordinates and so each point is of type 1

3 (1, 2). Hence the claim
follows.

In order to construct X from Y , we can solve (3) by Cramer’s rule to get a new
generator t of degree 4 such that ty = m23, tz1 = m13 and tz2 = m12, where the mij

are the minors of the 2 × 3 matrix M . This gives three new equations. Define X by
these equations plus f1, f2 which are just the submaximal Pfaffians of the following 5× 5
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skew-symmetric matrix 
0 t a11 a12 a13

0 a21 a22 a23

0 z2 −z1

−sym 0 y

0

 .

The last thing is to show that X has only the four singularities 3A2, A3. Consider the
rational map ϕ : Y ⊂ P(1, 2, 3, 3, 3)→ X ⊂ P(1, 2, 3, 3, 3, 4) given by

(x, y, z1, z2, z3) 7−→ (x, y, z1, z2, z3, t).

Restricting ϕ to Y \ C gives an isomorphism Y \ C →̃ X \ q5. The inverse map is
projection from the point q5. Three singularities 3A2 of Y excluding the point (0, 0, 0, 0, 1)
correspond to three points pi of X under the isomorphism for i = 1, 2, 3. It is sufficient to
check that X is quasismooth at these points pi and q5. We have three Pfaffians, namely
ty = m23, tz1 = m13 and tz2 = m12, which are linearly independent locally at q5. This
gives rise to a singularity A3. At the pi the Jacobian matrix of the cone has rank 3
because f1 = 0, f2 = 0 and tz1 = m13 form a linearly independent set locally at these
points. This gives three more singularities, namely 3A2. Hence X is quasismooth with
the desired singularities.

So far we have showed how to get a K3 surface of codim 3 from a K3 surface of codim 2.
Now we give an interesting construction of a K3 surface of codim 3 from a K3 surface of
codim 1 called Type II unprojection. There are two candidates in the codim 3 list whose
existence can be proved by this type of construction.

Type II unprojection

The construction we give for the Type II unprojection is based on notes of Reid (see Reid
[12] Section 9). We start by constructing a hypersurface Y ⊂ A4 containing a nonnormal
curve to obtain a codim 3 Gorenstein X ⊂ A6.

Let Γ ⊂ A4 be the nonnormal variety parametrised by x = r2, y = r3, z = s and
t = rs. Its four defining equations can be given by the nongeneric determinantal form

rk

(
x z y t

y t x2 xz

)
≤ 1. (4)
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A general hypersurface Y containing Γ is defined by the zero locus of

f = A(xt − yz) + B(y2 − x3) +C(x2z − yt) + D(t2 − xz2),

where A,B, C,D are general polynomials in k[x, y, z, t]. By analogy with the Type I
unprojection, we are looking for rational sections of OY (n) with a pole along Γ. Consider
the following matrix N associated to f :

N =


x y xC − zD
z t xB

y x2 xA+ tD

t xz zA − yB + tC

 .

We are not concerned here with where this matrix originally came from. Notice that the
3× 3 minors of N equal f times x, z, y, t respectively, and that

(t,−y, z,−x)N = (0, 0, 0, 0) and (xz,−x2, t,−y)N = (0, 0, f).

Since the 3× 3 minors of N are divisible by f and rkN = 2 on Y the equations

(u, v, 1)NT = 0 on Y (5)

have a unique solution u, v ∈ K(Y ). Clearly, u, v are rational functions which become
regular on multiplying by any 2× 2 minors of the matrix in (4).

This construction leads to a codim 3 Gorenstein subvarietyX whose defining equations
are the submaximal Pfaffians of a 5× 5 skew-symmetric matrix M , where

M =


0 x z y t

0 v D −u
0 u+ C B

−sym 0 A+ xv

0


in k[x, y, z, t, u, v]. In other words, we add u, v to the ring R(Y ) of Y in order to get the
Gorenstein ring R(Y )[u, v] of codimension 3, the ring of X.

To be more precise, the four submaximal Pfaffians Pfi for i = 2, . . . , 4 are the
four equations in (5), and Pf1 can be written as a combination of the others since
M(Pf1, . . . ,Pf5) = 0. Now consider the map Y ⊂ A4 → X ⊂ A6 via

(x, y, z, t) 7−→ (x, y, z, t, u, v).
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This is a birational map and an isomorphism Y \Γ→ X \ q5. Hence codimX = 3. Since
X is given by the maximal Pfaffians of M , it is Gorenstein. Because of the isomorphism
it is sufficient to check that X is smooth at q5. Since we have the 3 Pfaffians, namely
vy = . . . , vt = . . . , and vA = . . . , X is smooth at q5 if and only if A contains a nonzero
linear term in x, z.

Now we apply this construction to K3 surfaces.

2.1.3. X(7, 8, 8, 9, 10)⊂ P(2, 3, 3, 4, 4, 5)

We want to construct X = X(7, 8, 8, 9, 10)⊂ P(2, 3, 3, 4, 4, 5) having singularities 3A1, 3A2, A3

via constructing a codim 1 K3 surface Y = X(12) ⊂ P(2, 3, 3, 4) with singularities
3A1, 4A2 containing a projectively nonnormal curve Γ.

Let x, y1, y2, z1 be homogeneous coordinates on P(2, 3, 3, 4) with weights 2, 3, 3, 4
respectively. The curve Γ is given in parametric form by x = r2, y1 = r3, y2 = s, z1 = rs.

The defining equations of Γ can be put into nongeneric determinantal form

rk

(
x y2 y1 z1

y1 z1 x2 xy2

)
≤ 1.

Now define the linear system L of all homogeneous polynomials of degree 12 with respect
to weights 2, 3, 3, 4 containing Γ:

L =
{
A(xz1 − y2y1) + B(x3 − y2

1) + C(x2y2 − y1z1) +D(xy2
2 − z2

1)
∣∣A,B, C,D are

homogeneous polynomials in degrees 6, 6, 5, 4 resp. in k[x, y1, y2, z1]
}
.

Let f ∈ L be a general element, that is,

f = A(xz1 − y2y1) + B(x3 − y2
1) + C(x2y2 − y1z1) +D(xy2

2 − z2
1),

where A,B, C,D are general homogeneous polynomials. Define a general hypersurface
Y ⊂ P(2, 3, 3, 4) by the zero locus of f . By Bertini’s theorem, Cone(Y ) is nonsingular
away from Cone(Γ). It can be seen that Cone(Y ) is smooth along Cone∗(Γ). Under the
C∗-action Y has singularities 3A1, 4A2.

As in the construction of Type II unprojection above, we can write down the 4 × 3
matrix N associated to f in order to get two new generators, say t, z2, of degrees 5,4 and
the 5 × 5 matrix M whose submaximal Paffians define X. The original hypersurface Y
can be obtained by eliminating t and z2 from the defining equations of X.
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It can be observed as in the previous examples thatX is quasismooth with singularities
3A1, 3A2, A3 in P(2, 3, 3, 4, 4, 5) by considering a rational map ϕ : Y → X given by
(x, y1, y2, z1) 7→ (x, y1, y2, z1, z2, t).

The next example can be done in a similar way. Here we just state the result and give
the machinery.

2.1.4. X(10, 11, 12, 13, 14)⊂ P(3, 4, 5, 5, 6, 7)

X(10, 11, 12, 13, 14)⊂ P(3, 4, 5, 5, 6, 7) with 2A2, A3, A4, A4 singularities is a quasismooth
K3 surface of codim 3. This follows from first constructing a general hypersurface X(18) ⊂
P(3, 4, 5, 6) with 3A2, A3, A1, A4 singularities, containing the nonnormal curve Γ given by
nongeneric determinantal form

rk

(
z y u t

u t z2 yz

)
≤ 1,

where y, z, t, u are homogeneous coordinates on P(3, 4, 5, 6) with weights 3, 4, 5, 6, respec-
tively.

2.2. Codimension 4 case

Let X be a projectively Gorenstein subscheme of codim 3, containing a projectively
Gorenstein subscheme C of codim 4, that is the canonical sheaves of X and C are
ωX = OX(kX) and ωC = OC(kC) for some kX , kC ∈ Z respectively. If l = kC − kX < 0,
then there exists a homomorphism s : IC → O(−l) such that for each p ∈ C, sp is a basis
of Hom(IC ,OX(−l))p (see Lemma 1.1, Papadakis–Reid [9]).

Note that this can also be stated for any codimension, in particular, to get codim ≥ 5
examples. Moreover, it leads to the existence of codim ≥ 4 rings, but it does not explicitly
give the defining equations of the surfaces we construct. In the case of codim 4, we work on
a particular example under some mild conditions; which we can give explicitly by defining
equations, and furthermore, by using birational geometry, we show that the surfaces we
construct are quasismooth.

The next example leads to the general construction of codim 4 K3 surfaces with explicit
equations from successive constructions in codimensions 2 and 3.
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Example 2.2 We want to construct a codim 4 K3 surface X having an A6 singularity
in P(1, 1, 3, 4, 5, 6, 7) by constructing successively codim 2 and codim 3 K3 surfaces.

Let x1, x2, z, t, u be homogeneous coordinates on P(1, 1, 3, 4, 5) with weights 1, 1, 3, 4, 5
respectively. Now define two linear systems L1, L2 of all homogeneous polynomials of
degrees 6, 8 respectively in k[x1, x2, z, t, u] with respect to weights 1, 1, 3, 4, 5, containing
the line

C1 : (x1 = z = t = 0).

Let fi = x1ai1 + zai2 + tai3 ∈ Li be sufficiently general for i = 1, 2, where the aij are
sufficiently general homogeneous polynomials in k[x1, x2, z, t, u]. Define a general surface

Z = X(6, 8) : (f1 = f2 = 0) ⊂ P(1, 1, 3, 4, 5). (6)

By Bertini’s theorem the singularities of Cone(Z) lie on the base locus Cone(C1). We
want Z to have an ordinary double point q1 = (0, 1, 0, 0, 0) and an A4 singularity along
C1, where A4 corresponds to the point q4 = (0, 0, 0, 0, 1). Obviously, this puts some
restrictions on the aij. Clearly, locally at q4 we have

f1 = x1 + · · · and f2 = z + · · · ⊂ A4 /〈ε〉,

where ε is a primitive 5th root of unity and · · · refers to other terms. By the inverse
function theorem x2, t are local coordinates. This implies that q4 is a singularity of type
A4. The surface Z having a singularity q1 is equivalent to rk J(Z)|q1 ≤ 1, where the
Jacobian matrix J(Z) of Z along C1 is

∂(f1 , f2)
∂(x1, z, t)

∣∣
C1

=

(
a11 a12 a13

a21 a22 a23

)
∣∣
C1

.

Since the aij are general rk J(Z)|q1 = 1. By replacing f2 by f2 with a suitable multiple of

x2
2f1 subtracted, we can assume that the a2j do not contain any pure powers of x2. From

here it can be observed that Cone(Z) is nonsingular on Cone(C1) except at the origin
and q1.

Now by Cramer’s rule we can solve (6) to get vx =
∧2

M , where M = (aij) is a
2 × 3 matrix and x = (x1, z, t). Define Y = X(6, 7, 8, 9, 10)⊂ P(1, 1, 3, 4, 5, 6) by the five
equations

vx =
2∧
M and Mxt = 0
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which are also the submaximal Pfaffians of the following 5× 5 skew-symmetric matrix

N =


0 −t z a21 −a11

0 −x1 a22 −a12

0 a23 −a13

−sym 0 −v
0

 ,

where the entries of N are taken from the ring k[x1, x2, z, t, u, v]. We want to show that
Y is a quasismooth K3 surface with A5, containing the line

C2 : (x1 = z = t = u = 0)

in P(1, 1, 3, 4, 5, 6). Since the monomial xα2 , for any nonzero α, does not appear in a2j, Y
contains the line C2. Define a rational map ϕ : Z → Y by

(x1, x2, z, t, u) 7−→ (x1, x2, z, t, u, v).

The map ϕ restricted to Z \C1 gives an isomorphism Z \C1 →̃ Y \C2. Indeed, consider
the map from Y \ q5 to Z, which is projection from the point q5, and so the inverse map
is the restriction of this map to Y \ C2. To see that Cone(Y ) is smooth it is enough to
consider Cone(Y ) on Cone(C2) excluding the origin since Cone(Z) is nonsingular outside
Cone(C1). Now observe that (f1 = 0) is nonsingular at q1 and (f2 = 0) is singular at q1.
Consider (f2 = 0) on (f1 = 0) and calculate the tangent cone of this at q1. One can prove
that Cone(Y ) being smooth corresponds to the tangent cone of (f2 = 0) on (f1 = 0) at q1

being nondegenerate. Locally at q5 there are three linearly independent equations of Y ,
which give rise to a singularity A5. Since l = kC2 − kY = −7 < 0 there exists a generator
w of degree 7 which has a pole along C2. This means that

w =
A

x1
=
B

z
=
C

t
=
D

u

is a rational function of weight 7 on Y , having a pole along C2 for some homogeneous
polynomials A,B, C,D ∈ k[x1, x2, z, t, u, v]. This gives four relations, namely:

x1w = A, zw = B, tw = C and uw = D.

Now denote by X the variety given by the nine equations:

vx =
2∧
M, Mxt = 0 and yw = (A,B, C,D),
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where x = (x1, z, t) and y = (x1, z, t, u). Notice that the first five equations are the
defining equations of Y . Since a2j does not contain a pure power of x2 for j = 1, 2, 3 we
can write

a2j = x1λ
j
1 + zλj2 + tλj3 + uλj4,

where λji ∈ k[x1, x2, z, t, u] for i = 1, 2, 3, 4. To find A,B, C,D explicitly we rewrite the

defining equations Pfk of Y in terms of λji by substituting for the a2j:

(Pf1,Pf2,Pf3,Pf4,Pf5) = yH

where

H =


v + a13λ

2
1 − a12λ

3
1 a13λ

1
1 − a11λ

3
1 a12λ

1
1 − a11λ

2
1 a11 a21

a13λ
2
2 − a12λ

3
2 a13λ

1
2 − a11λ

3
2 − v a12λ

1
2 − a11λ

2
2 a12 a22

a13λ
2
3 − a12λ

3
3 a13λ

1
3 − a11λ

3
3 a12λ

1
3 − a11λ

2
3 + v a13 a23

a13λ
2
4 a13λ

1
4 a12λ

1
4 − a11λ

2
4 0 0

 .

First we begin by finding A and B. Since zA − x1B ∈ I(Y ), some combination
β1 Pf1 +β2 Pf1 of Pf1 and Pf2 can be made to contain a term which is a multiple of a13t.
Then we can add a multiple of Pf4 to β1 Pf1 +β2 Pf1 to make it zero along x1 = z = 0.
This is possible since Pf4 is zero along C1. Explicitly:

−(a13λ
1
4) Pf1 +(a13λ

2
4) Pf2−(−λ1

4(a13λ
2
3 − a12λ

3
3)

+ λ2
4(a13λ

1
3 − a11λ

3
3)) Pf4 = x1A + zB

where

A =a13λ
1
4(a13λ

2
2 − a12λ

3
2 − a12λ

2
3) − a13λ

2
4(a13λ

1
2 − a11λ

3
2 − v − a12λ

1
3)

+ a12λ
3
3(a12λ

1
4 − a11λ

2
4),

B =− a13λ
1
4(v + a13λ

2
1 − a12λ

3
1 − a11λ

2
3) + a13λ

2
4(a13λ

1
1 − a11λ

3
1 − a11λ

1
3)

+ a11λ
3
3(−a12λ

1
4 + a11λ

2
4).

Similarly,

(−a11λ
2
4 + a12λ

1
4) Pf1−(a13λ

2
4) Pf3 +(λ1

4(−a13λ
2
2 + a12λ

3
2)

+ λ2
4(−a11λ

3
2 + a13λ

1
2)) Pf4 = x1C − tA
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and

(−a13λ
1
2 + a11λ

3
2 + v + a12λ

1
3) Pf1 +(a13λ

2
2 − a12λ

3
2 − a12λ

2
3) Pf2

+ (a12λ
3
3) Pf3 +(E) Pf4 = −x1D + uA,

where

C =(−a11λ
2
4 + a12λ

1
4)(v + a13λ

2
1 − a12λ

3
1 + a11λ

3
2)

− a13λ
2
4(a12λ

1
1 − a11λ

2
1 − a11λ

1
2) − a13λ

1
4(λ2

2a11),

D =− (−a13λ
1
2 + a11λ

3
2 + v + a12λ

1
3)(v + a13λ

2
1 − a12λ

3
1)

− (a13λ
2
2 − a12λ

3
2 − a12λ

2
3)(a13λ

1
1 − a11λ

3
1)

− (a12λ
3
3)(a12λ

1
1 − a11λ

2
1)− a11(−λ1

3(−a12λ
3
2 + a13λ

2
2)

+ λ2
3(−a11λ

3
2 + a13λ

1
2 − v) − λ3

3(−a11λ
2
2 + a12λ

1
2)),

E =− λ1
3(−a12λ

3
2 + a13λ

2
2) + λ2

3(−a13λ
3
2 + a13λ

1
2 − v) − λ3

3(−a11λ
2
2 + a12λ

1
2).

The rational map ϕ : Y → X given by (x1, x2, z, t, u, v) 7→ (x1, x2, z, t, u, v, w) is birational
and an isomorphism Y \C2 →̃ X \q6. Therefore it suffices to check that X is quasismooth
at q6. Clearly, X has an A6 singularity since locally at this point q6 there are four linearly
independent equations x1 = A, z = B, t = C and u = D. Again, the inverse map is
projection from the point q6.
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