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in Quasi-Pseudo-Metric Spaces

(Dedicated to the Memory of the Late Professor Dr. Y. A. Verdiyev)

İlker Şahin, Hakan Karayılan and Mustafa Telci∗

Abstract

In this paper, we obtain some common fixed point theorems for pairs of fuzzy

mappings in left K-sequentially complete quasi-pseudo-metric spaces and right K-

sequentially complete quasi-pseudo-metric spaces, respectively. Well-known theo-

rems are special cases of our results.

Key words and phrases: Fuzzy mapping; Fixed point; Quasi-pseudo-metric; Left

K-sequentially complete; Right K-sequentially complete.

1. Introduction

Heilpern [5] first introduced the concept of fuzzy mappings and proved a fixed point
theorem for fuzzy contraction mappings which is a fuzzy analogue of Nadler’s [6] fixed
point theorem for multivalued mappings. Bose and Shani [2], in their first theorem,
extended the result of Heilpern to a pair of generalized fuzzy contraction mappings. Park
and Jeong [7] proved some common fixed point theorems for fuzzy mappings satisfying
contractive-type conditions and a rational inequality in complete metric spaces, which are
the fuzzy extensions of some theorems in [1, 8]. Recently, Gregori and Pastor [3] proved
a fixed point theorem for fuzzy contraction mappings in left K-sequentially complete
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quasi-pseudo-metric spaces. Their result is a generalization of the result of Heilpern.
In [11] the authors extended the results of [3] and [5]. On the other hand, Gregori
and Romaguera [4] obtained some interesting fixed point theorems for fuzzy mappings in
Smyth-complete and left K-sequentially complete quasi-metric spaces, respectively. Some
well known theorems are special cases of their results. In [10] the authors considered a
generalized contractive type condition involving fuzzy mappings in left K-sequentially
complete quasi-metric spaces and established a fixed point theorem which is an extension
of Theorem 2 in [4]. Also, the result of [10] is a quasi-metric version of Theorem 1 in [4].

In this paper, we establish some generalized common fixed point theorems involving
pair of fuzzy mappings in left K-sequentially complete quasi-pseudo-metric spaces and
right K-sequentially complete quasi-pseudo-metric spaces, respectively, which are gener-
alization of some results in [3, 5, 11]. Also some well known theorems as in [3, 5, 7] are
special cases of our results.

2. Preliminaries

Throughout this paper the letter N denotes the set of positive integers. If A is a
subset of a topological space (X, τ ), we will denote by clτA the closure of A in (X, τ ).

A quasi-pseudo-metric on a nonempty set X is a nonnegative real valued function d

on X ×X such that, for all x, y, z ∈ X:
(i) d(x, x) = 0, and (ii) d(x, y) ≤ d(x, z) + d(z, y).

A pair (X, d) is called a quasi-pseudo-metric space, if d is a quasi-pseudo-metric on
X.

Each quasi-pseudo-metric d on X induces a topology τ (d) which has as a base the
family of all d-balls Bε(x), where Bε(x) = {y ∈ X : d(x, y) < ε}.

If d is a quasi-pseudo-metric on X, then the function d−1, defined on X × X by
d−1(x, y) = d(y, x) is also a quasi-pseudo-metric on X. By d∧d−1 and d∨d−1 we denote
min{d, d−1} and max{d, d−1}, respectively.

Let d be a quasi-pseudo-metric on X. A sequence (xn)n∈N in X is said to be

(i) left K-Cauchy [9], if for each ε > 0 there is a k ∈ N such that d(xn, xm) < ε for
all n,m ∈ N with m ≥ n ≥ k.

(ii) right K-Cauchy [9], if for each ε > 0 there is a k ∈ N such that d(xn, xm) < ε for
all n,m ∈ N with n ≥ m ≥ k.
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A quasi-pseudo-metric space (X, d) is said to be left (right) K-sequentially complete
[9], if each left (right) K-Cauchy sequence in (X, d) converges to some point in X (with
respect to the topology τ (d)).

Now let (X, d) be a quasi-pseudo-metric space and let A and B be nonempty subsets
of X. Then the Hausdorff distance between subsets A and B is defined by

H(A,B) = max{sup
a∈A

d(a, B), sup
b∈B

d(b, A)} (see[3]),

where d(a, B) = inf{d(a, x) : x ∈ B}.
Note that H(A,B) ≥ 0 with H(A,B) = 0 iff clA = clB, H(A,B) = H(B,A) and

H(A,B) ≤ H(A,C) + H(C,B) for any nonempty subset A,B and C of X. When d is a
metric on X, clearly H is the usual Hausdorff distance.

A fuzzy set on X is an element of IX where I = [0, 1]. The α-level set of a fuzzy set
A, denoted by Aα, is defined by

Aα = {x ∈ X : A(x) ≥ α} for each α ∈ (0, 1], and A0 = cl({x ∈ X : A(x) > 0}).

For x ∈ X we denote by {x} the characteristic function of the ordinary subset {x} of
X.

Definition 2.1. Let (X, d) be a quasi-pseudo-metric space. The families W ∗(X) and
W ′(X) of fuzzy sets on (X, d) are defined by

W ∗(X) = {A ∈ IX : A1 is nonempty d− closed and d−1-compact} (see[3]),
W ′(X) = {A ∈ IX : A1 is nonempty d− closed and d-compact}.

In [5] it is defined the family W (X) of fuzzy sets on metric linear space (X, d),
as follows: A ∈ W (X) iff Aα is compact and convex in X for each α ∈ [0, 1] and
supx∈XA(X) = 1.

If (X, d) is a metric linear space, then we have

W (X) ⊂W ∗(X) = W ′(X) = {A ∈ IX : A1 is nonempty and d-compact } ⊂ IX .

Definition 2.2. Let (X, d) be a quasi-pseudo-metric space and let A,B ∈ W ∗(X) or
A,B ∈W ′(X) and α ∈ [0, 1]. Then we define,

pα(A,B) = inf{d(x, y) : x ∈ Aα, y ∈ Bα} = d(Aα, Bα),

Dα(A,B) = H(Aα, Bα),
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where H is the Hausdorff distance deduced from the quasi-pseudo-metric d on X,
p(A,B) = sup{pα(A,B) : α ∈ [0, 1]},

D(A,B) = sup{Dα(A,B) : α ∈ [0, 1]}.

It is easy to see that pα is non-decreasing function of α, and p1(A,B) = d(A1, B1) =
p(A,B) where d(A1, B1) = inf{d(x, y) : x ∈ A1, y ∈ B1}.

Definition 2.3. [3] Let X be an arbitrary set and Y be any quasi-pseudo-metric space.
F is said to be a fuzzy mapping if F is a mapping from the set X into W ∗(Y ) or W ′(Y ).

This definition is more general than the one given in [5].

Definition 2.4. We say that x is a fixed point of the mapping F : X −→ IX , if
{x} ⊂ F (x).

Note that, If A,B ∈ IX , then A ⊂ B means A(x) ≤ B(x) for each x ∈ X.

3. Lemmas

Before establishing our main results, we need the lemmas presented in the next section.

The following four lemmas were proved by Gregory and Pastor [3].

Lemma 3.1. Let (X, d) be a quasi-pseudo-metric space and let x ∈ X and A ∈W ∗(X).
Then {x} ⊂ A if and only if p1(x, A) = 0.

Lemma 3.2. Let (X, d) be a quasi-pseudo-metric space and let A ∈ W ∗(X). Then
pα(x, A) ≤ d(x, y) + pα(y, A) for any x, y ∈ X and α ∈ [0, 1].

Lemma 3.3. Let (X, d) be a quasi-pseudo-metric space and let {x0} ⊂ A. Then
pα(x0, B) ≤ Dα(A,B) for each A,B ∈W ∗(X) and α ∈ [0, 1].

Lemma 3.4. Suppose K 6= ∅ is compact in the quasi-pseudo- metric space (X, d−1). If
z ∈ X, then there exists k0 ∈ K such that d(z,K) = d(z, k0).

Above Lemma 3.1, Lemma 3.2 and Lemma 3.3 were proved by Heilpern [5] for the
family W (X) in a metric space.

We will use also the following lemmas.

Lemma 3.5. Let (X, d) be a quasi-pseudo-metric space and let x ∈ X and A ∈ W ′(X).
Then {x} ⊂ A if and only if p1(A, x) = 0.
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Lemma 3.6. Let (X, d) be a quasi-pseudo-metric space and let A ∈ W ′(X). Then
pα(A, x) ≤ pα(A, y) + d(y, x) for any x, y ∈ X and α ∈ [0, 1].

Lemma 3.7. Let (X, d) be a quasi-pseudo-metric space and let {x0} ⊂ A. Then
pα(B, x0) ≤ Dα(B,A) for each A,B ∈W ′(X) and α ∈ [0, 1].

The proofs of these lemmas are similar to the proofs of lemmas in [5] and omitted.

Lemma 3.8. Suppose K 6= ∅ is compact in the quasi-pseudo- metric space (X, d). If
z ∈ X, then there exists k0 ∈ K such that d(K, z) = d(k0, z).

Proof. By a method similar to that in the proof of Lemma 2.9 in [3], the result follows.

4. Common fixed point theorems

We now prove the following theorem.

Theorem 4.1. Let (X, d) be a left K-sequentially complete quasi-pseudo-metric space
and let F1 and F2 be fuzzy mappings from X to W ∗(X) satisfying the inequality

[1 + r(d ∨ d−1)(x, y)]D(F1(x), F2(y)) ≤
≤ rmax{p(x, F1(x))p(y, F2(y)), p(x, F2(y))p(y, F1(x))}+

+hmax{(d ∧ d−1)(x, y), p(x, F1(x)), p(y, F2(y)),

1
2

[p(x, F2(y)) + p(y, F1(x))]} (1)

for each x, y ∈ X, where r ≥ 0 and 0 < h < 1. Then there exists x∗ ∈ X such that
{x∗} ⊂ F1(x∗) and {x∗} ⊂ F2(x∗).

Proof. Suppose x0 is an arbitrary point in X such that {x1} ⊂ F1(x0). Since (F2(x1))1 is
d−1-compact, it follows from Lemma 3.4, there exists x2 ∈ (F2(x1))1 such that d(x1, x2) =
d(x1, (F2(x1))1). Thus we have

d(x1, x2) = d(x1, (F2(x1))1) ≤ H(x1, (F2(x1))1) ≤ D(F1(x0), F2(x1)). (2)

Similarly, we can find x3 ∈ X such that

{x3} ⊂ F1(x2) and d(x2, x3) ≤ D(F2(x1), F1(x2)).
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Continuing in this way, we can obtain a sequence (xn)n∈N in X such that

{x2n+1} ⊂ F1(x2n), {x2n+2} ⊂ F2(x2n+1),

d(x2n+1, x2n+2) ≤ D(F1(x2n), F2(x2n+1))

and
d(x2n+2, x2n+3) ≤ D(F2(x2n+1), F1(x2n+2))

for n = 0, 1, 2, ....

Now using inequalities (1) and (2) we have,

[1 + rd(x0, x1)]d(x1, x2) ≤ [1 + r(d ∨ d−1)(x0, x1)]D(F1(x0), F2(x1)) ≤
≤ rmax{p(x0, F1(x0))p(x1, F2(x1)), p(x0, F2(x1))p(x1, F1(x0))} +

+hmax{(d ∧ d−1)(x0, x1), p(x0, F1(x0)), p(x1, F2(x1)),

1
2

[p(x0, F2(x1)) + p(x1, F1(x0))]}.

Since x1 ∈ (F1(x0))1 and x2 ∈ (F2(x1))1, we have p(x0, F1(x0)) ≤ d(x0, x1),
p(x1, F2(x1)) ≤ d(x1, x2), p(x0, F2(x1)) ≤ d(x0, x2) ≤ d(x0, x1) + d(x1, x2) and
p(x1, F1(x0)) = 0.

Thus we have,

[1 + rd(x0, x1)]d(x1, x2) ≤ rd(x0, x1)d(x1, x2)+

+hmax{d(x0, x1), d(x1, x2),
1
2

[d(x0, x1) + d(x1, x2)]}.

and it follows that

d(x1, x2) ≤ hmax{d(x0, x1), d(x1, x2),
1
2

[d(x0, x1) + d(x1, x2)]} = hd(x0, x1)

since h < 1. Thus
d(x1, x2) ≤ hd(x0, x1).

Similarly,
d(x2, x3) ≤ hd(x1, x2) ≤ h2d(x0, x1)

and, in general,
d(xn, xn+1) ≤ hnd(x0, x1) for all n ∈ N.
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For n < m, we have

d(xn, xm) ≤
m−n−1∑
i=0

d(xn+i, xn+i+1) ≤
m−1∑
i=0

hid(x0, x1) ≤ hn

1− hd(x0, x1).

Since 0 < h < 1, it follows that (xn)n∈N is a left K-Cauchy sequence in the left K-
sequentially complete quasi-pseudo-metric space (X, d) and so there exists x∗ ∈ X such
that limn→∞ xn = x∗.

Now, by Lemma 3.2, we have p1(x∗, F2(x∗)) ≤ d(x∗, x2n+1) + p1(x2n+1, F2(x∗)) for
all n ∈ N. So, by Lemmas 3.3 and inequality (1),

p1(x∗, F2(x∗)) ≤ d(x∗, x2n+1) + D1(F1(x2n), F2(x∗)) ≤
≤ d(x∗, x2n+1) + D(F1(x2n), F2(x∗)) ≤

≤ d(x∗, x2n+1) +
rmax{p(x2n, F1(x2n))p(x∗, F2(x∗)),

1 + r(d ∨ d−1)(x2n, x∗))

p(x2n, F2(x∗))p(x∗, F1(x2n))}+ hmax{(d ∧ d−1)(x2n, x
∗),

1 + r(d ∨ d−1)(x2n, x∗))

p(x2n, F1(x2n)), p(x∗, F2(x∗)), 1
2 [p(x2n, F2(x∗)) + p(x∗, F1(x2n))]}

1 + r(d ∨ d−1)(x2n, x∗))
.

Since

(d ∨ d−1)(x2n, x
∗) ≥ d−1(x2n, x

∗) = d(x∗, x2n)

and

(d ∧ d−1)(x2n, x
∗) ≤ d−1(x2n, x

∗) = d(x∗, x2n),

we have

p1(x∗, F2(x∗)) ≤ d(x∗, x2n+1)+

+
rmax{p(x2n, F1(x2n))p(x∗, F2(x∗)), p(x2n, F2(x∗))p(x∗, F1(x2n))}

1 + rd(x∗, x2n)
+

+
hmax{d(x∗, x2n), p(x2n, F1(x2n)), p(x∗, F2(x∗)),

1 + rd(x∗, x2n)
1
2
[p(x2n, F2(x∗)) + p(x∗, F1(x2n))]}

1 + rd(x∗, x2n)
,
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and by lemmas 3.2 and 3.3,

p1(x∗, F2(x∗)) ≤ d(x∗, x2n+1)+

+
rmax{d(x2n, x2n+1)p(x∗, F2(x∗)),

1 + rd(x∗, x2n)

[d(x2n, x2n+1) +D(F1(x2n), F2(x∗))]d(x∗, x2n+1)}
1 + rd(x∗, x2n)

+

+
hmax{d(x∗, x2n), d(x2n, x2n+1), d(x∗, x2n+1) + D(F1(x2n), F2(x∗)),

1 + rd(x∗, x2n)
1
2 [d(x2n, x2n+1) +D(F1(x2n), F2(x∗)) + d(x∗, x2n+1)]}

1 + rd(x∗, x2n)
.

it follows that

p1(x∗, F2(x∗)) ≤ d(x∗, x2n+1)+

+
rmax{d(x2n, x2n+1)p(x∗, F2(x∗)),

1 + rd(x∗, x2n)

[d(x2n, x2n+1) +D(F1(x2n), F2(x∗))]d(x∗, x2n+1)}
1 + rd(x∗, x2n)

+

+
hmax{d(x∗, x2n), d(x2n, x2n+1), d(x∗, x2n+1) + D(F1(x2n), F2(x∗))}

1 + rd(x∗, x2n)
, (3)

since 1
2
[d(x2n, x2n+1) +D(F1(x2n), F2(x∗)) + d(x∗, x2n+1)] is less then or equal to

d(x2n, x2n+1) or d(x∗, x2n+1) +D(F1(x2n), F2(x∗)).

Now let

mn = max{d(x2n, x2n+1)p(x∗, F2(x∗)),

[d(x2n, x2n+1) + D(F1(x2n), F2(x∗))]d(x∗, x2n+1)}

and

Mn = max{d(x∗, x2n), d(x2n, x2n+1), d(x∗, x2n+1) + D(F1(x2n), F2(x∗))}.

Then from inequality (3) we have

p1(x∗, F2(x∗)) ≤ d(x∗, x2n+1) +
rmn + hMn

1 + rd(x∗, x2n)
. (4)
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Now we have to consider, for each n ∈ N, the following four cases:

Case 1. If mn = d(x2n, x2n+1)p(x∗, F2(x∗)) and Mn is equal to either d(x∗, x2n) or
d(x2n, x2n+1), then since d(x∗, x2n) and d(x2n, x2n+1) converge to 0 as n→∞, we obtain
that mn → 0 and Mn → 0. Also, d(x∗, x2n+1) converge to 0. Hence, from (4), we obtain
p1(x∗, F2(x∗)) = 0.

Case 2. If mn = d(x2n, x2n+1)p(x∗, F2(x∗)) and
Mn = d(x∗, x2n+1) +D(F1(x2n), F2(x∗)), then by inequality (1), we have

Mn ≤ d(x∗, x2n+1) +
rmn + hMn

1 + rd(x∗, x2n)

and it follows that

Mn[
1 + rd(x∗, x2n)− h

1 + rd(x∗, x2n)
] ≤ d(x∗, x2n+1) +

rmn

1 + rd(x∗, x2n)
.

Since d(x∗, x2n), d(x∗, x2n+1) and mn converge to 0 as n → ∞, we obtain that
Mn → 0. Thus from (4), we have p1(x∗, F2(x∗)) = 0.

Case 3. If mn = [d(x2n, x2n+1) +D(F1(x2n), F2(x∗))]d(x∗, x2n+1) and Mn is equal to
either d(x∗, x2n) or d(x2n, x2n+1), then by inequality (1), we have

mn ≤ [d(x2n, x2n+1) +
rmn + hMn

1 + rd(x∗, x2n)
]d(x∗, x2n+1)

and it follows that

mn[
1 + rd(x∗, x2n)− rd(x∗, x2n+1)

1 + rd(x∗, x2n)
] ≤ [d(x2n, x2n+1) +

hMn

1 + rd(x∗, x2n)
]d(x∗, x2n+1).

Since d(x∗, x2n), d(x∗, x2n+1), d(x2n, x2n+1) and Mn converge to 0 as n → ∞, we
obtain that mn → 0. Thus from (4), we have p1(x∗, F2(x∗)) = 0.

Case 4. If mn = [d(x2n, x2n+1) +D(F1(x2n), F2(x∗))]d(x∗, x2n+1) and
Mn = d(x∗, x2n+1) +D(F1(x2n), F2(x∗)), then by inequality (1), we have

D(F1(x2n), F2(x∗)) ≤ rmn + hMn

1 + rd(x∗, x2n)
=

=
r[d(x2n, x2n+1) +D(F1(x2n), F2(x∗))]d(x∗, x2n+1)

1 + rd(x∗, x2n)
+

+
h[d(x∗, x2n+1) +D(F1(x2n), F2(x∗))]

1 + rd(x∗, x2n)
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and it follows that

D(F1(x2n), F2(x∗))[
1 + rd(x∗, x2n) − rd(x∗, x2n+1)− h

1 + rd(x∗, x2n)
] ≤

≤ [rd(x2n, x2n+1) + h]d(x∗, x2n+1)
1 + rd(x∗, x2n)

.

Since d(x∗, x2n), d(x∗, x2n+1) and d(x2n, x2n+1) converge to 0 as n → ∞ and 0 <

1 − h < 1, we obtain that D(F1(x2n), F2(x∗)) → 0. Hence mn and Mn converge to 0 as
n→∞. Thus from (4), we have p1(x∗, F2(x∗)) = 0.

It now follows from cases 1 – 4 and Lemma 3.1 that {x∗} ⊂ F2(x∗).

Similarly, it can be shown that {x∗} ⊂ F1(x∗).

When (X, d) is a right K-sequentially complete quasi-pseudo-metric space, using
Lemmas 3.5, 3.6, 3.7 and 3.8 we get the following result.

Theorem 4.2. Let (X, d) be a right K-sequentially complete quasi-pseudo-metric space
and let F1 and F2 be fuzzy mappings from X to W ′(X) satisfying the inequality

[1 + r(d ∨ d−1)(x, y)]D(F1(x), F2(y)) ≤
≤ rmax{p(F1(x), x)p(F2(y), y), p(F2(y), x)p(F1(x), y)} +

+hmax{(d ∧ d−1)(x, y), p(F1(x), x), p(F2(y), y),

1
2

[p(F2(y), x) + p(F1(x), y)]} (5)

for each x, y ∈ X, where r ≥ 0 and 0 < h < 1. Then there exists x∗ ∈ X such that
{x∗} ⊂ F1(x∗) and {x∗} ⊂ F2(x∗).

The proof of this theorem is similar to the proof of Theorem 4.1 and is omitted.

On noting that

[p(x, F1(x))p(y, F2(y))]1/2 ≤ 1
2

[p(x, F1(x)) + p(y, F2(y))] ≤

≤ max{(d ∧ d−1)(x, y), p(x, F1(x)), p(y, F2(y)),
1
2

[p(x, F2(y)) + p(y, F1(x))]},
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we have the following corollary from Theorem 4.1 with r = 0.

Corollary 4.1. Let (X, d) be a left K-sequentially complete quasi-pseudo-metric space
and let F1 and F2 be fuzzy mappings from X to W ∗(X) satisfying the inequality

D(F1(x), F2(y)) ≤ h[p(x, F1(x))p(y, F2(y))]1/2,

for each x, y ∈ X, where 0 < h < 1. Then there exists x∗ ∈ X such that {x∗} ⊂ F1(x∗)
and {x∗} ⊂ F2(x∗).

Similarly, we have the following corollary from Theorem 4.2.

Corollary 4.2. Let (X, d) be a right K-sequentially complete quasi-pseudo-metric space
and let F1 and F2 be fuzzy mappings from X to W ′(X) satisfying the inequality

D(F1(x), F2(y)) ≤ [p(F1(x), x)p(F2(y), y)]1/2,

for each x, y ∈ X, where 0 < h < 1. Then there exists x∗ ∈ X such that {x∗} ⊂ F1(x∗)
and {x∗} ⊂ F2(x∗).

Both Corollary 4.1 and Corollary 4.2 are extensions of Theorem 3.2 of [7] in quasi-
pseudo-metric space.

When (X, d) is a complete metric space, we get the following corollary.

Corollary 4.3. Let (X, d) be a complete metric space and let F1 and F2 be fuzzy mappings
from X to W ′(X) satisfying the inequality

[1 + rd(x, y)]D(F1(x), F2(y)) ≤
≤ rmax{p(x, F1(x))p(y, F2(y)), p(x, F2(y))p(y, F1(x))}+

+hmax{d(x, y), p(x, F1(x)), p(y, F2(y)),

1
2

[p(x, F2(y)) + p(y, F1(x))]} (6)

for each x, y ∈ X, where r ≥ 0 and 0 < h < 1. Then there exists x∗ ∈ X such that
{x∗} ⊂ F1(x∗) and {x∗} ⊂ F2(x∗).

Remark 1. Letting F1 = F2 with r = 0 in inequality (1), then Theorem 3.2 of [11] is a
consequence of Theorem 4.1. Similarly, notice that Theorem 3.1 of [3] can be obtained
from Theorem 4.1.
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Remark 2. If we put r = 0 in inequality (6), we can see that Theorem 3.1 in [7] is a
special case of our Corollary 4.3. Also Theorem 3.2 of [7] can be obtained from Corollary
4.3.

Remark 3. Similarly, if we put r = 0 in inequality (6), we can obtain Theorem 3.1 of
[5] from Corollary 4.3.
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