Turkish Journal of Chemistry

Volume 28 | Number 5

Article 4

1-1-2004

Synthesis of Novel 4-Alkylidene- and 4-Alkylamino-5-oxo-4,5-Dihydro-[1,2,4] triazole Derivatives and Investigation of Their Antitumor Activities

NESLİHAN DEMİRBAŞ REYHAN UĞURLUOĞLU

Follow this and additional works at: https://journals.tubitak.gov.tr/chem

Part of the Chemistry Commons

Recommended Citation

DEMİRBAŞ, NESLİHAN and UĞURLUOĞLU, REYHAN (2004) "Synthesis of Novel 4-Alkylidene- and 4-Alkylamino-5-oxo-4,5-Dihydro-[1,2,4] triazole Derivatives and Investigation of Their Antitumor Activities," *Turkish Journal of Chemistry*: Vol. 28: No. 5, Article 4. Available at: https://journals.tubitak.gov.tr/chem/vol28/iss5/4

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for inclusion in Turkish Journal of Chemistry by an authorized editor of TÜBİTAK Academic Journals. For more information, please contact academic.publications@tubitak.gov.tr.

Synthesis of Novel 4-Alkylidene- and 4-Alkylamino-5-oxo-4,5-Dihydro-[1,2,4]triazole Derivatives and Investigation of Their Antitumor Activities

Neslihan DEMİRBAŞ; Reyhan UĞURLUOĞLU

Karadeniz Technical University, Department of Chemistry, 61080 Trabzon-TURKEY e-mail: neslihan@ktu.edu.tr

Received 21.05.2003

A series of novel 3-alkyl-4-cyclohexylmethylenamino-5-oxo-4,5-dihydro-[1,2,4]triazoles (**6a-e**) and 3alkyl-4-hexylidenamino-5-oxo-4,5-dihydro-[1,2,4]triazoles (**7b-e**) were synthesized from the reaction of corresponding 3-alkyl-4-amino-5-oxo-4,5-dihydro-[1,2,4]triazoles (**1**) with cyclohexancarboxaldehyde and capronaldehyde. The acetylation of compounds **6e** and **7b** resulted in the formation of 1-acetyl-4cyclohexylmethylenamino-5-oxo-3-(*p*-tolyl)-4,5-dihydro-[1,2,4]triazole (**10**) and 3-benzyl-4-hexylidenamino-5-oxo-4,5-dihydro-[1,2,4]triazole (**11**). 3-Alkyl-4-cyclohexylmethylamino-5-oxo-4,5-dihydro-[1,2,4]triazoles (**8a-e**) and 3-alkyl-4-hexylamino-5-oxo-4,5-dihydro-[1,2,4]triazoles (**9b-e**) were obtained from the selective reduction of compounds **6a-e** and **7b-e** with NaBH₄. The in vitro antitumor activity of some selected compounds was screened by the National Cancer Institute (USA) against several human tumor cell lines, and compounds **8c, 9d** and **11c** were found to be active.

Key Words: Imine bond, antitumor activity, capron aldehyde, cyclohexane carboxaldehyde, 5-oxo-[1,2,4]triazole.

Introduction

In recent years, considerable attention has been devoted to the generation of new antitumor drugs for the treatment of cancer. Thus, several compounds having a wide range of different structures have been synthesized. Among these, there are structurally simple azole derivatives besides the complex molecules incorporating an azole moiety¹⁻¹¹. However, cancer is still a major health problem due to the insufficiency of conventional methods.

The chemistry of 3-alkyl-4-amino(or substituted amino)-5-oxo-4,5-dihydro-[1,2,4]triazoles (1) has been studied in detail. For example, the alkylation, acylation, nitration and bromination of compounds 1 were performed in our laboratories along with their conversion into Schiff bases^{4,12,13}. It has also been reported

 $^{^{*}}$ Corresponding author

that the conversion of the amino group at position 4 of the 5-oxo-[1,2,4]-triazole ring into the arylidenamino group may cause antitumor activity¹⁴. Several 4-alkylidenamino-5-oxo-[1,2,4]triazole derivatives have been synthesized using type 1 compounds and reported to be antitumor active agents¹⁵. It has been reported that the compounds having the highest activity contain aromatic groups such as phenyl and p-tolyl at position 3 and electron withdrawing groups such as p-nitrophenylmethylenamino, o-chlorophenylmethylenamino and phenylmethylenamino at position 4 of the 5-oxo-[1,2,4]triazole ring¹⁵. Moreover, some N, N'-bis(3-alkyl-5-oxo-4,5-dihydro-[1,2,4]triazol-4-yl)-1,4-xylenediimines (2), 3-alkyl-4-(2-phenylethylenamino)- (3) and 3alkyl-4-(2-phenylethylamino)-5-oxo-4,5-dihydro-[1,2,4]triazoles (4) were synthesized from the reaction of compounds 1 with terephtalaldehyde and phenyl acetaldehyde, respectively (Scheme 1). Compounds 2-4 were found to possess activity against breast cancer, nonsmall cell lung cancer and brain tumors (CNC cancer)^{4,12}. Furthermore, different type Schiff base derivatives (5) of compounds 1 synthesized in our laboratory were found to be active against only breast cancer¹⁶ since breast cancers are generally estrogen dependent and aromatase enzyme catalyzes the conversion of androgens into estrogens in breast cancer tissues^{17,18}. Hence, inhibitors of this enzyme are potential therapeutics for the treatment of estrogen dependent breast cancer⁵. It has been reported that compounds having triazole moieties such as vorozole, letrozole and anastrozole (Scheme 2) appear to be very effective aromatase inhibitors and may be effective in the treatment of breast cancer¹⁹⁻²¹. Among type **5** compounds the highest activity was observed in the compound containing a phenyl group at position 3 of the 5-oxo-[1,2,4]triazole ring. It is known that [1,2,4] triazole moieties interact strongly with the heme iron and aromatic substituents in the active site of aromatase²². It is speculated that the reason for the type **5** compound including a phenyl group at position 3 being the most effective against breast cancer cell line is a phenyl group that seems to fit to the active site of aromatase.

Scheme 1.

Synthesis of Novel 4-Alkylidene- and..., N. DEMIRBAŞ, R. UĞURLUOĞLU

Scheme 2. Known antitumor drugs incorporating the [1,2,4]triazole ring.

In view of these facts, our aim was to obtain 3-alkyl-4-alkylidenamino- and 3-alkyl(aryl)-4-alkylamino-5-oxo-4,5-dihydro-[1,2,4]triazole compounds to screen them for their potential antitumor activity.

Experimental

Melting points were determined on a Gallenkamp melting point apparatus and are uncorrected. ¹H-NMR and ¹³C-NMR spectra were recorded on a Varian-Mercury 200 MHz spectrometer. The IR spectra were measured as potassium bromide pellets using a Perkin-Elmer 1600 series FTIR spectrometer. Combustion analysis was performed on a Carlo Erba 1106 elemental analyzer. All the chemicals were obtained from Fluka Chemie AG Buchs (Switzerland). Compounds **1** were synthesized by a published method²⁶.

General method for the synthesis of compounds 6

The corresponding compound 1 (0.01 mol) was heated in an oil bath with cyclohexancarboxaldehyde (0.01 mol) at 120-130 °C for 2 h. After cooling the mixture to room temperature a solid appeared. This was recrystallized from an appropriate solvent to afford the desired compound.

4-Cyclohexylmethylenamino-3-methyl-5-oxo-4,5-dihydro-[1,2,4]triazole (6a): Following the general procedure reported above, a white solid was obtained. It was recrystallized from ethyl acetate (yield: 58%) to afford the desired compound. M.p. 205-206 °C. Analysis (% Calc/found): for C₁₀H₁₆ON₄ C: 57.67/57.13, H: 7.74/7.08, N: 26.90/27.50; IR (KBr) cm⁻¹: 3261 (ν_{NH}), 1717 ($\nu_{C=O}$), 1599 ($\nu_{C=N}$); ¹H NMR (DMSO-d₆) δ 1.25 (bs, 2CH₂) 1.50-2.10 (m, 3CH₂), 2.10-2.45 (m, CH), 2.20 (s, CH₃), 8.76 (d, N=CH, J=4.8Hz), 11.26 (s, NH); ¹³C NMR (DMSO-d₆) δ 163.68 (N=CH), 153.59 (triazole C-5), 145.23 (triazole C-3), 40.99 (CH), 29.13 (2CH₂), 25.51 (CH₂),25.11 (2CH₂), 11.18 (CH₃).

3-Benzyl-4-cyclohexylmethylenamino-5-oxo-4,5-dihydro-[1,2,4]triazole (6b): Following the general procedure reported above, a white solid was obtained. It was recrystallized from ethyl acetate (yield: 50%) to afford the desired compound. M.p. 121-122 °C. Analysis (% Calc/found): for C₁₆H₂₀ON₄ C: 67.58/66.95, H: 7.09/7.08, N: 19.71/18.87; IR (KBr) cm⁻¹: 3179 (ν_{NH}), 1705 ($\nu_{C=O}$), 1590 ($\nu_{C=N}$); ¹H NMR (CDCI₃) δ 1.30 (bs, 2CH₂), 1.60-1.90 (m, 3CH₂), 2.25-2.45 (m, CH), 4.00 (s, CH₂), 7.30-7.40 (m, 5H, ar-H), 8.85 (d, N=CH, J=4.8Hz), 10.75 (s, NH); ¹³C NMR (CDCI₃) δ 164.48 (N=CH), 152.26 (triazole

Synthesis of Novel 4-Alkylidene- and..., N. DEMİRBAŞ, R. UĞURLUOĞLU

Scheme 3. Synthetic pathway for the preparation of compounds 6-11.

C-5), 147.24 (triazole C-3), [ar C: 135.11, 129.01 (2C), 128.40 (2C), 126.89], 41.61 (CH), 31.69 (CH₂) 29.32 (2CH₂), 25.83 (CH₂), 25.31 (2CH₂).

3-(p-Chlorobenzyl)-4-cyclohexylmethylenamino-5-oxo-4,5-dihydro-[1,2,4]triazole (6c): Following the general procedure reported above, a white solid was obtained. It was recrystallized from ethyl acetate (yield: 50%) to afford the desired compound. M.p. 155-156 °C. Analysis (% Calc/found): for C₁₆H₁₉ON₄CI C: 60.27/60.10, H: 6.01/5.97, N: 17.57/17.69; IR (KBr) cm⁻¹: 3154 (ν_{NH}), 1711 ($\nu_{C=O}$), 1592 ($\nu_{C=N}$);¹H NMR (DMSO-d₆) δ 1.25 (bs, 2CH₂), 1.65-1.80 (m, 3CH₂), 2.20-2.40 (m, CH), 4.00 (s, CH₂), 7.20-7.50 (m, 4H, ar-H), 8.85 (d, N=CH, J=4.8Hz), 11.90 (s, NH); ¹³C NMR (DMSO-d₆) δ 166.43 (N=CH), 154.84 (triazole C-5), 145.20 (triazole C-3), [ar C: 129.91, 128.20 (2C), 127.30 (2C), 126.20], 40.75 (CH), 28.86 (3CH₂), 25.10 (CH₂), 24.76 (2CH₂).

4-Cyclohexylmethylenamino-5-oxo-3-phenyl-4,5-dihydro-[1,2,4]triazole (6d): Following the general procedure reported above, a white solid was obtained. It was recrystallized from acetone-water (1:3) (yield: 52%) to afford the desired product. M.p. 126 °C. Analysis (% Calc/found): for C₁₅H₁₈ON₄ C: 66.66/67.21, H: 6.71/6.58, N: 20.73/20.89; IR (KBr) cm⁻¹: 3160 (ν_{NH}), 1690 ($\nu_{C=O}$), 1584 ($\nu_{C=N}$);¹H NMR (DMSO-d6) δ 1.20 (bs, 2CH₂), 1.55-1.80 (m, 3CH₂), 2.20-2.45 (m, CH), 7.35-7.45 (m, 3H, ar-H), 7.75-7.45 (m, 2H, ar-H), 8.75 (d, N=CH, J=4.8Hz), 12.20 (s, NH); ¹³C NMR (DMSO-d6) δ 166.59 (N=CH), 151.54 (triazole C-5), 144.39 (triazole C-3), [ar C: 130.09, 128.55 (2C), 127.86 (2C), 126.83], 40.94 (CH), 29.06 (2CH₂) 25.56 (CH₂), 24.96 (2CH₂).

4-Cyclohexylmethylenamino-5-oxo-3-(*p*-tolyl)-4,5-dihydro-[1,2,4]triazole (6e): Following the general procedure reported above, a white solid was obtained. It was recrystallized from ethyl acetate (yield: 50%) to afford the desired compound (yield: 60%). M.p. 200-201 °C. Analysis (% Calc/found): for C₁₆H₂₀ON₄ C: 67.58/66.80, H: 7.07/7.37, N: 19.71/19.21; IR (KBr) cm⁻¹: 3160 (ν_{NH}), 1698 ($\nu_{C=O}$), 1582 ($\nu_{C=N}$);¹H NMR (DMSO-d6) δ 2.25 (s, CH₃), 1.30 (bs, 2CH₂), 1.60-1.95 (m, 3CH₂), 2.30-2.60 (m, CH+ CH₃), 7.72 (d, 2H, ar-H, J=10 Hz), 7.30 (d, 2H, ar-H, J=10 Hz), 8.62 (d, N=CH, J=4.6Hz), 12.20 (s, NH); ¹³C NMR (DMSO-d6) δ 166.19 (N=CH), 151.35 (triazole C-5), 144.28 (triazole C-3), [ar C: 139.65, 128.90 (2C), 127.58 (2C), 123.87], 40.75 (CH), 28.87 (2CH₂) 25.38 (CH₂), 24.79 (2CH₂), 20.86 (CH₃).

General method for the synthesis of compounds 7

A solution of corresponding compound 1 (0.01 mol) in 30 mL of glacial acetic acid was refluxed with capronaldehyde for 4 h. After cooling to room temperature, it was poured into 100 mL of water. On cooling in deepfreeze, a solid product occurred. This was recrystallized from an appropriate solvent to afford the desired compound.

3-Benzyl-4-hexylidenamino-5-oxo-4,5-dihydro-[1,2,4]triazole (7b): Following the general procedure reported above, a white solid was obtained. It was recrystallized from petroleum ether (yield: 55%) to afford the desired compound. M.p. 94-95 °C. Analysis (% Calc/found): for $C_{15}H_{20}ON_4$ C: 66.15/66.76, H: 7.40/7.35, N: 20.57/20.95; IR (KBr) cm⁻¹: 3168 (ν_{NH}), 1702 ($\nu_{C=O}$), 1589 ($\nu_{C=N}$); ¹H NMR (CDCI₃) δ 0.90 (t, CH₃, J=6.8 Hz), 1.20-1.45 (m, 2CH₂), 1.45-1.70 (m, CH₂), 2.25-2.40 (m, CH₂), 4.00 (CH₂), 7.20-7.40 (m, 5H, ar-H), 8.95 (t, N=CH, J=5.5 Hz), 10.54 (s, NH); ¹³C NMR (CDCI₃) δ 161.61 (N=CH), 152.28 (triazole C-5), 147.19 (triazole C-3), [ar C: 135.07 129.01 (2C), 128.77 (2C), 126.95], 33.44 (CH₂), 31.69 (CH₂), 31.20 (CH₂), 25.29 (CH₂), 22.36 (CH₂), 13.89 (CH₃).

Synthesis of Novel 4-Alkylidene- and..., N. DEMIRBAŞ, R. UĞURLUOĞLU

3-(p-Chlorobenzyl)-4-hexylidenamino-5-oxo-4,5-dihydro-[1,2,4]triazole (7c): Following the general procedure reported above, a white solid was obtained. It was recrystallized from petroleum ether (yield: 58%) to afford the desired compound. M.p. 110-111 °C. Analysis (% Calc/found): for C₁₅H₁₀ON₄CI C: 58.72/58.75, H: 6.25/6.83, N: 18.26/19.94; IR (KBr) cm⁻¹: 3173 (ν_{NH}), 1702 ($\nu_{C=O}$), 1584 ($\nu_{C=N}$); ¹H NMR (DMSO-d₆) δ 0.85 (bs, CH₃), 1.15-1.38 (m, 2CH₂), 1.38-1.58 (m, CH₂), 2.25-2.30 (m, CH₂), 3.95 (s, CH₂), 7.20-7.40 (m, 4H, ar-H), 8.90 (bs, N=CH), 11.87 (s, NH); ¹³C NMR (DMSO-d₆) δ 160.88 (N=CH), 151.50 (triazole C-5), 145.35 (triazole C-3), [ar C: 134.62, 131.10, 130.56 (2C), 128.22 (2C)], 32.60 (CH₂), 30.54 (CH₂), 30.31 (CH₂), 24.70 (CH₂), 21.79 (CH₂), 13.72 (CH₃).

4-Hexylidenamino-5-oxo-3-phenyl-4,5-dihydro-[1,2,4]triazole (7d): Following the general procedure reported above, a white solid was obtained. It was recrystallized from petroleum ether (yield: 65%) to afford the desired compound. M.p. 106-107 °C. Analysis (% Calc/found): for C₁₄H₁₈ON₄ C: 65.09/65.16, H: 7.02/7.08, N: 21.69/21.55; IR (KBr) cm⁻¹: 3164 (ν_{NH}), 1694 ($\nu_{C=O}$), 1628 ($\nu_{C=N}$);); ¹H NMR (DMSO-d₆) δ 0.90 (bs, CH₃), 1.20-1.45 (m, 2CH₂), 1.45-1.68 (m, CH₂), 2.35-2.45 (m, CH₂), 7.42-7.58 (m, 3H, ar-H), 7.78-7.95 (m, 2H, ar-H), 8.85 (t, N=CH, J=5.4 Hz), 12.27 (s, NH); ¹³C NMR (DMSO-d₆) δ 163.13 (N=CH), 150.33 (triazole C-5), 143.07 (triazole C-3), [ar C: 128.84, 127.26 (2C), 126.58 (2C), 125.59], 31.49 (CH₂), 29.54 (CH₂), 23.64 (CH₂), 20.72 (CH₂), 12.70 (CH₃).

4-Hexylidenamino-5-oxo-3-(*p*-tolyl)-4,5-dihydro-[1,2,4]triazole (7e): Following the general procedure reported above, a white solid was obtained. It was recrystallized from petroleum ether (yield: 53%) to afford the desired compound. M.p. 99-100 °C. Analysis (% Calc/found): for C₁₅H₂₀ON₄ C: 66.15/66.62, H: 7.40/7.23, N: 20.57/21.17; IR (KBr) cm⁻¹: 3165 (ν_{NH}), 1700 ($\nu_{C=O}$), 1624 ($\nu_{C=N}$); ¹H NMR (DMSO-d₆) δ 0.90 (bs, CH₃), 1.20-1.50 (m, 2CH₂), 1.50-1.70 (m, CH₂), 2.30-2.45 (m, CH₂), 2.40 (S, CH₃), 7.30 (d, 2H, ar-H, *J*=11.11 Hz), 7.70 (d, 2H, ar-H, *J*=11.11 Hz), 8.85 (t, N=CH, *J*=5.4 Hz), 12.20 (s, NH); ¹³C NMR (DMSO-d₆) δ 164.17 (N=CH), 151.38 (triazole C-5), 144.50 (triazole C-3), [ar C: 139.66, 128.88, 127.54, 123.66], 32.52 (CH₂), 30.59 (CH₂), 24.70 (CH₂), 21.76 (CH₂), 20.85 (CH₃), 13.76 (CH₃).

General method for synthesis of compounds 8

A solution of corresponding compound 6 (0.01) in 40 mL of diglime was treated with a solution of NaBH₄ (0.03 mol) in 30 mL of diglime. The mixture was refluxed for 8 h and then poured into 500 mL of water. On cooling in a deepfreeze, a solid appeared. This was recrystallized from an appropriate solvent to afford the desired compound.

4-Cyclohexylmethylamino-3-methyl-5-oxo-4,5-dihydro-[1,2,4]triazole (8a): Following the general procedure reported above, a white solid was obtained. It was recrystallized from benzene-n-hexan (1:2) (yield: 59%) to afford the desired compound. M.p. 149-150 °C. Analysis (% Calc/found): for C₁₀H₁₈ON₄ C: 57.11/57.20, H: 8.63/8.34, N: 26.65/27.33; (KBr) cm⁻¹: 3257 and 3161 (ν_{2NH}), 1711 ($\nu_{C=O}$), 1595 ($\nu_{C=N}$); ¹H NMR (DMSO-d₆) δ 0.84-1.05 (m, CH₂), 1.17-1.30 (m, 2CH₂), 1.60-1.85 (m, 2CH₂+CH), 2.07 (s, CH₃), 2.75 (bs, CH₂), 5.82 (bs, NNH), 11.34 (s, NH); ¹³C NMR (DMSO-d₆) δ 153.99 (triazole C-5), 145.48 (triazole C-3), 56.05 (NCH₂), 35.94 (CH), 30.90 (2CH₂), 24.30 (2CH₂), 25.56 (2CH₂), 10.90 (CH₃).

3-Benzyl-4-cyclohexylmethylamino-5-oxo-4,5-dihydro-[1,2,4]triazole (8b): Following the general procedure reported above, a white solid was obtained. It was recrystallized from ethanol-water (1:3)

(yield: 62%) to afford the desired compound. M.p. 132-133 °C. Analysis (% Calc/found): for C₁₆H₂₂ON₄ C: 67.10/67.15, H: 7.74/7.35, N: 19.57/19.39; (KBr) cm⁻¹: 3258 and 3165 (ν_{2NH}), 1695 ($\nu_{C=O}$), 1578 ($\nu_{C=N}$); ¹H NMR (DMSO-d₆) δ 0.77-0.88 (m, CH₂), 1.09-1.30 (m, 2CH₂), 1.60-1.75 (m, 2CH₂+CH), 2.60 (bs, CH₂), 3.82 (s, CH₂), 5.80 (t, NNH, J=5.8 Hz), 7.25-7.45 (m, 5H, ar-H),11.52 (s, NH); ¹³C NMR (DMSO-d₆) δ 154.27 (triazole C-5), 145.48 (triazole C-3), [ar C: 136.19 (C), 128.74 (2CH), 128.49 (2CH), 126.70 (CH)], 55.82 (NCH₂), 35.89 (CH), 30.89 (3CH₂), 26.24 (CH₂), 25.53 (2CH₂).

3-(*p*-Chlorobenzyl)-4-cyclohexylmethylamino-5-oxo-4,5-dihydro-[1,2,4]triazole (8c): Following the general procedure reported above, a white solid was obtained. It was recrystallized from ethanolwater (1:3) (yield: 65%) to afford the desired compound. M.p. 131-132 °C. Analysis (% Calc/found): for $C_{16}H_{21}ON_4CI$ C: 59.90/59.83, H: 6.18/6.50, N: 17.46/17.59; (KBr) cm⁻¹: 3242 and 3161 (ν_{2NH}), 1698 ($\nu_{C=O}$), 1579 ($\nu_{C=N}$); ¹H NMR (DMSO-d₆) δ 0.80-1.00 (m, CH₂), 1.15-1.20 (m, 2CH₂), 1.60-1.90 (m, 2CH₂+ CH), 2.65 (bs, CH₂), 3.82 (s, CH₂), 5.82 (bs, NNH), 7.20-7.50 (m, 4H, ar-H),11.54 (s, NH); ¹³C NMR (DMSO-d₆) δ 154.03 (triazole C-5), 147.18 (triazole C-3), [ar C: 135.16 (C), 131.43 (C), 130.65 (2CH), 128.42 (2CH)], 55.80 (NCH₂), 35.75 (CH), 30.77 (2CH₂), 26.11 (CH₂), 25.50 (2CH₂).

4-Cyclohexylmethylamino-5-oxo-3-phenyl-4,5-dihydro-[1,2,4]triazole (8d): Following the general procedure reported above, a white solid was obtained. It was recrystallized from ethanol-water (1:3) (yield: 67%) to afford the desired compound. M.p. 165-166 °C. Analysis (% Calc/found): for $C_{15}H_{20}ON_4$ C: 66.15/65.40, H: 7.40/7.52, N: 20.57/21.12; (KBr) cm⁻¹: 3258, 3165 (ν_{2NH}), 1695 ($\nu_{C=O}$), 1578 ($\nu_{C=N}$);¹H NMR (DMSO-d₆) δ 0.70-0.95 (m, CH₂), 0.90-1.15 (m, 2CH₂), 1.45-1.70 (m, 2CH₂+CH), 2.80 (t, CH₂, J=5.4), 6.05 (t, NNH, J=5.2 Hz), 7.45-7.55 (m, 3H, ar-H), 7.90-7.95 (m, 2H, ar-H), 11.95 (s, NH); ¹³C NMR (DMSO-d₆) δ 154.25 (triazole C-5), 145.41 (triazole C-3), [ar C: 129.04 (C), 128.93 (2CH), 127.31 (2CH), 124.34 (C),], 55.80 (NCH₂), 35.75 (CH), 30.77 (2CH₂), 26.11 (CH₂), 25.50 (2CH₂).

4-Cyclohexylmethylamino-5-oxo-3-(*p*-tolyl)-4,5-dihydro-[1,2,4]triazole (8e): Following the general procedure reported above, a white solid was obtained. It was recrystallized from ethanol-water (1:3) (yield: 64%) to afford the desired compound. M.p. 195-196 °C. Analysis (% Calc/found): for C₁₆H₂₂ON₄ C: 67.10/67.87, H: 7.74/8.48, N: 19.57/20.36; (KBr) cm⁻¹: 3241 and 3154 (ν_{2NH}), 1700 ($\nu_{C=O}$), 1521 ($\nu_{C=N}$); ¹H NMR (DMSO-d₆) δ 1.00-1.10 (m, 2CH₂), 1.25-1.70 (m, 2CH₂+ CH), 2.35 (s, CH₃), 2.80 (bs, CH₂), 6.00 (bs, NNH), 7.25 (d, 2H, ar-H, *J*=8.2 Hz), 7.85 (d, 2H, ar-H, *J*=8.2 Hz), 11.88 (s, NH); ¹³C NMR (DMSO-d₆) δ 154.25 (triazole C-5), 145.41 (triazole C-3), [ar C: 129.04 (C), 128.93 (2CH), 127.31 (2CH), 124.34 (C)], 55.85 (NCH₂), 35.79 (CH), 31.81 (2CH₂), 26.13 (CH₂), 25.52 (2CH₂), 21.05 (CH₃).

General method for the synthesis of compounds 9

A solution of corresponding compound 7 (0.01) in 40 mL of diglime was treated with a solution of NaBH₄ (0.03 mol) in 30 mL of diglime. The mixture was refluxed for 8 h and then poured into 500 mL of water. On cooling in a deepfreeze, a solid appeared. This was recrystallized from an appropriate solvent to afford the desired compound.

3-Benzyl-4-hexylamino-5-oxo-4,5-dihydro-[1,2,4]triazole (9b): Following the general procedure reported above, a white solid was obtained. It was recrystallized from acetone-water (1:3) (yield: 50%)

to afford the desired compound. M.p. 96-97 °C. Analysis (% Calc/found): for C₁₅H₂₂ON₄ C: 65.66/65.43, H: 8.08/8.17, N: 20.42/20.36; (KBr) cm⁻¹: 3257 and 3190 (ν_{2NH}), 1697 ($\nu_{C=O}$), 1581 ($\nu_{C=N}$); ¹H NMR (DMSO-d₆) δ 0.84 (s, CH₃), 1.20-1.40 (m, 4CH₂), 2.70 (bs, CH₂), 3.82 (s, CH₂), 5.85 (bs, NNH), 7.25-7.35 (m, 5H, ar-H), 11.53 (s, NH); ¹³C NMR (DMSO-d₆) δ 154.05 (triazole C-5), 147.62 (triazole C-3), [ar C: 136.23 (C), 128.78 (2CH), 128.48 (2CH), 126.72 (CH)], 49.11 (NCH₂), 31.24 (CH₂), 30.86 (CH₂), 27.18 (CH₂), 26.26 (CH₂), 26.16 (CH₂), 14.04 (CH₃).

3-(*p*-Chlorobenzyl)-4-hexylamino-5-oxo-4,5-dihydro-[1,2,4]triazole (9c): Following the general procedure reported above, a white solid was obtained. It was recrystallized from acetone-water (1:3) (yield: 53%) to afford the desired compound. M.p. 72-73 °C. Analysis (% Calc/found): for C₁₅H₂₁ON₄CI C: 58.34/57.97, H: 6.85/6.60, N: 18.14/18.89; (KBr) cm⁻¹: 3242 and 3161 (ν_{2NH}), 1704 ($\nu_{C=O}$), 1521 ($\nu_{C=N}$); ¹H NMR (DMSO-d₆) δ 0.85 (bs, CH₃), 1.18-1.35 (m, 4CH₂), 2.72 (bs, CH₂), 3.85 (s, CH₂), 5.87 (bs, NNH), 7.25-7.40 (m, 4H, ar-H), 11.58 (s, NH); ¹³C NMR (DMSO-d₆) δ 154.05 (triazole C-5), 147.30 (triazole C-3), [ar C: 135.19 (C), 131.49 (CH), 130.68 (2CH), 128.52 (2CH)], 49.11 (NCH₂), 31.23 (CH₂), 30.29 (CH₂), 27.22 (CH₂), 26.54 (CH₂), 22.20 (CH₂), 14.14 (CH₃).

4-Hexylamino-5-oxo-3-phenyl-4,5-dihydro-[1,2,4]triazole (9d): Following the general procedure reported above, a white solid was obtained. It was recrystallized from acetone-water (1:3) (yield: 69%) to afford the desired compound. M.p. 118-119 °C. Analysis (% Calc/found): for C₁₄H₂₀ON₄ C: 64.59/64.76, H: 7.74/7.68, N: 21.52/21.05; (KBr) cm⁻¹: 3242 and 3161 (ν_{2NH}), 1704 ($\nu_{C=O}$), 1521 ($\nu_{C=N}$); ¹H NMR (DMSO-d₆) δ 0.82 (bs, CH₃), 1.10-1.30 (m, 4CH₂), 2.97 (bs, CH₂), 6.12 (bs, NNH), 7.48 (bs, 3H, ar-H), 7.98 (bs, 2H, ar-H), 11.97 (s, NH); ¹³C NMR (DMSO-d₆) δ 154.34 (triazole C-5), 147.31 (triazole C-3), [ar C: 129.87 (CH), 128.40 (C), 127.31 (2CH), 127.17 (C)], 49.11 (NCH₂), 31.19 (CH₂), 27.06 (CH₂), 26.26 (CH₂), 22.18 (CH₂), 13.98 (CH₃).

4-Hexylamino-5-oxo-3-(*p*-tolyl)-4,5-dihydro-[1,2,4]triazole (9e): Following the general procedure reported above, a white solid was obtained. It was recrystallized from acetone-water (1:3) (yield: 49%) to afford the desired compound. M.p. 141-142 °C. Analysis (% Calc/found): for C₁₅H₂₂ON₄ C: 65.66/66.12, H: 8.08/8.56, N: 20.42/19.53; (KBr) cm⁻¹: 3244 and 3152 (ν_{2NH}), 1701 ($\nu_{C=O}$), 1508 ($\nu_{C=N}$); ¹H NMR (DMSO-d₆) δ 0.80 (bs, CH₃), 1.10-1.35 (m, 5CH₂), 2.35 (s, CH₃), 2.90-3.05 (m, CH₂), 6.10 (bs, NNH), 7.28 (d, 2H, ar-H, *J*=7.6Hz), 7.89 (d, 2H, ar-H, *J*=7.6), 11.91 (bs, NH); ¹³C NMR (DMSO-d₆) δ 154.36 (triazole C-5), 145.31 (triazole C-3), [ar C: 1329.50 (C), 128.96 (2CH), 127.21 (2CH), 124.42 (C)], 49.20 (NCH₂), 31.24 (CH₂), 27.13 (CH₂), 22.22 (CH₂), 21.07 (CH₃), 13.96 (CH₃).

Synthesis of 1-acetyl-4-cyclohexylmethylenamino-3-(*p*-tolyl)-5-oxo-4,5-dihydro-[1,2,4]triazole (10)

Compound **6e** (0.01 mol) was refluxed with 10 mL of acetic anhydride for 2 h. The mixture was cooled to room temperature and, after 40 mL of ethanol was added, it was refluxed for an additional 30 min. After evaporation at 35-40 °C under reduced pressure, a solid appeared. This was recrystallized from benzene-petroleum ether (1:2) to afford the desired compound. (yield: 61%). M.p. 106-107 °C. Analysis (% Calc/found): for C₁₈H₂₄O₂N₄ C: 65.83/65.48, H: 7.34/7.54, N: 17.06/17.66; (KBr) cm⁻¹: 1783 and 1749 ($\nu_{2C=O}$), 1602 ($\nu_{C=N}$); ¹H NMR (DMSO-d₆) δ 1.10-1.50 (m, 2CH₂+ CH₃), 1.60-1.90 (m, 2CH₂), 2.36 (s,

CH₂), 2.50-2.60 (m, CH₃+CH), 7.76 (d, 2H, ar-H, J=8.0 Hz), 7.32 (d, 2H, ar-H, J=8.0), 8.66 (t, N=CH, J=4.8 Hz); ¹³C NMR (DMSO-d₆) δ 168.56 (N=CH), 165.55 (C=O), 147.75 (triazole C-5), 145.19 (triazole C-3), [ar C: 140.69 (C), 128.56 (2CH), 127.77 (2CH), 121.96 (C)], 28.26 (2CH₂+CH), 24.93 (CH₂), 24.33 (2CH₂), 23.00 (CH₃), 20.50(CH₃).

Synthesis of 1-acetyl-3-benzyl-4-hexylidenamino-5-oxo-4,5-dihydro-[1,2,4]triazole (11)

Compound **7b** (0.01 mol) was refluxed with 10 mL of acetic anhydride for 2 h. The mixture was cooled to room temperature and 40 mL of ethanol added. It was then refluxed for an additional 30 min. After evaporation at 35-40 °C under reduced pressure, a solid appeared. This was recrystallized from benzene-petroleum ether (1:2) to afford the desired compound. (yield: 50%). M.p. 43-44 °C. Analysis (% Calc/found): for $C_{17}H_{24}O_2N_4$ C: 64.53/64.60, H: 7.65/7.98, N: 17.71/17.43; (KBr) cm⁻¹: 1780 and 1733 ($\nu_{2C=O}$), 1602 ($\nu_{C=N}$); ¹H NMR (DMSO-d₆) δ 0.86 (s, CH₃), 1.26 (s, CH₃), 1.43-1.60 (m, 2CH₂), 2.28-2.45 (m, CH₂), 2.50-2.60 (m, 2CH₂), 4.01 (s, CH₂) 7.18 (m, 5H, ar-H), 8.76 (bs, N=CH); ¹³C NMR (DMSO-d₆) δ 163.46 (N=CH), 160.58 (C=O), 147.76 (triazole C-5+ triazole C-3), [ar C: 134.38 (C), 128.75 (2CH), 128.67 (2CH), 126.76 (CH)], 32.57 (CH₂), 30.81 (CH₂), 30.41 (CH₂), 24.46 (CH₂), 23.35 (CH₃), 21.71(CH₂), 13.52 (CH₃).

Pharmacology

The screening experiments were performed by the Developmental Therapeutic Program of the National Cancer Institute (NCI), Bethesda, Maryland, USA. Seventeen compounds were selected by the NCI for screening of 3 human tumor cell lines, breast cancer (MCF7), nonsmall cell lung cancer (NCI-H460) and brain tumors (SF-268). The screening results are summarized in Table 1. Results for each test agent are reported as the percentage of growth of the treated cells when compared to the untreated control cells. Compounds (**6c** and **7d** and **9c**) that reduce the growth of any one of the cell lines to approximately 32% or less are passed on for evaluation in the full panel of 46 cell lines derived from human solid tumors (brain, breast, colon, leukemia, lung, melanoma, ovarian and renal) over a 5-log dose range. Each selected compound was tested at a minimum of 5 concentrations at 10-fold dilutions. A 48 h continuous drug exposure protocol was used and a sulforhodamin B (SRB) protein assay was used to estimate cell viability or growth²⁷. The screening results of compounds **8c**, **9d** and **11c** towards several tumor cell lines are presented in Table 2 as GI_{50} values.

Results and Discussion

In order to synthesize 3-alkyl-4-alkylamino-5-oxo-4,5-dihydro-[1,2,4]triazoles, 2 methods have been developed^{23,24}. One of these involves the reaction of ester ethoxycarbonylhydrazones with alkyl- or arylhidrazines²³, but there are only a few known aryl or alkyl hidrazynes and they are unstable in the reaction temperature. In the other method reported recently²⁴, 4-alkylamino compounds were obtained by the reduction of 3-alkyl-4-alkylidenamino-4,5-dihydro-[1,2,4]-triazoles obtained from the reaction of type **1** compounds with some halogenobenzaldehydes and *p*-tolualdehyde.

	Number	Growth percentage of tumor cell			
Comp.	assigned by				Activity
no.	NCI	MCF7	HCI-H460	SF-268	
6a	S722893	89	95	102	-
6b	S723214	112	106	115	-
6c	S721920	0	0	0	+
6d	S722894	101	79	98	
7b	S722899	108	100	103	-
7d	S722895	10	79	88	+
7a	S721925	108	96	105	-
8b	S721927	96	96	128	-
8c	S721929	110	102	139	-
8d	S721926	111	97	125	-
8e	S721928	108	95	129	-
9b	S721921	81	96	126	-
9c	S721923	44	31	42	+
9d	S721922	93	87	114	-
9e	S721924	91	95	99	-
10	S722889	91	101	102	-
11	S722890	80	103	96	-

 Table 1. Antitumor screening data for the selected compounds.

In the present study, to improve the reported method²⁴, and to investigate the effect of the substituent at position 4 of the [1,2,4]triazole ring on antitumor activity, 4-alkylidenamino-5-oxo-4,5-dihydro-[1,2,4]triazole compounds were obtained. Thus, the synthesis of new 3-alkyl-4-cyclohexylmethylenamino-(**6a-e**) and 3-alkyl-4-hexylidenamino-5-oxo-4,5-dihydro-[1,2,4]-triazoles (**7b-e**) was achived in reasonably good yields. The IR, ¹H NMR and ¹³C NMR spectra and elemental analysis of the new compounds are consistent with the suggested structures. In the ¹H NMR spectra of compounds **6a-e** the signals belonging to the cyclohexyl group were observed at 1.20-2.60 ppm as separate peaks, while the signal representing the $-NH_2$ group of compounds **1** and recorded at 5.30 ppm was absent. The ¹H NMR spectra of compounds **7b-e** showed peaks due to the hexylidene group at 0.85-2.45 ppm. In the ¹H NMR spectra of compounds **6a-e** and **7b-e** the signal derived from the -N=CH group was recorded at 8.75-8.95 ppm. The carbon-13 peak of the same group was seen at 160.88-166.59 ppm in the ¹³C NMR spectra of these compounds. The ¹³C signals of $4CH_2+CH_3$ belonging to the hexylidene group on compounds **7b-e** were observed at 30.54-12.70 ppm, while the signals belonging to the cyclohexyl group on compounds **6a-e** were seen at 41.61-24.96 ppm.

3-Alkyl-4-cyclohexylmethylamino- (8a-e) and 3-alkyl-4-hexylamino-5-oxo-4,5-dihydro-[1,2,4]-triazoles (9b-e) were obtained from the reduction of the exocyclic imine bond of type 6 and 7 compounds using a NaBH₄ as reducing agent. It was reported that the reduction of the 5-oxo-4,5-dihydro-[1,2,4]triazole ring is also possible²⁵. Since NaBH₄ is a selective reducing agent, it did not reduce the 5-oxo-[1,2,4]triazole ring in the present study. The fact that both elemental analysis and spectroscopic data are consistent with the suggested structures for compounds 8a-e and 9b-e shows that the reduction took place only at the exocyclic imine bond of compounds 6a-e and 7b-e using NaBH₄ in diglime (diethylene glycol dimethyl ether). When NaCNBH₃ was used, no reduction was observed to take place in compounds 6a-e and 7b-e and the compounds remained unchanged.

	60	7d	0.0
Panel/Cell line	GL	GLo	GLeo
Leukemia	0150	0150	0150
CCBE-CEM	36.7	h	59.1
H_{L-60} (TB)	32.6	345	46.2
K-562	52.0	82.9	39.9
MOLT-4	35.1	69.8	48.5
SR	24.1	62.0	33.8
Non-small cell lung cancer		0-10	0010
A549/ATCC	39.7	b	30.8
HOP-62	b	18.9	57.6
HOP-92	28.6	b	85.5
NCI-H226	25.1	b	25.2
NCI-H322M	50.0	b	30.6
NCI-H460	44.5	b	35.1
NCI-H522	36.7	b	24.0
Colon Cancer			
COLO 205	84.9	b	40.4
HCT-116	b	b	30.0
HCT-15	60.9	b	42.2
HT29	65.4	60.7	b
ACHN	b	b	66.9
CAKI-I	46.8	b	48.4
RAF 393	18.4	b	19.5
SIN12C	29.3	D L	22.4
00-31 Preset Can som	44.7	D	31.4
MCE7	22.8	80.4	95-1
MCI / ADD DES	22.0	69.4 h	20.1
MDA MR 221 / ATCC	ბე.4 ს	։ Ե	60.2 40.6
MDA-MD-231/AICC	։ Ե	D 67 1	49.0
H5 3781 MDA MD 425	D CO D	07.1	40.7
MDA-MB-435	09.3	D	28.0
1-4/D KM10	39.9	30.7	74.6
KM12	31.3	b	26.5
SW-620	56.6	b	b
CNC cancer	10.0		22.2
SF-268	40.2	b	29.9
SF-295	b	b	53.1
SNB-19	b	b	46.0
SNB-75	b	b	b
Melanoma			
LOX IMIV	25.0	b	19.6
MALME-3M	b	b	31.8
M14	b	b	44.5
SK-MEL-2	28.9	b	16.7
SK-MEL-5	39.4	44.2	25.9
UACC-257	76.5	b	49.6
UACC-62	89.2	b	24.4
Ovarian Cancer			
IGROVI	63.7	b	34.0
OVCAR-3	50.6	b	55.1
OVCAR-4	21.1	b	b
OVCAR-5	b	b	b
OVCAR-8	89.2	þ	46.7
Renal Cancer	20.2	~	
A498	21.5	30.2	28.2

Table 2. The screening results of compounds 6c, 7d, 9c towards several tumor cell line)^a (μ M).

^(A456) (21.5 - 30.2 - 26.2)^(a) GI₅₀: Molar concentration for 50% growth inhibition ^(b) The values GI₅₀, TGI or LC₅₀ \geq 100 μ M

The IR, ¹HNMR and ¹³C NMR data of compounds **8a-e** and **9b-e** are very informative. In the IR spectra of compounds **8a-e** and **9b-e**, the presence of a carbonyl peak at about 1700 cm⁻¹ shows that this group on the 5-oxo-[1,2,4]triazole ring was not reduced by NaBH₄. In the ¹H NMR spectra of these compounds, exocyclic -NH and -NH<u>CH₂</u> signals were observed at 5.80-6.10 ppm (exchangeable with D₂O) and 2.70-2.97 ppm, respectively, while the -N=CH signal was absent. The ¹³C peaks of the -NHCH₂ group of compounds **8a-e** were recorded at 55.80-56.05 ppm, while the signals belonging to the same group of compounds **9b-e** were observed at lower field, 49.11-49.20 ppm. The endocyclic NH peaks of compounds **8a-e** and **9b-e** appeared at 11.52-11.95 ppm.

The 1-acetylated derivatives (10 and 11) were afforded when compounds 6e and 7b were treated with acetic anhydride. The IR spectra of compounds 10 and 11 displayed additional carbonyl absorption at 1780-1783 cm⁻¹ originating from the acetyl group. In addition, the ¹H NMR spectra of acylated products (10 and 11) contain an additional signal belonging to the methyl protons of the acetyl group at 0.86-1.10 ppm. In the ¹³C NMR spectra of compounds 10 and 11, the carbonyl function of the acetyl group was observed at 160.58 -165.55 ppm, while the signal belonging to the carbonyl group on the 5-oxo-[1,2,4]triazole ring appeared at 147.75 ppm. The signal observed at 23.00-23.35 ppm in the ¹³C NMR spectra of compounds 10 and 11 was attributed to the methyl carbon of the acetyl group.

The screening experiments were performed by the Developmental Therapeutic Program of the NCI. These results demonstrate that the acetyl group at position 1 of the 5-oxo-[1,2,4] triazole ring is not essential for antitumor activity. Compound 6c exhibited activity towards leukemia, non-small cell lung cancer (except HOP-62), colon cancer (except HCT-116 and ACHN), breast cancer (except MDA-MB-435 and HS 578T), brain tumor (SF-268), melanoma (except MALME-3M, M14), ovarian cancer (except OVCAR 5) and renal cancer to inhibit 50% of the growth of tumor cells with GI_{50} values less than 100 μ M. Moreover, compound 6c showed marginal activity against HOP-62, HCT-116, ACHN, MDA-MB-435, HS 578T, SF-268, MALME-3M, M14 and OVCAR 5 with GI₅₀ values equal to or greater than 100 μ M. Compound **9c** displayed moderate activities towards all test cell lines with GI_{50} values less than 100 μ M except for HT29, SW-620, SNB-75, OVCAR-4 and OVCAR-5. Compound 7d was more selective towards the test cell lines; moderate activities were observed against the leukemia cell line (except CCRF-CEM), HOP-62, HT29, MCF7, HS 578T, T-47DSK-MEL-5 and A498 with GI₅₀ values less than 100 μ M. Although there is a p-chlorobenzyl or phenyl group at position the 3 of 4-alkyliden(or alkyl)amino-5-oxo-[1,2,4]triazole ring of compounds 6c, 7d and 9c the results obtained are not suitable for an evaluation of structure-activity relationships. However, this stimulated us to investigate structural modifications in the [1,2,4] triazole ring to obtain potential antitumor activity.

Acknowledgments

This work was supported by the Research Fund of Karadeniz Technical University. The authors thank the National Cancer Institute, USA, for the antitumor screening results, and Dr. S. Güner (Karadeniz Technical University, Department of Chemistry) and Dr. R.Ş. Aslan (Karadeniz Technical University, Department of Foreign Languages and Literature) for their critical reading of the manuscript.

References

- S. Yano, H. Kazuno, N. Suzuki, T. Emura, K. Wierzba, J. Yamashita, Y. Tada, Y. Yamada and M. Fukushima, T. Asao, Bioorg. Med. Chem. 12, 3431-41 (2004).
- 2. Y. Sadzuka, T. Sugiyama, H. Suzuki, H. Sawanishi and K. Miyamato, Toxicology Lett. 150, 341-40 (2004).
- 3. Y. Tsuzuki, K. Tomita, Y. Sato, S. Kashimoto and K. Chiba, Bioorg. Med. Chem. 14, 3189-93 (2004).
- 4. N. Demirbas, R. Uğurluoğlu, A. Demirbas, Bioorg. Med. Chem. 10, 3717-23 (2002).
- P. Marchand, M. Le Borgne, M. Palzer, G. Le Baut and R. W. Hartmann, Bioorg. Med. Chem. Lett. 13, 1553-55 (2003).
- C. Foulon, C. Danel, C. Vaccher, S. Yous, J.-P. Bonte and J.-F. Gossens, J. Chromatography A, 1035 131-36 (2004).
- J.-Y. Chou, S.-Y. Lai, S.-L. Pan, G.-M. Jow, J.-W. Chern and J.-H. Guh, Biochem. Pharmacol. 66 115-24 (2003).
- 8. B.S. Holla, K.N. Poorjary, B.S. Rao and M.K. Shivananda, Eur. J. Med. Chem. 37 511-17 (2002).
- 9. B.S. Holla, B.K. Sarojini, B.S. Rao, P.M. Akberali, N.S. Kumari and V. Shetty, Il Farmaco, 56 565-70 (2001).
- 10. E. Pomarnacka and A. Kornicka, Il Farmaco, 56 571-77 (2001).
- 11. A.A. Ikizler, E. Uzunali and A. Demirbaş, Ind. J. Pharm. 5, 289-92 (2000).
- H. Yüksek, A. Demirbaş, A. Ikizler, C.B. Johansson, C. Çelik and A.A. Ikizler, Arzneim Forsh. Drug Res. 47, 405-09 (1997).
- 13. A. Demirbas, N. Demirbas and A.A. İkizler, Ind. J. Het. Chem. 9, 87-94 (1999).
- 14. A.A. İkizler, A. İkizler, H. Yüksek and M. Serdar, M. Model. Meas. Cont. C, 57, 25-29 (1997).
- 15. A.A. İkizler, A. İkizler, M. Serdar and N. Yıldırım, Acta Pol. Pharm. Drug-Res., 54, 360-63 (1997).
- 16. N. Demirbas, S. Alpay Karaoğlu, A. Demirbas and K. Sancak, Eur. J. Med. Chem. (in press).
- T. Nakata, S. Takashima, Y. Shiotsu, C. Murakata, H. Ishida, S. Akinaga, P.K. Li, H. Sasano, T. Suzuki and T. Saeki, Steroid Biochem. Mol. Biol., 86, 455-60 (2003).
- N. Zilembo, E. Bajetta, E. Bichisao, A. Martinetti, I. La Torre, P. Bidoli, R. Longarini, T. Portale, E. Seregni and E. Bombardieri, Biomed. Pharmacother., (in press).
- 19. P.E. Goss and K. Strasser-Weippl, Best Pract. Res. Clin. End. Met., 18, 113-30 (2004).
- 20. J.R. Santen, Steroids, 68, 559-67 (2003).
- 21. M. Clemons, R.E. Coleman and S. Verma, Cancer Treat. Rev., 30, 325-32 (2004).
- 22. S. Chen, Y.C. Kao and A. Laughton, J. Steroid Biochem., 61, 107-15 (1997).
- 23. E. Ayça, A.A. Ikizler and M. Serdar, Chem. Acta Turc. 9, 381-88 (1981).
- 24. B. Kahveci and A.A. İkizler, Turk. J. Chem. 24, 343-51 (2001).
- 25. J. Daunis, Y. Guindo, R. Jacquier and P. Vialefont, B. Soc. Chim. Fr. q, 3296-99 (1971).
- 26. A.A. İkizler and R. Ün, Chem. Acta Turc. 7, 119-22 (1979).
- 27. G.D. Gray and E. Wickstrom, Biotechniques, 21, 780-83 (1996).