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1. Introduction
Glioblastoma (GBM), also known as glioblastoma multiforme, 
is the most common aggressive brain tumor among primary 
brain tumors. Its treatment poses significant challenges 
and complexities. Although the exact cause of glioblastoma 
tumors has not been clearly established, researchers have 
identified certain risk factors, including ionizing radiation, 
some viral infections such as the Epstein–Barr virus and 
cytomegalovirus, advanced age, male sex, some ethnicities, 
and genetic background. Interestingly, a history of allergy 
(respiratory allergies, eczema, and asthma) has been shown 
to be a protective factor. While GBM accounts for 1.4% of 
all cancer types, it accounts for 2.9% of cancer-related deaths 
(Özduman et al., 2019). GBM patients who undergo surgical 

treatment have an average lifespan range of 12 to 18 months, 
which can vary with age, sex, and country of residence 
(Delgado López and Corrales-García, 2016). 

Although there are many studies on brain cancer 
research, a treatment that completely cures GBM tumors has 
not been found yet. The treatment of GBM patients involves 
surgical intervention, radiotherapy, and chemotherapy. 
One of the biggest challenges in treatment is the resistance 
of glioblastoma tumor cells, which have a heterogeneous 
structure, to drugs and/or therapy. It is suggested that this 
resistance to treatment arises from glioma stem cells, which 
are one of the heterogeneous cell groups that form GBMs 
(Alagoz, 2018; Eberhart and Bar, 2020; Suvà and Tirosh, 
2020).

Background/aim: Glioblastoma is the most heterogeneous and the most difficult-to-treat type of brain tumor and one of the deadliest 
among all cancers. The high plasticity of glioma cancer stem cells and the resistance they develop against multiple modalities of therapy, 
along with their high heterogeneity, are the main challenges faced during treatment of glioblastoma. Therefore, a better understanding 
of the stemness characteristics of glioblastoma cells is needed. With the development of various single-cell technologies and increasing 
applications of machine learning, indices based on transcriptomic and/or epigenomic data have been developed to quantitatively 
measure cellular states and stemness. In this study, we aimed to develop a glioma-specific stemness score model using scATAC-seq data 
for the first time. 
Materials and methods: We first applied three powerful machine-learning algorithms, i.e. random forest, gradient boosting, and 
extreme gradient boosting, to glioblastoma scRNA-seq data to discover the most important genes associated with cellular states. We 
then identified promoter and enhancer regions associated with these genes. After downloading the scATAC-seq peaks and their read 
counts for each patient, we identified the overlapping regions between the single-cell peaks and the peaks of genes obtained through 
machine-learning algorithms. Then we calculated read counts that were mapped to these overlapping regions. We finally developed a 
model capable of estimating the stemness score for each glioma cell using overlapping regions and the importance of genes predictive of 
glioblastoma cellular states. We also created an R package, accessible to all researchers regardless of their coding proficiency. 
Results: Our results showed that mesenchymal-like stem cells display higher stemness scores compared to neural-progenitor-, 
oligodendrocyte-progenitor-, and astrocyte-like cells. 
Conclusion: scATAC-seq can be used to assess heterogeneity in glioblastoma and identify cells with high stemness characteristics. The 
package is publicly available at https://github.com/Necla/StemnesScoRe and includes documentation with implementation of a real-
data experiment. 
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With the development of next generation sequencing 
technologies, the complex and heterogeneous structure 
of many cancer types has been more extensively studied, 
resulting in a greater understanding of cancer cells. The 
use of single-cell sequencing technologies, which have 
become increasingly popular in recent years, has enabled 
the investigation of tumor cell heterogeneity at the single-
cell resolution (Tang et al., 2009). These technologies 
play an important role in identifying different cell 
populations, measuring the frequency of cell types in 
tissues, characterizing differences in similar cell types, 
and investigating population heterogeneity (Andrews 
and Hemberg, 2018). Furthermore, recent advances in 
molecular and computational biology have extended 
single-cell sequencing beyond classical transcriptomic 
profiling at the cellular level. As a result, different data 
on the genomic and epigenomic properties of a single 
cell have been obtained. For example, the transposase-
accessible chromatin with high throughput sequencing, 
which determines accessible regions in chromatin and 
helps us understand the epigenetic heterogeneity of 
complex tissue structures at single-cell resolution, has 
become a frequently used method in recent years and has 
gained momentum in the last few years.

As a result of the development of next-generation 
sequencing technologies, the heterogeneous structure of 
tumors has begun to be understood and it has been revealed 
that there are different cell populations in the same tumor 
tissue. Cancer stem cells are one of these populations and 
the study of cancer stem cells, which are thought to play 
an active role in the growth and recurrence of tumor cells, 
is critical in understanding their initiation, development, 
and resistance to cancer treatment. Therefore, new 
stemness indices have been defined, such as the DNA 
methylation-based stemness index (mDNAsi) and mRNA 
expression-based stemness index (mRNAsi), to be used 
in determining stemness-related features associated with 
tumor recurrence (Malta et al., 2018; Zhang et al., 2020). 
These indices, calculated independently of each other, were 
obtained using a machine learning algorithm called the 
one-class logistic regression model. High values obtained 
for stemness indices have been associated with biological 
processes that are active in cancer stem cells and tumor 
dedifferentiation (Malta et al., 2018). In addition, the 
literature shows that there are entropy-based approaches 
that express stemness index as transcriptomic stemness 
(Grün et al., 2016; Guo et al., 2017; Teschendorff and 
Enver, 2017). However, all of these approaches primarily 
use transcriptomic data, and do not adequately leverage 
epigenomic data at all or use it insufficiently. An approach 
that uses scATAC-seq data, which measures “chromatin 
accessibility”, one of the most important determinants of 
gene expression control and one that has been increasingly 

used in single-cell analyses in recent years, to determine a 
stemness index has not yet been developed.

While next-generation sequencing technologies are 
rapidly developing, performing both scRNA-seq (single-
cell RNA sequencing) and scATAC-seq (single-cell ATAC 
sequencing) analyses for the same GBM samples is not 
currently a practical approach in terms of cost. Therefore, 
unlike the approaches developed to determine the stemness 
index, which may not be practical, in this project we aimed 
to develop a new stemness score specific to glioblastoma 
using scATAC-seq data. In this way, researchers will be 
able to investigate the cancer stemness of GBM cells using 
only accessible regions in chromatin (scATAC-seq data). 
An R package called StemnesScoRe was also developed 
and the source code implementing the method is available 
at https://github.com/Necla/StemnesScoRe/. 

2. Materials and methods
2.1. scRNA-seq data
To find marker genes that can differentiate cellular types of 
GBM, we used scRNA-seq data downloaded from https://
www.ncbi.nlm.nih.gov/bioproject/ under the accession 
number PRJNA324289. These data are composed of 
329 high quality single cells originating from four adult 
cell populations: astrocytes (34 cells), quiescent NSCs 
(879 cells) and activated NSCs (152 cells), and more 
committed NPCs (64 cells). These cells were freshly 
isolated from young adult mouse subventricular zones. 
For a comprehensive understanding of these data and 
insights into the sequencing procedure employed, readers 
are encouraged to refer to Dulken et al. (2017).
2.2. Application of machine learning methods
In this part of the study, we applied three powerful 
machine learning algorithms: random forest (RF), gradient 
boosting (GB), and extreme gradient boosting (XGB). 
These are robust and efficient classification algorithms for 
high-dimensional data. To apply these ML algorithms, 
the data are divided into two parts, with 70% of the data 
used as training data and 30% used as test data. This 
ratio was preserved for each subtype. Each classification 
algorithm was applied 100 times using randomly selected 
cells from each population, and it was tested whether 
the cells in the test data were correctly assigned to the 
relevant populations. For the RF algorithm, the number 
of trees was set to 500, the number of random features 
that needed to be used when splitting nodes in each tree 
was entered into the algorithm as the square root of the 
number of genomic features, and other parameters were 
left as default. In the gradient boosting algorithm, the 
number of trees was set to 2500, the learning rate was set 
to 0.001, the tree depth was set to 5, and the minimum 
observation count in the terminal nodes of the trees was 
set to 5, while other parameters were left as default. In the 



KOÇHAN et al. / Turk J Biol

385

extreme gradient boosting, the maximum depth was set to 
15, the learning rate was set to 0.01, the ratio of features 
in the data in each tree was set to 0.5, eta was set to 0.001, 
and the maximum boosting number was set to 2500 in the 
model. Each model was run 100 times and the outputs of 
each repetition of each model were recorded. At the end 
of each model, the effective genes in classification were 
listed and the most important genes seen in at least 50 
repetitions were selected. The complete list of the top 100 
genes from each machine learning model and the list of 
common genes that are defined as important genes are 
given in Supplementary Files (Supplementary Files 1–4).
2.3. Defining promoter and enhancer regions
To identify promoter and enhancer regions associated 
with the genes identified through ML algorithms, we used 
the GeneAlaCart database (https://genealacart.genecards.
org/). Along with the genomic coordinates of these genes, 
we obtained the gene-enhancer association parameter 
from the same database. This parameter refers to the 
functional interaction between a gene and its associated 
enhancer or promoter regions and indicates the strength 
of interaction between a gene and its associated promoter 
and/or enhancer regions (Fishilevich et al., 2017).
2.4. scATAC-seq 
scATAC-seq data for GBM patients were downloaded 
from the Gene Expression Omnibus (GEO) database with 
accession number GSE139136. The folder is composed of 
the count file containing the raw read counts, the barcode 
files containing cell IDs, and the peak files containing the 
genomic regions of the corresponding cell for each patient. 
There are 4 patients all of which are primary GBM and 
Isocitrate Dehydrogenase Wild Type (IDH-WT): G4218 
(male, 64 years), G4250 (male, 73 years), G4275 (female, 
52 years), and G4349 (male, 62 years). For more details, 
readers are referred to Guilhamon et al. (2021). 

After downloading the scATAC-seq peaks and their 
read counts for each patient, our next step was to identify 
the overlapping regions between the single-cell peaks and 
the peaks of genes obtained through machine learning 
algorithms, without considering the strand orientation. 
Then we performed the following steps to calculate the 
read counts that were mapped to these overlapping regions:  
1.	 Compute the midpoint of the promoter and/or 

enhancer regions identified for the genes obtained 
through ML algorithms. 

2.	 Test whether the midpoint calculated in the first step 
falls into the corresponding peaks of GBM scATAC-
seq peak data. The “mergeByOverlaps()” function 
in the IRanges package was used to identify the 
overlapping regions, and the read counts associated 
with these regions were retrieved from the scATAC-
seq read counts. 

3.	 The read counts of each gene in each cell were 
calculated by combining the corresponding genomic 

regions for each gene (i.e. taking the total sum of 
counts). In this step, we calculated Z-scores of each 
cell and cells that fall within the region below the 
statistical threshold of µ - 1* σ are assigned a value 
of zero. This will allow us to have stemness scores of 
lowly expressed genes as zero. Additionally, since gene 
association power is different for each peak, we took 
the average of the gene association power of peaks for 
each gene.  

At the end of these steps, a new matrix was created 
composed of the read counts of each gene in each cell, 
the importance degree of each gene obtained by machine 
learning methods, and the gene association power. The 
weights of gene importance and gene interaction strength 
were normalized using the “scale()” function and the read 
counts were transformed using log2 
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, is calculated by multiplying the weight derived 
from gene importance with the weight derived from gene 
association power. To scale the scores between 0 and 1, 
each stemness score is normalized using the following 
formula: 
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2.6. Labeling cells based on Neftel genes 
Recent single-cell RNA-seq experiments have uncovered 
intratumoral heterogeneity within primary GBM, revealing 
a continuum of four cellular states: neural-progenitor-like 
(NPC: NPC1, NPC2), oligodendrocyte-progenitor-like 
(OPC), astrocyte-like (AC), and mesenchymal-like (MES: 
MES1, MES2) (Neftel et al., 2019). 

We assigned cells to each of the six scRNAseq-derived 
cellular states (Neftel et al., 2019) using the biomarker 
genes that are identified in Neftel et al. (2019) for each 
state. For this purpose, the promoter regions of signature 
genes associated with each state were downloaded from the 
GeneAlaCart database. Then we calculated the midpoint 
of the promoter/enhancer regions of the signature genes 
identified in Neftel et al. (2019) and checked if the midpoint 
falls into the corresponding peaks of GBM scATAC-seq 
peak data. The “mergeByOverlaps()” function, part of the 
IRanges package, was utilized to identify overlapping 
regions, and the read counts associated with these regions 

https://genealacart.genecards.org/
https://genealacart.genecards.org/
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were obtained from the scATAC-seq read counts. The 
read counts of each gene in each cell were calculated by 
combining the corresponding genomic regions for each 
gene (i.e. taking the total sum of counts), and the read 
counts were transformed using log2 
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𝑖𝑖∈𝐺𝐺
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. To determine 
the cell type population for each state, heatmaps, which 
apply hierarchical clustering algorithms, were generated. 
These heatmaps were produced for each state separately.
2.7. Bulk ATAC-seq 
It is stated in Guilhamon et al. (2021) that the functional 
differences between the stem-like cells found in different 
states of GBM are not fully understood, and it is unclear 
whether they represent distinct populations of glioma 
stem cells (GSCs) with unique properties that could 
guide therapy. To handle this, they used a combination of 
single-cell technologies and functional assays to identify 
unique dependencies associated with three glioblastoma 
stem cell states (reactive, constructive, and invasive) that 
are reflective of patient outcome. They provided their 
findings and the datasets where the GSC state labels for 
each sample and the coordinates of discriminating ATAC 
regions for each GSC state are given. In the present study, 
we incorporated the genomic regions associated with these 
states (as identified by bulk ATAC-seq) as stemness is 
significantly associated with them. Using this information, 
we assigned each cell from the scATAC-seq data to one of 
these three states.

3. Results and discussion
Stemness score is a measure of the “stemness” or self-
renewal potential of cells, particularly in the context of 
cancer biology. Stem cells have the ability to divide and 
differentiate into various cell types and cancer stem cells 
are thought to be responsible for the initiation, growth, 
and spread of tumors. The stemness score is typically 
calculated using gene expression data and is based on the 
expression levels of genes that are associated with stem 
cell self-renewal and differentiation. This score can be 
used to classify tumors into different subtypes based on 
their stemness properties and may be used as a prognostic 
indicator or to guide treatment decisions.

The stemness score is a newly emerging concept in 
cancer research and is still being studied and refined, so its 
precise definition and application may vary depending on 
the context. Typically, transcriptomic or epigenomic data 
are used to quantitatively measure stemness. However, 
scATAC-seq data, which provide valuable information 
about the lineage and behavior of tumor cells, have not 
yet been utilized for this purpose. To address this gap, a 
new methodology was developed in the present study to 
estimate the stemness score for GBM cells using scATAC-
seq data. We followed the workflow outlined in Figure 1 to 
calculate the stemness score for each cell and then compare 
the stemness of different cellular states.  

Cellular state is a term that describes the unique 
epigenomic character of each cell, which better explains 
intratumoral heterogeneity, using epigenomic and/
or transcriptomic data, and marker genes for different 
cellular lineages. Single-cell RNA sequencing is a 
commonly used method to determine and understand 
intratumoral heterogeneity. Using scRNA-seq, Neftel et 
al. (2019) reported the presence of four distinct cellular 
states in GBM: neural-progenitor-like (NPC-like), 
oligodendrocyte-progenitor-like (OPC-like), astrocyte-
like (AC-like), and mesenchymal-like (MES-like) states. 
In their study, the MES-like and NPC-like states were 
further divided into two subtypes each, namely MES-like 
1, MES-like 2, NPC-like 1, and NPC-like 2. Furthermore, 
Guilhamon et al. (2019) used scATAC-seq, which reflects 
chromatin accessibility, as an alternative method to 
determine cellular states in GBM. In the present study, we 
postulated that the scATAC-seq data could also be used 
to determine the stemness of each cell. More specifically, 
we used signature genes of each cellular state to identify the 
promoter regions of these genes and calculated chromatin 
accessibility. We then performed hierarchical clustering to 
observe the clustering structure and therefore determine 
which cells belong to the corresponding cellular state. For 
instance, Figure 2 displays heatmaps for each patient when 
MES-like 2 specific marker genes were used. According to 
Figure 2, we categorized cells into 5 different clusters for the 
first and fourth patients (i.e. G4218 and G4349), while we 
categorized cells into 3 different clusters for the second and 
third patients (i.e. G4250 and G4275). The cells with high 
chromatin accessibility at MES-like 2 marker genes were 
identified as MES-like 2 cells. Additionally, we refer readers 
to the supplementary data for heatmaps of other cellular 
states for each patient (Supplementary Figures S1–S5). 

To estimate the stemness score for each cell, we first 
identified subtype-specific genes using scRNA-seq data 
available at https://www.ncbi.nlm.nih.gov/bioproject/ 
with the accession number PRJNA324289. We applied 
three ML algorithms to identify genes that were predictive 
of the four different cellular states of GBM cells, namely 
qNSC, aNSClow, aNSChigh, and NPC. After identifying 
state-specific genes, we extracted promoter and/or 
enhancer regions of those genes using GeneALaCards. We 
used this information, combined with gene importance as 
determined by ML algorithms, to model and estimate the 
stemness score of each cell. Figure 3 displays the stemness 
score distribution of cells for each patient, revealing 
that many cells for each patient had a stemness score of 
either zero or below 0.5, as expected. To demonstrate the 
proportion of the cells in each group with <0.5 stemness 
score (low stemness) and >0.5 (high stemness), pie charts 
are also provided (Supplementary Figure S6). Our findings 
indicate that our novel algorithm based on scATAC-seq 
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data can predict stemness scores in accordance with the 
literature where a minor fraction of cells in a GBM tumor 
have high stemness scores (Suva and Tirosh, 2020).   

Primary GBM is composed of distinct cellular states, 
with stem-like cells present across these states. Wang 
et al. (2019) showed that GBM cells can be positioned 
along a single axis of variation, ranging from proneural to 
mesenchymal transcriptional profiles. More specifically, 
stemness-associated genes were at the extremes of this axis, 
indicating the presence of stem-like cells in different states 
of GBM. The functional properties and tumor-initiating 
capabilities of these stem-like cells, as well as their unique 
features, remain to be fully understood. It is crucial to 

establish whether these stem-like cells in different GBM 
states represent functionally distinct populations with 
unique properties. This understanding would guide 
therapeutic advancements for GBM treatment. To address 
this issue, Guilhamon et al. (2021) combined single-cell 
technologies to define the composition of glioma stem 
cells in primary GBM. They also performed functional 
assays to identify the unique dependencies of GSCs, 
which reflect invasive, constructive, and reactive states. 
These distinct states of GSCs are associated with patient 
outcomes, providing valuable insights for developing 
targeted therapies and improving patient prognosis. The 
subset classified as invasive GSCs indicates the worst 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The workflow of the proposed approach. First, the datasets were downloaded for downstream analyses. Then three 
different machine learning algorithms were applied to identify genes that can differentiate GBM subtypes using GBM scRNA-
seq data. Additionally, cells were assigned into one of the cellular states identified by Neftel et al. (2019), as well as different 
subtypes (constructive, reactive, and invasive) using GBM scATAC-seq and bulk ATAC-seq datasets, respectively. Finally, the 
stemness score of each cellular state was compared.   
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Figure 2. Heatmaps using MES-like 2 specific markers. The heatmaps show the expression levels of MES-like 2 specific 
marker genes for four patients (G4218, G4250, G4275, and G4349). The read counts were transformed using log2 

𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝑠𝑠𝑠𝑠 = ∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖
𝑖𝑖∈𝐺𝐺
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. 
Each heatmap, where rows are MES-like 2 specific marker genes and columns are cells of corresponding patient, depicts a 
heatmap for each patient. Clusters of cells were formed using a hierarchical clustering approach, with the number of clusters 
varying among patients. For instance, in the case of the second patient, three clusters were generated.
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prognosis, whereas the reactive subset shows a more 
favorable prognosis.

In the present study, we also utilized the classification 
suggested by Guilhamon et al. (2021), namely constructive, 
reactive, and invasive, to compare the distribution of 
stemness scores across these proposed functional states. 
Therefore, when labeling cells with one of these three 
states, we filtered out those with stemness scores below 
0.5. After filtering, for each patient we created violin plots, 
which display the distribution of the stemness scores for 
each state (Figure 4). We then combined the constructive, 
reactive, and invasive groups with the subtypes suggested 
by Neftel et al. (2019) and compared the stemness score of 
each cellular state. Figure 5 depicts the predicted stemness 

scores for each cellular state based on their respective 
groups. These results show that the stemness scores of 
MES-like cells are higher than those of other cellular states, 
particularly for constructive cells, in 3 out of 4 patients. 
Our findings are consistent with those of previous studies, 
in the sense that the mesenchymal subtype (MES-like) has 
the highest stemness score, in accordance with stronger 
association of GBM mesenchymal cells with tumor 
initiation capacity, resistance to chemo-/radiotherapy, 
worse prognosis, etc. (Behnan et al., 2019).

Due to the lack of ground truth in our dataset, our 
analysis is limited in terms of establishing benchmarks or 
reference points or conducting validation on independent 
datasets. Our findings, however, demonstrate that 
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Figure 3. Stemness score of each cell for each patient. Bar plots show the stemness score of each cell for four 
patients (G4218, G4250, G4275, and G4349). The x-axis of each bar chart represents the predicted stemness score, 
while the y-axis indicates the frequency of cells with that score.    
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our innovative algorithm, utilizing scATAC-seq data, 
effectively predicts stemness scores, measurements of the 
stemness of each glioma cell. In contrast to other methods 
that predict stemness scores based on transcriptomic or 
epigenomic data, our approach utilizes scATAC-seq data 
to characterize the stemness features of glioblastoma cells.

4. Conclusion
Overall, our study highlights the usefulness of scATAC-
seq in assessing GBM heterogeneity and identifying 
cells characterized by their high stemness properties. 
This novel approach provides valuable insights into the 
stemness landscape of GBM, offering potential avenues for 
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Figure 4. Violin plots for each of the four patients (G4218, G4250, G4275, and G4349). Each plot represents the stemness 
score for each of the three subtypes (i.e. constructive, invasive, and reactive). 
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improved therapeutic strategies targeting these high-risk 
cell populations.
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Supplementary Figure S1. Heatmaps using NPC-like 1 specific markers. The heatmaps show the expression levels of NPC-
like 1 specific marker genes for four patients (G4218, G4250, G4275, and G4349). Each heatmap, where rows are NPC-like 1 
specific marker genes and columns are cells of the corresponding patient, depicts a heatmap for each patient.  
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Supplementary Figure S2. Heatmaps using NPC-like 2 specific markers. The heatmaps show the expression levels of NPC-like 
2 specific marker genes for four patients (G4218, G4250, G4275, and G4349). Each heatmap, where rows are NPC-like 2 specific 
marker genes and columns are cells of the corresponding patient, depicts a heatmap for each patient.  



KOÇHAN et al. / Turk J Biol

3

 

 
Supplementary Figure S3. Heatmaps using OPC-like specific markers. The heatmaps show the expression levels of OPC-
like specific marker genes for four patients (G4218, G4250, G4275, and G4349). Each heatmap, where rows are OPC-like 
specific marker genes and columns are cells of the corresponding patient, depicts a heatmap for each patient.  
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Supplementary Figure S4. Heatmaps using AC-like specific markers. The heatmaps show the expression levels of AC-like 
specific marker genes for four patients (G4218, G4250, G4275, and G4349). Each heatmap, where rows are AC-like specific 
marker genes and columns are cells of the corresponding patient, depicts a heatmap for each patient.  
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Supplementary Figure S5. Heatmaps using MES-like 1 specific markers. The heatmaps show the expression levels of MES-
like 1 specific marker genes for four patients (G4218, G4250, G4275, and G4349). Each heatmap, where rows are MES-like 1 
specific marker genes and columns are cells of the corresponding patient, depicts a heatmap for each patient.  



KOÇHAN et al. / Turk J Biol

6

 

 

   Supplementary Figure S6. Pie charts of proportion of cells in 
each group for four patients (G4218, G4250, G4275, and G4349). 
The pie charts illustrate the distribution of cells based on their 
stemness levels, categorized as low stemness and high stemness. 
The percentages corresponding to each category are provided 
within the figures. Cells with a stemness score of less than 0.5 are 
classified as low stem cells, while those with a score greater than 0.5 
are classified as high stem cells.
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