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1. Introduction
Cancer is a disease caused by abnormal cell proliferation 
and loss of normal cell regulation. Due to the dynamic 
nature of the disease, it can be challenging to diagnose 
and treat it in its early stages for most patients (Student 
and Fujarewicz, 2012). Fortunately, molecular-based 
approaches such as transcriptomics offer the opportunity 
to study the activity of multiple genes and thus determine 
early physiological information about cancer (Student and 
Fujarewicz, 2012; Xiong et al., 2021). A transcriptome is the 
set of transcripts in a particular tissue or cell of an organism 
that represents the information flow of gene expression. 
Large amounts of transcriptome data are available for many 
phenotypes, including cancer (Dong and Chen, 2013). 
The information obtained from the transcripts contains 

specific patterns that reveal the occurrence of certain 
events hidden in the complex biological architecture 
(Kukurba and Montgomery, 2015; He et al., 2018). To 
this end, statistical and machine learning (ML) methods 
have been used to analyze biological datasets. Researchers 
have utilized transcriptomic profiles in this field to classify 
cancer and overcome the limited diagnostic capabilities 
of conventional methods (Hossain et al., 2021). However, 
the high dimensionality and small sample size of gene 
expression datasets pose a challenge for classification 
approaches that rely on traditional statistical methods 
(Student and Fujarewicz, 2012).

Among ML approaches, the support vector machine 
(SVM) algorithm is one of the widely used classification 
methods enabling subtle pattern recognition in complex 

Background/aim: The complicated nature of tumor formation makes it difficult to identify discriminatory genes. Recently, 
transcriptome-based supervised classification methods using support vector machines (SVMs) have become popular in this field. 
However, the inclusion of less significant variables in the construction of classification models can lead to misclassification. To improve 
model performance, feature selection methods such as enrichment analysis can be used to extract useful variable sets. The detection 
of genes that can discriminate between normal and tumor samples in the association of cancer and disease remains an area of limited 
information. We therefore aimed to discover novel and practical sets of discriminatory biomarkers by utilizing the association of cancer 
and disease.
Materials and methods: In this study, we employed an SVM classification method for differentially expressed genes enriched by Disease 
Ontology and filtered nondiscriminatory features using Wilk’s lambda criterion prior to classification. Our approach uses the discovery 
of disease-associated genes as a viable strategy to identify gene sets that discriminate between tumor and normal states. We analyzed 
the performance of our algorithm using comprehensive RNA-Seq data for adenocarcinoma of the colon, squamous cell carcinoma of 
the lung, and adenocarcinoma of the lung. The classification performance of the obtained gene sets was analyzed by comparison with 
different expression datasets and previous studies using the same datasets.
Results: It was found that our algorithm extracts stable small gene sets that provide high accuracy in predicting cancer status. In 
addition, the gene sets generated by our method perform well in survival analyses, indicating their potential for prognosis.
Conclusion: By combining gene sets for both diagnosis and prognosis, our method can improve clinical applications in cancer research. 
Our algorithm is available as an R package with a graphical user interface in Bioconductor (https://doi.org/10.18129/B9.bioc.SVMDO) 
and GitHub (https://github.com/robogeno/SVMDO).
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datasets. The SVM algorithm creates a decision boundary, 
called a hyperplane, which divides the entire dataset into 
two classes to predict the labeling of the data points. 
Support vectors are the data points closest to the hyperplane 
from both sides. The distance between the two sides of the 
support vectors is called the margin. When the margin is 
large, good classification performance is achieved (Huang 
et al., 2018). 

While a linear separation of the data is desirable 
in classification procedures, in practice nonlinear 
classification often occurs. To solve this problem, 
SVM techniques use kernel methods that map linearly 
inseparable data points into higher dimensional spaces, 
making them linearly separable (Zhang et al., 2004). 
The choice of kernel method has a major impact on 
classification performance. Unfortunately, there is no 
exact way to determine which kernel method is better 
at the beginning. The best kernels can only be selected 
by experimenting with the dataset (Huang et al., 2018). 
Among the kernel methods, radial basis function (RBF) 
is a common classification approach. The RBF kernel 
provides a nonlinear mapping of data points in a higher 
dimensional space. It is an effective kernel method when 
there is a nonlinear relationship between class labels and 
attributes (Apostolidis-Afentoulis, 2015). In addition, the 
RBF kernel also provides simplified tuning by using only 
two parameters: gamma (γ), which adjusts the smoothness 
of the hyperplane by changing its flexibility (Shadeed et 
al., 2020), and the penalty parameter (C), which adjusts 
the tolerance to data points shifted from their sides (Yang 
et al., 2021). 

The SVM algorithm also poses challenges. As the 
size of the training dataset increases, SVM classification 
becomes more and more memory-intensive. Moreover, 
SVMs cannot handle large datasets when kernel methods 
are involved in the classification process (Yue et al., 2003). 
Therefore, the dimensions of the involved datasets should 
be adjusted. Moreover, class imbalance is a problem for 
SVMs, which leads to high misclassification rates of 
minority classes (Imam et al., 2006). Transcriptome-based 
supervised classification studies, including those utilizing 
SVMs, have mainly used microarray datasets. Despite 
their low costs, the background noise and signal saturation 
of microarrays are problematic as they compromise the 
true potential of using transcriptome data for classification 
(Zhao et al., 2014). Thanks to emerging next-generation 
sequencing technologies, RNA-Seq datasets could be useful 
to minimize these noise reduction issues (Hrdlickova et 
al., 2017).

Supervised classification may not require all features 
in large datasets, as not all features may contain sufficient 
information. For instance, RBF-SVM methods are 
most effective when the number of features is limited 

(Apostolidis-Afentoulis, 2015). Irrelevant features in high-
dimensional datasets can negatively impact the efficiency 
of the ML process. Knowledge-based approaches such 
as Gene Ontology (GO) are commonly used in feature 
selection methods to minimize this problem (Cai et al., 
2018; Liang et al., 2018). 

In genetic studies, enrichment analysis is not primarily 
used to harness the power of the clinical aspect of genes 
with altered expression levels (Shah et al., 2012). In cancer 
research, this is an important finding due to the frequent 
cooccurrence of chronic diseases in cancer patients. For 
example, certain cancers are associated with infections 
caused by oncoviruses (Kori and Arga, 2020). Diabetes 
can also contribute to the development of several types 
of cancer, including colorectal, prostate, and breast 
cancer (Gallagher and LeRoith, 2015; Tu et al., 2018). It 
is therefore possible that similar genes are associated with 
multiple diseases. These associations can be identified 
through Disease Ontology (DO) enrichment analysis. 

DO is an open-source ontology that integrates 
biomedical data related to human diseases(Yu et al., 
2015) . The DO enrichment approach allows users to ask 
which disease or class of diseases is overrepresented in a 
particular gene set of interest. For example, in the study by 
LePendu et al. (2011), tumor-suppressor gene TP53 was 
found to be overrepresented in cancer and fibroepithelial 
neoplasms and was also annotated with specific diseases 
such as colorectal cancer and Li–Fraumeni syndrome. 
Compared to other ontologies, DO is used for research on 
genomic disease associations. In addition, it is an important 
database for the development of more effective health 
informatics tools used for diagnostics and prediction of 
disease phenotypes and drugs (Schriml et al., 2022).

The use of DO alone may not provide a sufficiently 
informative pattern for classification. Various feature 
selection methods have been investigated to effectively 
eliminate irrelevant and redundant features, including 
combinations of different methods (Liu et al., 2004). 
One such approach is the use of Wilk’s lambda criterion, 
which allows moderate filtering of features while gradually 
combining different features to create a set of multiple 
features with high discriminative power (Ouardighi et al., 
2007).

The detection of genes that can discriminate 
between normal cells and tumor samples in terms of 
the association of cancer and disease remains an area of 
limited information. In this study, we developed an SVM 
algorithm that filters cancer RNA-Seq datasets based on 
DO enrichment using the Wilk’s lambda criterion. This 
method allows us to identify genes that are effective in 
classifying normal and tumor samples. Our goal was to 
discover novel and practical discriminatory biomarker 
candidates by exploiting the association between cancer 
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and disease. To facilitate the use of our approach, we 
provide a graphical user interface for all users.

2. Materials and methods
2.1. Algorithm development
The SVM-DO algorithm was implemented in the R 
programming language (version 4.2.2) using RStudio 
IDE (Krotov, 2017). The script was developed to work on 
Windows and Linux operating systems. The selected R 
packages were obtained from the repositories of CRAN 
(Hornik, 2012) and Bioconductor (Gentleman et al., 2004). 
2.2. Differential expression analysis 
We employed a diverse set of gene expression datasets 
that were obtained from various platforms, including 
microarray and RNA-Seq, and subjected to different 
preprocessing conditions such as FPKM (Filloux et al., 
2014), RPKM (Wagner et al., 2012), MAS5 (Parrish and 
Spencer, 2004), and RMA (Parrish and Spencer, 2004) (as 
listed in Table 1). 

To evaluate the performance of the algorithm, the 
Cancer Genome Atlas (TCGA) (Tomczak et al., 2015) 
and NCBI Gene Expression Omnibus (GEO) (Barrett 
and Edgar, 2006) databases were accessed, using datasets 
linked to cancers of the colon (COAD) and lungs 
(LUSC and LUAD). The normalized RNA-Seq datasets 
from the TCGA-COAD, TCGA-LUSC, and GSE40419 
(GEO-LUAD) datasets were used to obtain gene sets 
to distinguish tumor samples from normal cells. Other 
expression datasets were used to evaluate the diagnostic 
performance of the SVM-DO algorithm.

Statistical analysis of gene expression was performed 
using the nortest (version 1.0-4) (Gross and Ligges, 
2015) and BSDA (version 1.2.1) (Arnholt and Evans, 
2021) packages. Conformity to normal distribution was 

analyzed using the Anderson–Darling test. The Mann-
Whitney U test or z-test was applied to test for differential 
gene expression in the normalized datasets. In addition, 
the Wald test was used for RNA-Seq count datasets. The 
determined p-values were adjusted with Benjamin–
Hochberg correction. The significance threshold was 
set as adjusted p < 0.05 and log2FC ≤ –1.5 or log2FC ≥ 
1.5 for differential expression. A user-defined input size 
(n) was used to filter the original gene lists (i.e., up- and 
downregulated genes) of TCGA-COAD, TCGA-LUSC, 
and GEO-LUAD prior to feature selection.
2.3. DO enrichment analysis
Differentially expressed genes were first screened for 
significant disease associations using the DOSE package 
(version 3.24.2) (Yu et al., 2015), which uses human 
disease annotation maps provided from the HDO.db 
package (version 0.99.1) (Hu and Yu, 2022) including 
detailed information on the recent version of the Human 
Disease Ontology database. 

Disease features and etiological factors are integrated 
to describe disease complexity (Schriml et al., 2022) 
and the latest version of the DO database (v2021-08-
17) includes 10,862 disease terms and 15 different 
relationships (disease, phenotype, sequence, etc.). To apply 
gene set filtration based on significant disease enrichment, 
adjusted p-values (Benjamin–Hochberg) with a threshold 
of <0.05 were used (Figure 1).
2.4. Gene set trimming and classification 
The gene set including features with significant disease 
enrichment was subjected to additional filtering using 
the klAR package (version 1.7-2) (Weihs et al., 2005) with 
the Wilk’s lambda criterion. Using this method, genes 
were selected based on their individual contributions to 
the discriminatory model, and each feature was assigned 

Table 1. Transcriptome datasets employed in the present study.

Tumor Dataset ID
Sample Size

Platform Normalization procedure
Normal Tumor

COAD 

TCGA 41 478 RNA-Seq FPKM
GSE4107 10 12 Microarray MAS5, scaled to 500
GSE8671 32 32 Microarray MAS5
GSE24514 15 34 Microarray RMA
GSE32323 17 17 Microarray RMA
GSE95132 10 10 RNA-Seq Count (Not Normalized)

LUSC
TCGA 49 502 RNA-Seq FPKM
GSE84784 9 9 Microarray RMA

LUAD
GSE2514 19 20 Microarray MAS5
GSE40419 77 87 RNA-Seq RPKM
GSE148036 5 5 RNA-Seq Count (Not Normalized)
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a p-value for its inclusion in the model. This process is 
optimized by adjusting the “niveau value,” which is the 
threshold for the p-value of the partial change of the last 
feature in the model. In our study, an initial level value of 
0.1 was used, which was automatically reduced in a gene 
set trimming loop until it reached the threshold value of 
≤0.05. When the current p-values reached the threshold, 
the process of trimming the gene set was skipped. This 
process was integrated into a classification model to 
identify the gene set with the most effective discrimination 
performance.

Prior to classification, the transcriptome dataset 
samples were randomly divided into training (80%) 
and testing (20%) groups using the caTools package 
(version 1.18.2) (Tuszynski and Khachatryan, 2015). Our 
classification model used the SVM with a 10-fold cross-
validation technique and was created using the e1071 
package (version 1.7-13) (Meyer et al., 2023) with RBF. 
The RBF-SVM parameters gamma (γ, which adjusts the 
smoothness of the hyperplane) and penalty (C, which 
adjusts the tolerance) were fine-tuned in the range of 
(10–6, 106) and (10–5, 105), respectively. To evaluate the 
predictive value of the classification model, we created a 
confusion matrix using the Caret package (version 6.0-
94) (Kuhn, 2008) and performed sensitivity analysis by 
extracting kappa, specificity, and binomial significance 
tests for the difference between the model accuracy and no 
information rate (NIR). Thresholds of more than 0.80 were 
used for kappa and specificity, while thresholds of less than 

0.05 were used for the statistical difference between model 
accuracy and NIR.
2.5. Testing for diagnostic performance
To examine model performance, the TCGA datasets and 
GSE40419 (GEO-LUAD) were used in receiver operating 
characteristic (ROC) analysis using the precrec package 
(version 0.14.2) for area under the curve (AUC) scores 
(Saito and Rehmsmeier, 2017).

In the case that good model performance was achieved, 
it was decided to assess the reproducibility of the analyses 
by principal component analysis (PCA). The ggplot2 
(version 3.4.2) (Wickham, 2011) and ggpubr (version 
0.6.0) (Kassambara, 2020) packages were selected to draw 
and organize PCA plots. Each gene set was filtered based 
on the differential expression in the test datasets. In the 
case that the primary principal components covered at 
least 80% of the total variance, the metrics for accuracy, 
specificity, and sensitivity were calculated.
2.6. Testing for prognostic performance
The discriminatory gene sets of the TCGA datasets were 
analyzed for their prognostic performance using survival 
analyses. For this purpose, subjects were categorized into 
low- and high-risk groups based on their prognostic index. 
We performed survival analyses for individual genes using 
the survival package (version 3.4-0) (Therneau, 2020). The 
survival signature of each gene was assessed using Kaplan–
Meier plots, and a log-rank p-value of <0.05 was used as 
the cut-off value for statistical significance. 

Figure 1. Disease Ontology enrichment analysis in filtering genes.
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2.7. GO and pathway enrichment analysis
Biological mechanisms of gene sets were characterized 
using GO terms and KEGG pathway enrichment analyses. 
These analyses were conducted using the Database for 
Annotation, Visualization, and Integrated Discovery v6.8 
(DAVID) online tool (Huang et al., 2009; Sherman et al., 
2022). Gene sets were significantly enriched by using a 
cut-off p-value of <0.05 adjusted by Benjamin–Hochberg 
correction.
2.8. Cancer-related genes in discriminative sets
Enriched disease terms from the initial discriminative 
gene sets were analyzed using the DOSE package (version 
3.24.2) (Yu et al., 2015) to investigate any relatedness to 
cancer. Benjamin–Hochberg-adjusted p-values with a 
threshold of <0.05 were used in disease filtering.

3. Results
3.1. SVM-DO algorithm
The algorithm (Figure 2) consists of consecutive steps 
for differential expression analysis, feature selection, 
gene set trimming including data randomization and 
train/test grouping, SVM-based parameter-tuning steps, 

and prognostic performance analysis. In the first step, 
differentially expressed genes (DEGs) are extracted 
from the expression dataset. Secondly, DEGs indicating 
significant disease enrichment are selected. Following 
this step, DEGs are applied to Wilk’s lambda criterion-
based trimming and SVM-based classification model 
construction. Based on the classification performance, the 
final form of the feature set is selected by the algorithm 
and finally applied to single gene survival analysis to detect 
genes with prognostic importance.
3.2. Effect of input size on simulation duration
To evaluate the effectiveness of the acquired discriminative 
gene set models, we selected input sizes of 50, 100, 200, 
300, 400, and 500, which were used after differential 
expression analysis. The simulations were repeated 10 
times and the average durations were calculated. We found 
that increasing the input size had significant effects on the 
duration of each step, particularly for gene set trimming 
and classification (Figure 3).
3.3. Evaluation of diagnostic performance
The results of the ROC curves illustrated the classification 
performance of our algorithm between tumor and normal 

Figure 2. Flow diagram of SVM-DO algorithm.
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samples using the TCGA-COAD, TCGA-LUSC, and GEO-
LUAD datasets. High values (0.93 to 0.99) were observed 
for the AUCs of each input variable, indicating the high 
diagnostic accuracy of the algorithm (Figure 4).

Using the PCA results of the datasets (Table 1), 
sensitivity analysis was performed for each dataset and 
the averages of the metrics for each input variable were 
determined (Table 2). The discriminative gene sets 
obtained from TCGA-COAD, TCGA-LUSC, and GEO-
LUAD provided good discrimination between tumor 
and normal samples in the different expression datasets 
without significant effects of normalization or platform 
differences.
3.4. Evaluation of prognostic performance
The acquired gene sets from the TCGA datasets showed 
prognostic effects in individual forms. During the gene 
set trials, changing the input size affected the number of 
individual prognostic gene candidates, as provided in Table 
3. Despite statistical significance, we observed insufficient 
prognosis in single gene analyses considering hazard ratios 
(from 0.6 to 2), as provided in Table 4. However, we were 
unable to analyze the GSE40419 (GEO-LUAD) dataset due 
to the lack of survival data and vital statuses of the patients.

3.5. Performance comparison with alternative ML 
methods
The performance of the algorithm was compared with 
existing ML approaches (Table 5) obtained from two 
previous studies (Shahbeig et al., 2018; Wang et al., 
2019). These studies were selected based on precalculated 
accuracy values for several ML methods using the RNA-
Seq datasets of colorectal and lung cancer included in 
our study. Therefore, the accuracies of the predictions 
were compared (Figure 5). Our algorithm provided high 
accuracy values of >98% with gene sets extracted from 
the colorectal cancer dataset regardless of input size. The 
overall accuracy of the gene sets was better than that of 
the previous studies. In contrast, lower performance was 
observed with the lung cancer dataset (minimum of ~90%, 
maximum of ~92%) compared to the alternative methods. 
In the study conducted with the lung cancer dataset, 
the total number of discriminative gene sets of each ML 
algorithm was also considered. Our approach resulted in 
accuracy values of over 90%, with a lower number of genes 
employed.
3.6. GO and pathway enrichment analysis
The gene sets of the TCGA-COAD dataset were mainly 
enriched in biological functions related to bile secretion 

Figure 3. Effect of input size on the execution times (given in seconds) of the simulation steps (inner to outer 
region: input size of n = 50, 100, 200, 300, 400, and 500).
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Figure 4. Discriminative performance analysis of algorithm at different 
input sizes (n) for datasets of TCGA-COAD (A), TCGA-LUSC (B), and 
GEO-LUAD (C).
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Table 2. Diagnostic performance of gene sets as a result of principal component analysis (mean ± SEM).

Input 
Size

Accuracy 
(Microarray)

Sensitivity
(Microarray)

Specificity
(Microarray)

Accuracy 
(RNA-Seq)

Sensitivity
(RNA-Seq)

Specificity
(RNA-Seq)

50 0.92 ± 0.02 0.93 ± 0.073 0.92 ± 0.03 0.93 ± 0.06 0.97 ± 0.02 0.85 ± 0.10
100 0.95 ± 0.02 0.93 ± 0.03 0.97 ± 0.01 0.95 ± 0.04 0.94 ± 0.03 0.93 ± 0.05
200 0.94 ± 0.02 0.91 ± 0.04 0.98 ± 0.01 0.97 ± 0.03 0.97 ± 0.02 0.95 ± 0.03 
300 0.95 ± 0.02 0.92 ± 0.03 0.98 ± 0.01 0.97 ± 0.02 0.99 ± 0.01 0.95 ± 0.03 
400 0.96 ± 0.05 0.94 ± 0.04 0.98 ± 0.01 0.97 ± 0.02 0.98 ± 0.01 0.95 ± 0.03 
500 0.95 ± 0.02 0.91 ± 0.05 0.99 ± 0.01 0.97 ± 0.02 0.98 ± 0.01 0.95 ± 0.03 

Table 3. Lists of prognostic genes in TCGA-COAD and TCGA-LUSC datasets at different input sizes.

Dataset n=50 n=100 n=200 n=300 n=400 n=500

TCGA-
COAD

GUCA2B CLCA4 CHP2 CA4 CA4 CA4
  SLC30A10 CA4 CDKN2B-AS1 CDKN2B-AS1 CDKN2B-AS1 
  CDKN2B-AS1 CDKN2B-AS1 CHP2 CHGA CLCA4
  CA4 SLC30A10 UGT2B17 SLC30A10 CHP2
  GUCA2B CLCA4 CLCA4 GALR1 UGT2B17
  CD177 UGT2B17 VEGFD VEGFD HBE1
    VEGFD ALPI CLCA4 ADAMDEC1 
    HBE1 SLC30A10 UGT2B17  
    CHGA CD177 ALPI  
    CD177 SFRP5 CHP2  
        CD177  

TCGA-
LUSC

AGER ADH1B GPIHBP1 FHL5 MRC1 FHL5
SFTPC TNXB AQP4 MARCO ZBTB16 CLIC5
GPIHBP1 CLEC4M GGTLC1 GPIHBP1 FHL5 MRC1
PRG4 GP9 ANKRD1 ZBTB16 GPIHBP1 GPIHBP1
CLIC5 SFTPC CLIC5 TNNC1 ADH1B ZBTB16
  SFTPA1 ZBTB16 GGTLC1 AQP4 C7
    AGER TNXB MARCO OGN
    PRG4 SFTPA1 CLIC5 MARCO
    TNXB AQP4 COL4A3 ABCA3
    SFTPA1 SFTPA2 TNNC1 GGTLC2
    TNNC1 CLIC5 TNXB COL4A3
    GP9 TCF21 SFTPA1 CPB2
    SFTPA2   SFTPC DLC1
    PRG4   ASPA SOX17
    OGN   GP9 SFTPA2 
    FHL5   ABCA3 LRRK2
          AGTR2
          ASPA
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Table 4. Prognostic performances of genes in TCGA-COAD and TCGA-LUSC datasets.

Dataset Genes Log-Rank p value Hazard Ratio

TCGA-
COAD

GALR1 0.013 0.61
SFRP5 0.037 0.66
ADAMDEC1 0.034 1.53
CHP2 0.040 1.51
UGT2B17 0.008 1.70
VEGFD 0.040 0.66
ALPI 0.016 1.62
CHGA 0.015 1.64
CDKN2B-AS1 0.013 1.65
CA4 0.034 1.54
CLCA4 0.001 1.92
CD177 0.047 1.50
SLC30A10 0.017 1.62
GUCA2B 0.0002 2.07
HBE1 0.011 1.67

TCGA-LUSC

OLR1 0.032 0.75
C7 0.027 1.35
SFTPB 0.011 1.41
AGTR2 0.035 1.33
SOX17 0.038 1.32
LRRK2 0.009 1.42
ABCA3 0.007 1.43
COL4A3 0.034 1.33
MRC1 0.022 1.36
ASPA 0.004 1.47
DLC1 0.025 1.35
MARCO 0.002 1.52
FHL5 0.005 1.45
OGN 0.033 1.33
GGTLC2 0.031 1.34
ZBTB16 0.001 1.54
AQP4 0.048 0.76
SFTPA2 0.048 1.31
TCF21 0.016 1.38
SFTPA1 0.010 1.42
TNXB 0.006 1.44
CLEC4M 0.005 1.45
GP9 0.016 1.38
TNNC1 0.024 1.36
ADH1B 0.021 1.36
CPB2 0.007 1.43
GPIHBP1 0.004 1.47
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and sodium transport, while the KEGG pathway analysis 
showed enrichment in terms of bile secretion, proximal 
tubule bicarbonate reclamation, pancreatic secretion, and 
nitrogen metabolism. On the other hand, the gene sets 
of the TCGA-LUSC dataset were enriched in biological 
functions related to the transport of oxygen, carbon dioxide, 
and nitric oxide; the catabolism of hydrogen peroxide and 
glutathione; and the leukotriene D4 biosynthesis process. 
In addition, the malaria pathway was enriched in the 
KEGG pathway analysis. In contrast, in the GEO-LUAD 
dataset, there was only one biological function related to 
neuron projection development. Discriminatory gene sets 
associated with multiple cancer types were observed (see 
Supplementary Table S1 for details).

4. Discussion
The research field of collecting information on gene–
disease associations is constantly evolving. Although 
techniques utilizing deep learning have shown promising 

results in detecting such associations, they often do not 
take into account the multifunctional effects of genes 
associated with multiple diseases (Chen et al., 2021). 
Rather than developing complex new techniques, it may 
be useful to predict the classification ability of a feature 
set extracted from an existing gene–disease association 
repository. The method proposed in this study can identify 
novel disease-related genes while also considering their 
multifunctional properties. By integrating DO enrichment 
analysis into our algorithm, we were able to discover 
various gene–disease relationships. 

There are also different methods for integrating disease 
associations. To understand the differences, we compared 
SVM-DO with two similar ML-based algorithms, maTE 
(Yousef et al., 2019) and GediNET (Qumsiyeh et al., 2022), 
which also use disease associations. 

The maTE algorithm was developed to find the best 
discriminative miRNA set that regulates the target genes 
and can explain the difference between groups (e.g., cancer 

CLIC5 0.049 1.31
PRG4 0.022 1.36
GGTLC1 0.009 1.42
ANKRD1 0.036 1.33
AGER 0.002 1.52
SFTPC 0.040 1.32

Table 5. Alternative methods employed in performance comparisons.

Method Reference study
Proposed Multi-objective Adaptive Binary Particle Swarm Optimization (AMOPSO)

(Shahbeig et al., 2018)

Multi-objective Binary Genetic Algorithm (MOBGA)
Multi-objective traditional Binary Particle Swarm Optimization (MOBPSO)
Multi-objective Binary Teaching Learning Based Optimization (MOBTLBO)
Single-objective Binary Genetic Algorithm (SOBGA)
Single-objective traditional Binary Particle Swarm Optimization (SOBPSO)
Single-objective Binary Teaching Learning Based Optimization (SOBTLBO)
Graph Regularized Nonnegative Matrix Factorization (GNMF)

(Wang et al., 2019)

K-means Clustering (KMC)
Proposed Laplacian regularized Low-Rank Representation (LLRR)
Low-Rank Representation (LRR)
Mixed-norm Laplacian Regularized Low-Rank Representation (MLLRR)
Penalized Matrix Decomposition (PMD)
Segmented Principal Component Analysis (SPCA)

Table 4. (Continued).
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vs. control). SVM-DO was developed to find disease-
related gene sets that can be used to discriminate between 
cancer and normal sample groups, but miRNA candidates 
with distinguishing features could also be obtained by 
using expression dataset features. Among our results, 
miR-139 was observed in both discriminative gene lists 
of the colorectal and lung cancer datasets. miR-139-5p 
is known as a potential biomarker in the development of 
several human cancers (Huang et al., 2017) and has been 
observed to target insulin-like growth factor receptor type 

I, leading to the inhibition of invasion, metastasis, and cell 
proliferation in both colorectal cancer and non-small-cell 
lung cancer (NSCLC) (Shen et al., 2012; Xu et al., 2015). 
In the maTE algorithm, the involvement of miRNAs in 
diseases is recognized by an ML approach. In our study, 
genes with disease associations were selected by DO 
enrichment analysis. 

The GediNET algorithm determines which diseases 
in a given expression dataset are significantly associated 
with the major disease of interest. In a sense, our algorithm 

Figure 5. Comparative analyses of TCGA-COAD and GEO-LUAD with discriminative set size (n*).
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tries to find discriminative features by associating different 
diseases with cancer by focusing on disease-related genes. 
The gene–disease associations analyzed in the study of 
Qumsiyeh et al. (2022) mainly involved major specific 
diseases. We wanted to follow a similar approach at the 
beginning of the development of our algorithm. However, 
instead of finding genes related to chronic diseases, the 
genes with the most enriched diseases consisted mainly 
of annotations related to cancer (carcinomas, tumors, 
neoplasms, etc.). We wanted to focus on extracting 
discriminatory features from the gene groups associated 
with chronic diseases. Therefore, we selected any gene 
that showed significant enrichment with chronic diseases 
according to DEG analysis. Measured by the total size of 
DEGs, this could be a computationally intensive approach. 
The introduction of a secondary feature selection method 
reduced the computational burden of the classification 
process.

When multiple feature detection methods are 
combined, the results are often unstable, as noted 
previously (Saha et al., 2021). For example, extracting 
random gene sets from the same high-dimensional gene 
expression dataset using the same method is a well-known 
problem in this field (He and Yu, 2010). Nevertheless, 
our algorithm achieved a stable discriminative feature set 
through the combination of DO and Wilk’s lambda. 

Our results were supported by the cancer-related 
terms provided by the DAVID tool in the enrichment 
analysis of both the colon and lung datasets. The analysis 
of colon cancer can be divided into five main aspects. 
First, uncontrolled bile secretion was identified as 
an environmental factor that promotes colon cancer 
progression (Raufman et al., 2015). Second, alterations 
in epithelial ion transport are a frequently observed 
problem in carcinogenesis (Davies et al., 1991). Third, 
bicarbonate administration has been shown to selectively 
reduce tumor aggressiveness by increasing pH (Robey 
and Martin, 2011). In addition, nitrogen metabolism is 
often disturbed in various cancers to promote cell survival 
(Kurmi and Haigis, 2020). Finally, pancreatitis (Ji et al., 
2015) and pancreatic metastases (Bush et al., 2020) are rare 
side effects observed in colorectal cancer patients.

The enriched genes were observed to be biologically 
meaningful in colon and lung cancer cases. The enriched 
genes for colon cancer included ATP1A2, SCNN1B, 
SLC10A2, SLC17A8, SLC4A4, ABCB11, SLC51B, SLC51A, 
SCN7A, SCN11A, FXYD1,  and SCN9A. With the 
exception of ATP1A2, the remaining genes were found to 
influence the development of colorectal cancer. Abnormal 
epithelial cell function has been reported to be responsible 
for 90% of all human cancers. SCNN1B is a gene that 
codes for the beta subunit of the epithelial sodium channel 
(ENaC). It has been observed that these channels control 

the behavior of malignant cancer cells (Liu et al., 2016). 
In the study by Qian et al. (2023), SCNN1B was observed 
to suppress the c-Raf and MAPK signaling cascade in 
colorectal cancer cell lines. Ectopic expression of SCNN1B 
in colorectal cancer cell lines resulted in the suppression 
of cell proliferation, induced apoptosis and cell cycle 
arrest, and suppressed cell migration. In addition to 
the cell line study, xenograft models were also used to 
investigate the tumor-suppressive function of the gene 
in animal models (Qian et al., 2023). Disruption of the 
enterohepatic bile acid cycle has been observed as a cause 
of intestinal disorders including cancer development 
(Xia et al., 2016). The apical sodium-dependent bile acid 
transporter (ASBT) is encoded by SLC10A2. In the study 
by Raufman et al., ASBT-deficient mice were compared 
with wild-type mice using azoxymethane (AOM)-induced 
tumor formation, and an increase in the size and number 
of colon tumors was observed in SLC10A2-silenced 
mice compared to the wild type (Raufman et al., 2015). 
Necroptosis is known as a programmed lytic cell death 
pathway observed in cells with deregulation based on 
inflammatory dysfunction (Najafov et al., 2017). Escape 
from necroptosis is known to play an important role in the 
growth of various tumor types including the colon (Yang 
et al., 2022). Solute carrier family member 4 (SLCA4) is 
one of the genes related to necroptosis and associated with 
poor progression in colorectal cancer patients. In the study 
by Yang et al. (2020), it was observed that lower expression 
of SLCA4 caused poor prognosis in cancer patients with 
malignancies. ATP-binding cassette (ABC) transporters 
play a crucial role in the development of drug resistance 
due to the efflux of anticancer drugs from cancer cells. 
In the study by Hlavata et al. (2012), the efficacy of 
fluorouracil (5-FU)-containing treatment among colon 
cancer patients was investigated. The transcription levels 
of human ABCs were analyzed and patients with low 
ABCB11 transcript levels had short disease-free intervals. 
Dysregulations in solute carrier proteins (SLCs) are known 
to cause the development of cancer due to the disruption 
of cellular metabolic homeostasis (Panda et al., 2020). The 
study by Lian et al. (2020) identified modules associated 
with colorectal cancer metastasis, and the results showed 
that 12 genes, including SLC51B, were correlated with 
two lncRNAs, RP11-396O20.2 and SNHG11, which are 
known to have stronger links to nodal sites. Voltage-gated 
sodium channels (NaVs) are known to be overexpressed 
in various cancers, including colorectal cancer, and are 
strongly associated with metastasis (Lopez-Charcas et 
al., 2023). In the study by Sun et al. (2019), a recurrent 
mutation of SCN7A was observed in brain metastasis 
tissues from metastatic patients. NaV1.7 is encoded by 
SCN9A. In the study by Xia et al. (2016), the expression of 
SCN9A correlated with the expression of the oncoprotein 



ÖZER et al. / Turk J Biol

361

metastasis-associated in colon cancer-1 (MACC1), which 
significantly influences the development, invasion, and 
metastasis of various malignant cancers (Lv et al., 2023). 
The members of the FXYD gene family are small ion 
transport regulators that interact with Na+/K+-ATPase. 
It has been observed that these family members play 
important roles in the development of various types 
of cancer. In the study by Jin et al. (2021), FXYD1 was 
associated with poor overall survival in colorectal cancer 
patients. 

The lung cancer-enriched genes included AQP4, 
HBA1, HBA2, HBB, HBM, GGTLC1, GGTLC2, GGTLC3, 
GPM6A, SFTPC, IL6, MYOC, and EPB42. It is well known 
that the immune system plays a role in the development 
of lung cancer and the prognostic process. In the study by 
Zhu et al. (2023), the immune infiltration of LUAD was 
investigated. It was found that 12 hub genes, including 
HBA2, may be involved in LUAD progression via immune-
related signaling pathways. Circulating tumor cells (CTCs) 
are known as cancer cells that detach from the solid tumor 
and enter the bloodstream. This group of cells contains a 
population of metastatic progenitors that are important for 
cancer progression (Castro Giner and Aceto, 2020). In the 
study by Zheng et al. (2017), a significant reduction in CTC-
derived lung metastases was observed in HBB-negative 
CTC cultures. Aquaporins (AQPs) are channel-forming 
membrane proteins that have been reported to influence 
cancer cell growth, migration, invasion, and angiogenesis 
(Moon et al., 2022). In the study by Xie et al. (2012), AQP1 
and AQP4 were analyzed for their influence on the invasive 
property of lung cancer cells. A significant reduction in the 
migration of AQP1 shRNA and AQP4 shRNA cells was 
observed compared to control lung cancer cells. Gamma-
glutamyl transferase light chain 1 (GGTLC1) is one of 
the genes involved in glutamine biosynthesis. It has been 
observed that glutamine metabolism is increased in cancer 
cells and is associated with Myc downregulation related to 
the Warburg effect. The study by Kim et al. (2013) found 
that GGTLC1 may be influenced by NKX2-1, an oncogene 
amplified in cases of NSCLC. According to that study, this 
situation was thought to result in cancer cells focusing 
on pathways required for rapid growth and metabolic 
requirements (Kim et al., 2013). Lymph node metastasis 
in lung cancer patients is an important factor in overall 
survival. The study by Dong et al. (2019) found significant 
differences in DEGs in patients with stage T1-2 and T3-4 
disease. A top-ten DEG list was created for each stage, 
comparing metastatic and nonmetastatic cases. In both, 
upregulation of the MYOC gene was observed, indicating 
potential efficacy in triggering metastasis (Dong et al., 
2019). miR-629-3p is a major miRNA that is upregulated, 
especially in cases of human breast cancer, and affects cell 
viability and migration. In the study by Li et al. (2019), it 

was observed that miR-629-3P-mediated downregulation 
of SFTPC promoted tumor proliferation and invasion of 
lung cancer cells. In addition, downregulation of SFPTC 
was observed in patients with poor survival rates. The 
association between type 2 diabetes and a high risk of 
developing cancer has also been reported (Travier et al., 
2007). The glycosylated form of HbA1 (HbA1c), which 
provides an estimate of a person’s blood glucose level in 
the last 3 months, has implications for diabetes (Nitin, 
2010). In the study by Travier et al. (2007), it was found 
that an increase in HbA1c levels poses a risk for respiratory 
cancers. Cytokines are small proteins that play important 
roles in cancer development (Abolfathi et al., 2021). IL6, 
a pleiotropic cytokine, functions in the regulation of the 
immune system (Yao et al., 2014). In the study by Liu et al. 
(2020), IL6 was observed as a critical element for NSCLC 
as it affects the epithelial-to-mesenchymal transition 
and metastasis and causes drug resistance. GPM6A is a 
neuronal membrane glycoprotein that has been detected 
in various cancers such as those of the colon, liver, and 
lungs. In the study by Zhang et al. (2022), it was observed 
that induced overexpression of GPM6A in a mouse model 
of lung cancer delayed and reduced tumor growth. 

Due to the long time and high costs associated with 
drug discovery in the field of cancer biology, drug 
repurposing is becoming an increasingly attractive and 
promising solution (Issa et al., 2020). Focusing on using 
existing disease-related genes can be advantageous for our 
algorithm and beneficial for the area of drug repurposing 
(Antolin et al., 2016). Our algorithm has the potential to 
facilitate the development of new treatment procedures 
that require fewer drugs, resulting in fewer cumulative 
effects on patients.

The present version of the algorithm can successfully 
classify tumor/normal states through the use of RNA-
Seq expression datasets. Initially, we attempted to use 
count data for the analysis, which unfortunately failed to 
discriminate between the two states. As a result, we changed 
our approach to focus on normalized expression datasets. 
We found that the normalized forms of FPKM and RPKM 
were adequate for achieving accurate sample classification. 
In PCA analysis, both RNA-Seq and microarray datasets 
were used to test the diagnostic performance of the 
acquired gene sets. The tests using RNA-Seq involved both 
count and normalized datasets. In the case of microarrays, 
only normalized datasets from the Affymetrix platform 
were used in the facilitated analysis. 

The generated gene sets showed a moderate prognostic 
effect, and we were able to achieve optimal separation of 
tumor/normal states in various datasets using our gene sets 
despite the use of different platforms and normalization 
methods. Furthermore, our approach demonstrated 
strong predictive performance, as evidenced by high AUC 
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values that were independent of input size. In addition, our 
algorithm performed well in terms of classification when 
compared to other SVM-based and clustering approaches 
that used the same datasets.

This study demonstrated the effectiveness of using 
disease-associated genes and Wilk’s lambda criterion to 
construct an SVM classification model for detecting cancer 
biomarkers. We anticipate that our approach will prove 
useful for further analyses and yield comparable results in 
the field of cancer research. An R package of our algorithm 
in the form of a GUI is available in Bioconductor (http://

doi.org/10.18129/B9.bioc.SVMDO) and GitHub (https://
github.com/robogeno/SVMDO).
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