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Steepness in Natural Exponential Families

Afif Masmoudi

Abstract

The present paper studies and develops the notion of steepness in multivariate

natural exponential families. Let F = {P (m, F );m ∈ MF } be a multidimensional

natural exponential family parameterized by its domain of the means MF and let

m be an element of ∂MF the means domain boundary. A necessary and sufficient

condition for the variance function VF is established so that the family F be steep

at m ∈ ∂MF . Some characteristic properties of a steep family are given. Also, we

investigate the asymptotic behaviour of a steep family F at m.

Key Words: Convex, natural exponential family, face, means domain, steep,

variance function.

1. Introduction

Natural exponential families represent an important class of distributions in probabil-
ity and statistical theory. Various interesting works have been devoted to the theory of
natural exponential families in the previous few years. Such works are contained in Brown
(1986), Barndorff-Nielsen (1978) and in Letac (1992). It is well known that the natural
exponential families are characterized by their variance functions (Tweedie (1947)). A
number of papers have been devoted to the classification of natural exponential families
by their variance functions. Several classifications have been attained (see, Morris (1982);
Letac and Mora (1990), Hassairi (1992) and Casalis (1994)). In this context the variance
function of a natural exponential family (N.E.F) appears as the most appropriate tool
and so it has received a great deal of attention in the statistical theory.
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Let F = F (µ) = {P (m,F ); m ∈ MF } be a multidimensional natural exponential
family on Rd, generated by a positive measure µ, parameterized by its domain of the
means MF and let VF be its variance function. It’s well known that all members of the
N.E.F F have the same support. If cs(µ) denotes the closed convex hull of the support of
µ, then we have always MF ⊂ int(cs(µ)). Actually, in most of the practical cases, these
two sets are not equal. There are examples in Rd where MF is not even a convex set (see
Example 3.1). But in one dimension, MF is always an open interval, since its definition
implies that MF is an open connected set. Barndorff-Nielsen (1978) has defined the
notion of steepness in natural exponential families as follows: a N.E.F F is called steep if
int(cs(µ)) =MF . The steepness enables one to apply the convex analysis methods to the
convex supports of N.E.Fs. The present paper is devoted to the study of local steepness
in multivariate N.E.Fs. Let m be an element of the boundary ∂MF of MF , the family
F (µ) = F is called steep at m if m ∈ ∂MF ∩ ∂cs(µ). In particular, F is steep if it’s
steep at all points of the boundary ∂MF of MF . So, the local steepness of a full N.E.F
is a very essential property for the study of the maximum likelihood estimation problem.
Also, a natural problem within this approach is to identify points of the means domain’s
boundary with those of the convex support’s boundary. We investigate the effect of the
steepness of the N.E.F F at m on the behaviour of the family F around m by using
its variance function. In the one dimensional cases, Jørgensen et al. (1994) or Letac
Mora (1990) have shown that if F is a N.E.F with means domain MF =]a, b[, then F is
steep if and only if VF (a) = VF (b) = 0. Here, we generalize this result to multivariate
dimensions. So, we show that if the variance function extends continuously at m ∈ ∂MF ,
then F is steep at m if and only if VF (m) is a degenerated matrix. In other words,
rank(VF (m)) < d.

Now, let H be an exposed face of cs(µ), If µ(H) > 0, then ∂MF ∩H �= ∅. This means
that F is steep at all points of ∂MF ∩H .

The outline in this paper is as follows: in section 2, we give a review of natural
exponential families. In section 3, we state our main results and give some illustrating
examples.

2. Natural Exponential Families

Let us begin with some definitions and notations which have become traditional in
statistics. For more details, we refer to Letac (1992).
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Let (θ, x) �−→ 〈θ, x〉 be the canonical scalar product on Rd.

For a positive measure µ on Rd, we denote

Lµ : Rd −→]0,+∞[: θ �−→
∫

Rd

exp〈θ, x〉µ(dx),

D(µ) = {θ ∈ Rd; Lµ(θ) < +∞},

Θ(µ) = int(D(µ)),

kµ = logLµ,

where Lµ and kµ are, respectively, the Laplace transform and the cumulant generating
function of µ.

The set M(Rd) is now defined as the set of positive measures µ such that µ is not
concentrated on an affine hyperplane and Θ(µ) is not empty. To each µ in M(Rd) and θ
in Θ(µ), we associate the following probability distribution:

P (θ, µ)(dx) = exp(〈θ, x〉 − kµ(θ))µ(dx).

The set of probabilities

F = F (µ) = {P (θ, µ)(dx); θ ∈ Θ(µ)}

is called the natural exponential family (N.E.F) generated by µ. Of course, µ and µ′ in
M(Rd) are such that F (µ) = F (µ′) if and only if there exists (a, b) in Rd × R such that

µ′(dx) = exp(〈a, x〉+ b)µ(dx).

Since µ is in M(Rd), then kµ is analytic and strictly convex map on Θ(µ), so that its
differential

k
′
µ : θ �−→ k

′
µ(θ) =

∫
Rd

xP (θ, µ)(dx)

defines a diffeomorphism from Θ(µ) to its image MF . This image is called the means
domain of F . Let ψµ : MF �→ Θ(µ) be the inverse function of k′µ, and, for m in MF ,
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P (m,F ) = P (ψµ(m), µ). Then we obtain a new parameterization of F by its means
domain, so we have

F = {P (m,F ); m ∈ MF}.
The covariance matrix VF (m) of the probability measure P (m,F ) is symmetric and is
positive definite. It can be written as a function of the mean parameter m:

VF (m) = k
′′
µ(ψµ(m)) = (ψ

′
µ(m))−1 .

The map defined on MF by m �−→ VF (m) is called the variance function of the family F
and it’s real analytic onMF . The importance of the variance function stems from the fact
that it characterizes the family F . Indeed, VF characterizes the N.E.F in the following
sense: if F1 and F2 are two N.E.Fs whose variance functions coincide on a nonempty
open set of MF1 ∩MF2 , then F1 = F2.

Now, we examine the influence of an affine transformation on the elements of a N.E.F
F . Let ϕ be in the affine group of Rd, i.e., x �→ ϕ(x) = a(x) + b, where b is in Rd and a

is in the linear group GL(Rd). The following facts are easily checked:

ϕ(F ) = F (ϕ(µ))

Mϕ(F ) = ϕ(MF )

Vϕ(F )(m) = aVF (ϕ−1(m))ta; for all m ∈ Mϕ(F ).

The closure, interior and affine hull of a set C in Rd are denoted, respectively, by C,
int(C) and aff(C).

Let cs(µ) be the closed convex hull of the support of µ. The exposed faces H of cs(µ)
are represented as the intersection of cs(µ) with a supporting hyperplane (see Rockafellar
(1970), page 162). That means H = cs(µ) ∩ {x ∈ Rd; 〈u, x − b〉 = 0}, where b ∈ cs(µ)
and u ∈ Rd is an exterior normal vector on H , ( i.e., 〈u; x− b〉 ≤ 0 for each vector x in
cs(µ)).

3. Main Results

In this work, we study the notion of local steepness in N.E.Fs. We explore the
properties of any steep N.E.F at a point m of the boundary ∂MF of MF . We give the
relation between the asymptotic behaviour of F and the steepness property at m ∈ ∂MF .
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In what follows, we consider a N.E.F F = F (µ) on Rd generated by a positive measure
µ ∈ M(Rd). Without loss of generality, we assume that the generating measure µ ∈ F .

Definition 3.1 Let m ∈ ∂MF . The N.E.F family F = F (µ) is called steep at m if
m ∈ ∂MF ∩ ∂cs(µ).

According to the definition in Barndorff-Nielsen (1978), the family F is steep if it’s
steep at all points of the boundary ∂MF of the means domain MF . In the following
theorem, we study the asymptotic behaviour of a steep N.E.F F = F (µ) at a point
m ∈ ∂MF . So, we investigate the behaviour of ψµ around m. It’s essential because of
the link between the variance function VF and ψµ.

Theorem 3.1 Let F = F (µ) be a N.E.F and let m ∈ ∂MF . Then the following
statements are equivalents.

i) The family F is steep at m.
ii) lim

m→m
‖ψµ(m)‖ = +∞.

For the proof of this theorem we shall need the following lemma.

Lemma 3.2 Let (mn)n∈N be a sequence in MF converging to m ∈ ∂MF . Suppose that
lim

n→+∞ψµ(mn) = θ. Then θ ∈ D(µ)\Θ(µ).

Proof of Lemma 3.2 Let θ ∈ Θ(µ) and let θn = ψµ(mn). Obviously θ /∈ Θ(µ). By

way of contradiction, suppose that θ ∈ Θ(µ)\D(µ).
Define the following maps

ϕn : [0, 1] −→ R; λ �→ ϕn(λ) = kµ((1− λ)θn + λθ)

and

ϕ : ]0, 1]−→ R; λ �→ ϕ(λ) = kµ((1− λ)θ + λθ).

By the Rolle’s formula there exists λn ∈]0, 1[ such that

ϕn(1)− ϕn(0) = ϕ′
n(λn).

Since ϕ′
n is strictly increasing on [0, 1], we have
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ϕn(0) = ϕn(1)− ϕ′
n(λn) < ϕn(1) − ϕ′

n(0).

Hence

kµ(θn) < kµ(θ) − 〈k′µ(θn), θ− θn〉.

As θ /∈ D(µ), Fatou lemma implies that

lim
n→+∞

kµ(θn) = +∞

and this contradicts the fact that the sequence (kµ(θ) − 〈k′µ(θn), θ − θn〉)n is bounded.
Thus we have the desired result. ✷

Proof of Theorem 3.1 (ii) =⇒ (i). By way of contradiction, suppose thatm /∈ ∂cs(µ).
Let (mn) be a sequence in MF converging to m such that lim

n→+∞
‖ψµ(mn)‖ = +∞ and

lim
n−→+∞

ψµ(mn)
‖ψµ(mn)‖

= θ.

Now, we start by showing that λθ ∈ Θ(µ) for any λ ≥ 0.
Indeed, since limn→+∞ ‖ψµ(mn)‖ = +∞, then there exists no ∈ N, such that ∀n ≥ no,

one has 0 ≤ λ
‖ψµ(mn)‖ ≤ 1.

As, the generating measure µ ∈ F then 0 ∈ Θ(µ). Furthermore, Θ(µ) is a convex set
then, ∀n ≥ no, one has

λ

‖ψµ(mn)‖
ψµ(mn) ∈ Θ(µ).

By letting n → +∞, we infer that

{λθ ; λ ≥ 0 } ⊂ Θ(µ).

The fact that 0 ∈ Θ(µ) and Θ(µ) is an open convex set imply

{λθ ; λ ≥ 0 } ⊂ Θ(µ).

Now, let µ̄ be the image probability measure of µ by the map φ : x �−→ 〈θ̄, m − x〉.
Since m /∈ ∂cs(µ), then m ∈ int(cs(µ)).
Therefore 0 = φ(m) ∈ φ(int(cs(µ))) = int(cs(µ̄)); because φ is an affine map.
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Let λ ≥ 0, we have

Lµ̄(−λ) =
∫

Rd

e−λ〈θ̄,m−x〉µ(dx) < +∞,

because λθ̄ ∈ Θ(µ). This gives kµ̄(−λ) = −λ〈θ̄, m〉+kµ(λθ̄). Taking the differential with
respect to λ, we directly obtain,

k
′
µ̄(−λ) = 〈θ̄, m〉 − 〈k′

µ(λθ̄), θ̄〉 (3.1)

and

k
′′
µ̄(−λ) = 〈k′′

µ(λθ̄)θ̄, θ̄〉.

Now, we will prove that MF (µ̄) ⊂]0,+∞[.

In fact, since kµ is strictly convex on Θ(µ) and for all integer n ≥ no, λ
‖ψµ(mn)‖ ∈ [0, 1]

then

〈k′
µ(

λψµ(mn)
‖ψµ(mn)‖

),
ψµ(mn)

‖ψµ(mn)‖
〉 ≤ 〈k′

µ(ψµ(mn)),
ψµ(mn)

‖ψµ(mn)‖
〉 = 〈mn,

ψµ(mn)
‖ψµ(mn)‖

〉.

Taking limits in both sides, one gets

〈k′
µ(λθ̄), θ̄〉 ≤ 〈m, θ̄〉. (3.2)

Formulae (3.1) and (3.2) imply that MF (µ̄) ⊂]0,+∞[. Therefore kµ̄ is strictly increas-
ing on ] − ∞, 0], implying that kµ̄(−λ) ≤ kµ̄(0) = 0. Hence, for any λ ≥ 0, one has
Lµ̄(−λ) ≤ 1. Using again Fatou lemma, we obtain

∫
R

lim
λ−→+∞

e−λxµ̄(dx) ≤ 1.

Necessarily, x ≥ 0 µ̄ a. s. So, cs(µ̄) ⊂ [0,+∞[, contradicting the fact that 0 ∈ int(cs(µ̄)).
(i) =⇒ (ii). By way of contradiction. Let (mn) be a sequence in MF , converging to

m ∈ ∂MF ∩ ∂cs(µ), and suppose that

θn = ψµ(mn) −−−−−−→
n 	−→+∞θ.

From Lemma 3.2, it follows that θ ∈ D(µ).
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Let H be an exposed face of cs(µ) containing m and let u be an exterior normal
vector which exposes H . Up to translation, there is no loss of generality in assuming that
0 ∈ aff(H). Therefore

MF ⊂ cs(µ) ⊂ {x ∈ Rd ; 〈x, u〉 ≤ 0}
and

H = cs(µ) ∩ {x ∈ Rd ; 〈x, u〉 = 0}.
So, it is clear that ∀n ∈ N,

〈k′
µ(θn), u〉 < 0.

Again, by using Fatou lemma and the fact that k
′
µ(θn)−−−−→n−→+∞ m, we obtain

0 ≤ −
∫

Rd

〈x, u〉e〈θ,x〉−kµ(θ)µ(dx) ≤ − lim
n−→+∞〈k′

µ(θn), u〉 = 0.

Necessarily,
〈x, u〉 = 0 µ a. s.

Hence µ is concentrated on the affine hyperplane containing 0 and with exterior normal
vector u, contradicting the fact that µ ∈ M(Rd). ✷

Remark: In the statistical literature, the N.E.F F = F (µ) is called regular if Θ(µ) =
D(µ). It is clear that the regular families are steep. In fact, it suffices to apply Lemma
3.2. Of course, there are steep families which are not regular.

Definition 3.2 Let F be a N.E.F on Rd and let C be a subset of the boundary ∂MF . F
is called steep in C if it’s steep at all points m of C.

The following theorem generalizes the one dimensional result due to Jørgensen and
all (1994) or Letac Mora (1990), asserting that if F is a real N.E.F with means domain
MF =]a, b[, then F is steep at a if and only if VF (a) = 0. So, an algebraic property
concerning the variance function VF can be extended to multidimensional cases as follows.

Theorem 3.3: Let F be a N.E.F on Rd. Suppose that the variance function VF extends
continuously at m ∈ ∂MF . Then F is steep at m if and only if rank(VF (m)) < d.
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Proof. (⇐=) By hypothesis, rank(VF (m)) < d. Then there exists u ∈ Rd \ {0} such
that VF (m)u = 0. Suppose that F is not steep at m and according to Theorem 3.1, there
exists a sequence (mn) in MF converging to m such that lim

n−→+∞ψµ(mn) = θ. By using

Lemma 3.2, we have θ ∈ D(µ). We know that the variance function is defined as

〈VF (mn)u, u〉 =
∫

Rd

〈x−mn, u〉2e〈ψµ(mn),x〉−kµ(ψµ(mn))µ(dx).

By tending n −→ +∞, and applying Fatou Lemma, we obtain

0 ≤
∫

Rd

〈x −m, u〉2e〈θ,x〉−kµ(θ)µ(dx) ≤ 〈VF (m)u, u〉 = 0.

Therefore

〈x−m, u〉 = 0 µ a. s.

Thus, µ is concentrated on the affine hyperplane containing m and with exterior normal
vector u, contradicting the fact that µ ∈ M(Rd).

(=⇒) Suppose the contrary, this means that VF (m) is positive definite. Hence, the
mapm �−→ (VF (m))−1 = ψ′

µ(m) is continuous atm. Therefore, ψµ extends continuously
at m. Then, from Theorem 3.1, we obtain a contradiction. ✷

As a consequence one can check easily that the quadratic N.E.Fs ( Casalis (1994)) are
steep families.

The following example is due to J. Del Castillo (1994). This example is also described
in Letac (1992), pages 19–20.

Example 3.1 Let µ be the image measure, in R2, of ν(dx) = e−x1[0,+∞[(x)dx by

x −→ (x,−x2

2
). Then

MF = {(x, y) ∈ R2 ; −x2 < y < −x2

2
and x > 0}

and

int(cs(µ)) = {(x, y) ∈ R2 ; y < −x2

2
and x > 0} �MF .

Obviously, MF is not convex.

The family F is steep in {(x,−x2

2 ) ; x ≥ 0} but not steep in {(x,−x2) ; x > 0}.
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Let H be an exposed face of cs(µ). The following result gives a sufficient condition
on the generator measure µ so that ∂MF ∩H �= ∅. In this case, the N.E.F is steep in
∂MF ∩H .

Proposition 3.4 Let H be an exposed face of cs(µ) and let u be an exterior normal
vector on H such that µ(H) > 0. Then, for any θ ∈ Θ(µ), one has

i) θ + nu ∈ Θ(µ), ∀n ∈ N.
ii) ∂MF ∩H �= ∅.

Proof. i) Up to translation, we assume that

H = cs(µ) ∩ {x ∈ Rd ; 〈u, x〉 = 0}

and

cs(µ) ⊂ {x ∈ Rd ; 〈u, x〉 ≤ 0}.

Observe that, for β ∈ D(µ), Lµ(β + nu) ≤ Lµ(β) < +∞. Hence, β + nu ∈ D(µ). Now,
let θ ∈ Θ(µ). Then there exists an open ball B(θ, r), with center θ and radius r > 0, such
that B(θ, r) ⊂ Θ(µ). Therefore

B(θ, r) + nu ⊂ D(µ).

As B(θ, r) + nu is an open set then B(θ, r) + nu ⊂ Θ(µ).
ii) Let πo(dx) = 1

µ(H)1H(x)µ(dx) be the probability measure concentrated on H (i,e

the conditional probability of µ given H). By using dominated convergence, we obtain

lim
n 	−→+∞

Lµ(θ + nu) =
∫
H

e〈θ,x〉µ(dx) and lim
n 	−→+∞

L
′
µ(θ + nu) =

∫
H

xe〈θ,x〉µ(dx).

Recall that k
′
µ(θ + nu) =

L
′
µ(θ+nu)

Lµ(θ+nu) and it immediately yields

lim
n 	−→+∞

k
′
µ(θ + nu) =

L
′
πo
(θ)

Lπo (θ)
= k

′
πo
(θ) ∈ ∂MF .

On the other hand, πo is concentrated on H ; then k
′
πo
(θ) ∈ H .

Consequently,

328



MASMOUDI

k
′
πo
(Θ(µ)) ⊂ ∂MF ∩H.

Thus, ∂MF ∩H �= ∅ and the proof of Proposition 3.4 is complete. ✷

We conclude the following example which illustrates our results.

Example 3.2 Consider a stable law να with parameter α ∈]1, 2[, concentrated on the
real line, such its cumulant function is defined on D(να) =]−∞, 0] by kνα(θ) = −(−θ)α.
The N.E.F F (να) is not steep because MF (να) =]0,+∞[� cs(να) = R. Let F = F (µ) be
the N.E.F on R2 generated by the following probability measure

µ(dx, dy) =
1
2
[να(dx)⊗ δ0(dy) + δ(0,1)(dx, dy)],

where δ(0,1) denotes the Dirac measure at (0, 1). We check easily that

MF =]0,+∞[×]0, 1[� int(cs(µ)) = R×]0, 1[

and, ∀(m1, m2) ∈ MF ,

ψµ(m1 , m2) = (−[
m1

α(1−m2)
]

1
α−1 , log(

m2

1−m2
)− [

m1

α(1−m2)
]

α
α−1 ).

So, the family F is not steep at all points of the boundary of the means domain. However
MF is a convex set.

Also, observe that

lim
m1→0

ψµ(m1, m2) = (0 , log(
m2

1−m2
) ).

Hence, by applying Theorem 3.1 the N.E.F is not steep in {0}×]0, 1[.
Let H = R × {0} be an exposed face of cs(µ). It’s easy to see that µ(H) > 0. Thus,

this example shows that the N.E.F F is steep in ∂MF ∩ H = [0,+∞[×{0} but not in
]−∞, 0[×{0}.

The calculation of the variance function leads to

VF (m1, m2) =

(
V11(m1, m2) m1m2

−m1m2 m2(1 −m2)

)
,
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where V11(m1, m2) = m2
1m2

1−m2
+ α(1 − α)(1 − m2)[ m1

α(1−m2)
]

α−2
α−1 . Note that the variance

function extends continuously to C =]0,+∞[×{0}. Obviously, for all m ∈ C, VF (m) is a
degenerated matrix and F is steep in C (see Theorem 3.3).
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