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Mirror Principle for Flag Manifolds

Vehbi Emrah Paksoy

Abstract

In this paper, using mirror principle developped by Lian, Liu and Yau [8, 9,
10, 11, 12, 13] we obtained the A and B series for the equivariant tangent bundles
over homogenous spaces using Chern polynomial. This is necessary to obtain re-
lated cohomology valued series for given arbitrary vector bundle and multiplicative
characteristic class. Moreover, this can be used as a valuable testing ground for
the theories which associates quantum cohomologies and J functions of non-abelian

quotient to abelian quotients via quantization.”

1. Introduction

It is an interesting question to obtain A series for equivarant tangent bundles and
Chern Polynomials since this will be necessary to obtain A series for a general vector
bundle and multiplicative characteristic class. Now assume T is an algebraic torus and X
be a T-manifold with a T equivariant embedding in Y :=P™ x --- x P™ such that pull
backs of hyperplane classes H = (Hy, ... , H;) generate H?(X,Q). We will use the same
notations for equivariant classes and their restriction to X. Let K C H>(X) be the set
of points in Ha(X, Z)fee in the dual of the closure of the Kéhler cone of X. K is a semi-
group and defines a partial ordering > on Ha(X, Q) free. Explicitly r < diff d —r € K.
If {H;} is the dual basis for {H;} in Ho(X),r <d < d —r = dHy + -+ -+ d;H; where

d;,i=1,...,l are nonnegative integers. Let X = Fl(n) be the complete flag variety. The
first Chow ring A'(X) = H?(X,Z) is generated by &; = ¢1(Ly,),i = 1,...,n— 1 and
A; is the dominant weight of torus action with A\; = (1,...,1,0,...,0) first ¢ terms are

*I would like to thank Bong H. Lian for his precious helps and guideance.
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1’s. Here, Ly, is the line bundle over X, associated the 1 dimensional representation with

respect to weight \;. For more on homogenous manifolds, one can consult [1, 2, 3, 14, 15].

2. Basics of Mirror Principle

We will define stable pointed map moduli for a general projective T space X, where
T is an algebraic torus acting on X. Let My »(d, X) be the degree d € A;(X) arithmetic
genus 0, n—pointed stable map moduli stack with target X (see [4], [6]). Following [10], we
will not use the bar notation for compactification. A typical element can be represented
by (C, f,x1,...,2,). This moduli space has a ”virtual” fundamental class [My.,(d, X)]
of dimension dimX + (¢1(X), d) +n — 3 similar to the fundamental class in topology. For
more details for constructions, see [7].

Let V be a vector bundle on X. It induces a vector bundle Vy,d € A;(X) on
Mo, (d, X) whose fiber at (C, f,z1,...,,) is given by HY(C, f*V) @& H'(C, f*V). An-
other important construction is the graph space M4(X) for a projective T manifold X.
My(X) is the moduli stack of degree (1,d) arithmetic genus 0, 0-pointed stable maps
with target P! x X. The standard action of C* on P!, together with the action of T on
X, induces an action of G = T x C* on My(X). We will denote G-equivariant virtual
class by [My(X)] € AS(M4(X)), which has dimension {(c;(X),d) + dimX.

C* fixed points of My(X) plays an important role and will be described as

Fr = M071(7‘,X) Xx M071(d—7“,X).

For any (C1, f1,21) x (Caq, f2,22) € F, we can obtain an element in My(X) by gluing
C; and C5 to P! at 0 and oo respectively. New curve C will be mapped to P! x X as
follows: Map P! identically P! and contract C1,C5 to 0,00. Map C; by f; and contract
P! to the point fi(z1) = fo(z2). This defines an element (C, f) € My(X). Observe that
Fo = My,1(d, X) = Fgq but they will be imbedded in My(X) in two different ways. For
F,, we glue the marked point to 0 and glue the marked point to oo for F,; in P'. We
will denote inclusion maps 4, : F,. — M4(X). Note that each F, has an evaluation map
eX : F,. — X sending each point to the common image of the marked points in X. Here

are some other notations which will be used.

e Let L, be the universal line bundle on M 1(r, X) which is the tangent line at the

marked point.
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e We have natural forgetting and projection maps
p: M071(d,X) — MO7O(d,X), 78 Md(X) — MO7O(d,X) ,(See [8], [9])

with the commutative diagram

: . (1)

e Let a be the weight of the standard C* action on P!. Denote by AL (X)(a) the
algebra obtained from the polynomial algebra AT (X)[a] by localizing with respect
to all invertible elements. For an element 3 € A’ (X)(a) we let 3 be the class
obtained by a — —c« in §. Introduce formal variables ¢ = ((1, ..., (n) such that
(i = —(;,Vi. Let R = C[T*][a], where T* is the dual of the Lie algebra of T. When
we consider a multiplicative class like the Chern polynomial cr(z) = >;_, c;z’, we

extend the ground field to C(x).

e For each d let ¢ : My(X) — W, be G-equivariant map into smooth manifold
(or orbifold) Wy such that C* fixed point components in Wy are G- invariant
submanifolds Y, satisfying ¢ ~1(Y,) = F,. Construction of such maps and spaces

are given in [8, 9]. In particular, for a smooth manifold X let
T X —>P™Mx...x P =Y

be an equivariant projective embedding inducing an isomorphism A (X) ~ A} (Y).
Then we have a G- equivariant embedding My(X) — My(Y') and we can construct
G- equivariant map My(Y) — Wy := Ng, X --- x Ny, with Ny, o~ Plmitditm

which are linear sigma models for P™i( see [8]). Therefore we obtain the map
(Y23 Md (X) - Wd,

satisfying the above condition. Let x, be the equivariant hyperplane class in Wy
which is pulled back from Ny, ; and denote the equivariant hyperplane class on Y by
H,, also pulled back from P™= to Y. Let Y,.,0 < r =< d be C* fixed point components
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of W, which are G-equivariantly isomorphic to Y = Y; and j, : Y, — Wy be the
inclusion map. We have j*k, = H, + (r, Hy)cv.

Consider the commutative diagram

FTJ>Md<X)

L,k

Kﬂi)Wd-

The following proposition helps us to carry the computations to Wy from My(X)

which is easier to deal with.

Proposition 2.1 ([10/, Lemma 3.2) Given w € A§(Mg(X)) we have the following
equality on Y, ~Y for0 <r <d.

e MAC0) _, (_E0IELT_y
ec (Y /Wa) e (Fr/Ma(X))

Ford=(di,...,d;),r=(r1...,m) =< d we have

a

I me d
c (Y. /Wy) :HH — (k= rq)a),

a=1 z:O
r

where u; o are T weights of P™e.

Note that a class ¢ € H2(X) has a G-equivariant extension b€ HZ(W,) determined by

j,’quS = ¢+ (¢, r)a by localization theorem. We denote by (HZ(X)) the ring generated by
H2(X) and R, the ring generated by their lifts. So we have the following definition from
[10].

Definition 2.2 LetT' € Hi(Y). A list P: Py € H;(Wy),d = 0 is an I'- Euler data on
if

- j§iPy=35Pr joPir.
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An immediate observation is when we apply 7* we get
T 0 - 7% Py =753 Pr - 77 j§ Pa—r
There is an interesting construction for linear sigma models for a toric variety X( see
[9, 10] ).
Whenever t = (t1,...,t;) formal wvariable we let d - ¢t = > d,
K-t => Kata, H -t =5 Hyt,.

Fiz o T equivariant multiplicative class by and an equivariant vector bundle V =

br(VT)

V+ @V~ where VE are conver and concave bundles on X. We will assume Q) = b (V)

is a well defined class on X. For such a vector bundle we have
Va — Mo ,o(d, X), Ug — My(X)
where Uy = v*Vy. Define the linear maps

i AL (Ma(X)) — AL(X)(@)

tw N [Fr]

VLT . X
= @) CE L)

T

For a given concavex bundle V on X and br, we put

AV () = A(t) = e TN " Agett
d
Ad = igiTl/*bT(Vd),

where Ay = Q and the sum is taken over all d = (d,...,d;) € Z'.. We call A(t) the A

series associated to V' and br. In particular, if we specialize by to the unit class, we have
I(t) = e N "Tget, Tg =iy g (2)
d
Here 14 is the unit class in Ma(X).

Definition 2.3 Let Q € A3(X) be invertible. We call a power series of the form

B(t) := e Y Baet',  Bge AN(X)(a)
d
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an ) - Euler series if

> [ 0B Bt Rl
0=r<d

for all d.

Proposition 2.4 AV''1(t) = A(t) is an Euler series
Proof. Cf. [10], corr.3.9. O

Theorem 2.5 ([10]/, Thm 3.11) Let P : Py be an T Euler data. Then

B(t) =e "N 775 Py 0 Ige®!
d

is an 7*T' Fuler series. O
Recall that we have a commutative diagram of maps which read v oig = p. So we can

write

p*br(Va) N [Mo,1(d, X)]
eg(Fo/M4(X))

Ag = (e0)2( )-

We can also compute eg (F,./Mg(X)) explicitely for 0 < r < d. Although the G equiv-
ariant Euler class of the normal bundle of Fy in My(X), that is Ng,/ar,(x), will be used

mostly, following lemma gives such a class for every C* -fixed point component in My(X).

Lemma 2.6 ([8],/10]) Forr #0,d
ec(Fr/Ma(X)) = ala + pyer(Lr))e(o — pioer(La—r))
For r=0,d
ec(Fo/Ma(X)) = ala —c1(La)),  ec(Fa/Ma(X)) = ala+ c1(La))

where po : Fr — Mo 1(r, X) and peo : Fr — Mo 1(d —r, X) are projections. O
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Corollary 2.7 If we denote the degree of a in a class w € AL (X)(a) by degow then
degaAg < —2.
Proof. We have

p*br(Va) N [Mo,1(d, X)]
ec(Fo/M4(X))

p*br (V) N [Mo,1(d, X))

— (en)X
Ag = (eo)i ( a(a —ci1(Lq))

) = (e0):X (

)

by previous lemma. So deg,Aq < —2 O

In particular, when I; is concerned, we have a better estimate for o degree.

Proposition 2.8 Vd, deg,ly < min(—2,—(c1(X),d)).
Proof. If {(c1(X),d) < 2, then previous corollary gives the result. So assume
(c1(X),d) > 2. Recall that the class [Mo 1(d, X)] is of dimension s = exp.dimMy 1(d, X) =
(c1(X),d) + dimX — 2. Set ¢ = ¢1(Lqg) then ¢* N [My 1(d, X)] is of dimension s — k and
s0 e.(cF N [Mo1(d, X)]) € AT_,(X). But this group is zero unless s — k < dimX hence
k> s—dimX = (¢1(X),d) — 2. By the lemma , we have

1
Iy = Z We*(ck N [MO,I(da X)])
k>(c1(X),d)—2

hence the proposition follows. O

Most of the time, computing A(¢) directly from the definition is quite difficult. Never-
theless, provided that some conditions are satisfied it is possible to compute the A-series
up to some special operation called ”Mirror Transformation”; cf. [8],[10]. The main idea
of the process is to consider another special series, which we call B series, and if some
analytic conditions are satisfied we can get the A series from this B series by mirror

transform. We will now give more explanations.

Definition 2.9 A projective T manifold X is called a balloon manifold if the fixed point
set X" is finite and if for p € X" the weights of the isotropic representation T,X are
pairwise linearly independent. The second condition is known as the GKM condition. [5]

We will assume that the balloon manifold has the property that if p,q € XT such that
inc = igc, Ve € AL(X) then p = q. If two fixed points p,q in X are connected by a T
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invariant 2-sphere we call the sphere a balloon and denote it by pg. Balloon manifolds

are examined in more detail in [9]

Definition 2.10 Two Euler series A, B are linked if every balloon pq in X and every
d = d[pq] > 0 the function (Aq — Bq)|p € C(T*)(a) is regular at o = A/ where X is the
weight on the tangent line T, (pq) C T X.

Let B(t) := e Ht/aY" 7%ji Py N1zt be an Q = 7°- Euler series obtained from a
I-Euler data P : P;. The following theorem is adapted from [10] (thm 4.5 and corrollary
4.6).

Theorem 2.11 Suppose that at o = X\/6 and F = (P', f5,0) € Fy we have i%7*j§ Py =
i%p*br(Vy) for all d = §[pq]. Then B(t) is linked to AV-Ur(t).

Now we state a theorem which relates two Euler series in the previous setting by
what we call a mirror transform. Assume B(t) = e/« 3" 7% j¢ Pynlzedt where 7% Py

satisfies the assertion of the previous theorem. In addition assume for all d we have
T 5Py = Qaler(X).d) (a+ (a, +a - Ha ' +...)
for some a,a’,a" € C(7*) depending on d. Note also that I; can be expanded as
Ig=a DG 0 +0" - H)a b +...)
for some b, b ,b" € C(7™*) also depending on d. Then we have the following theorem

Theorem 2.12 Suppose AV-P7(t), B(t) are as in the previous theorem and the above as-
sumptions hold. Then there exist power series f € R[[e'*, ... e'™]|],g=(g1,... ,9m),9; €

R[[e', ..., etm]] without constant terms such that

AVV (L + g) = el /*B(t).

Proof. see [10] . O

There is an explicit method to compute A(t) = AV:*7(¢) in full generality on any
balloon manifold X for arbitrary V, br. Computations are in terms of some T representa-

tions. Observe that by the previous theorems, it is useful to understand the structure of
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i3p*br(Vy) and obtain an Euler series, satisfying the conditions specified in the previous
theorem, so we can compute A series up to mirror transformation. Now we will discuss
some part of the method given in [10] to compute A(t).

Recall that Vg — Mo 1(d, X) is a vector bundle with fiber at (C, f, ) is given by
HO(C, f*V)®eH(C, f*V). Then for a vector bundle V on X and F = (P!, f5,0),d = §[pq]

we have a T representation
iwp*(Va) = HY(C, [*V) @ H'(C, [*V),

which is the value of by for a trivial bundle over a point. So the method uses the T
representations of related bundles on each balloon pg ~ P!

Let V be any T equivariant vector bundle on X and let

be an equivariant resolution. Then by Fuler-Poincaré Principal,

[HO(Plvfgv)] - [Hl(Plvfgv)] = Z(_l)a—i_l([HO(Plvnga)] - [Hl(Plvfgva)])

a

Now, suppose each V, is a direct sum of T equivariant line bundles. Then each summand
L will contribute to [HO(P!, fV,)] — [H'(P', f;V,)] the representations

c1(L)|p — kN/O , k=0,...,l60r
(D), + kNS, k=1,..., 161,

depending on the sign of I = (c1, [pq]). For I > 0, we get the first and for I < 0 we have

the second kind of contribution.

3. A- series for Fl(n)

Let X=FI(n) be a complete flag vaiety. A'(X) is generated by &; = c1(Ly,),i =

1,...,n—1 and A; is the dominant weight A; = (1,...,1,0,...,0). Note that these are
‘\.,—/
Schubert polynomials. Let d = (d1,...,d,—1) be a class of a curve in the Kéhler cone.

Since Kéhler cone of X is generated by d = Z?;ll d;&; where {G;} forms a dual basis
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for {&;}. These are the Poincaré duals of the Schubert polynomials. Now consider

Fl(n);) ]P)mIX"'X]P)m"71 Jo Wd::Ndlx"'XNd

n—17

where jo is the imbedding of P"™ x ... x P™n-1 as a C* fixed point component of
Wy; and for 0 < r =< d, all fixed point components are T equivariantly isomorphic to
P™ x ... x P17 is the Plucker embedding. Here Ny, ~ P(mitDditmi and Wy is the
linear sigma model. Finally, m; = (’;) —1. Let H; be the equivariant hyperplane classes in
P ... xP™n-1. Pull back of each H; gives the corresponding &;. There exists G=C* xT
-equivariant hyperplane classes ; in W, with the property that j*x; = H; + (H;, )« for
0 < r = d. By the pull back of 7 o jp, these k; are taken to &;. Again, we are using the
same notation for equivalent and ordinary cohomology. We will compute the A series of

Fl(n) for T equivariant tangent bundle and Chern polynomial.

Lemma 3.1 Let [pq] be a class of balloon joining p,q. Then

1 ifi>a
olp) = [ w=3 0 ezt
[pg]~P 1 ifj=—a,

where p = w,q = w(ij) € S, are permutations representing the fized points and (ij) is a

transposition.

Proof. We know that (pq) ~ X& (7) ~ P! Richardson variety and y, = ¢1(L, ), Vo =
(0,...,1,0,...,0) is a weight of T. Then
———

(Ya, [pal) = (a1 (L,*W), [pa]) = (c1(O(Va,i — Ya,)); [PA]) = Yasi — Yaus

where 7, ; means the i-th entry of ,. So considering possibilities we obtain the lemma. O

Recall that in the equivariant Grothendieck group, we have
n n—2

n—1
[TFIn)] =Y [Un 1 @S] = Y U7 @U]+ Y [U7 @ U], 3)
i=1

i=1 i=1

70



PAKSOY

We know that L,, = U;/U;—1,i =1,...,n— 1. Of course we are using induced bundles

for T -action without changing the notation. Then we have
0—>U1 —>U2—>U2/U1 —0

short exact sequence. So in Grothendieck group [Us] = [Ly,]| + [Ly,]. We can proceed

fori =1,...,n—1 and obtain [U;] = Z;Zl[LXj]. Since the duality of vector bundles

yields an involution [V] — [V*] in Grothendieck group. We have [U}] = Z;Zl[L;l] So

K2
equation (3) can be decomposed further to be

n n—1
[TFI(n)] =Y Y [L;, @8 Z > LL, @ Ly, +Z > Ly, @ Ly,).
i=1 a=1 i=1 1<a,b<i i=1 1<a<i

1<b<it1

So we obtained a decomposition of T equivariant tangent bundle into line bundles
in Grothendieck group. Therefore given a balloon pg € Fl(n) and d = §[pq] together
with F' = (P!, f5,0) € Mo 1(Fl(n),d) we have for V. = TFI(n) the representation
R =[HO(P', fxV)] — [H* (P!, f£V)] is equal to

n n—1

R = D ST[HOPY (L, ® 8y,))] — [HY(BY, f(L%, ® Sy,))] (4)

i=1 a=1

3
|
-

i [HO(P', £5(Ly, ® Ly,))] — [H' (P, 5 (L}, ® Ly,))]

1<a,b<i

N
Il
-

i
[ V)

4 Z [HO(PY, f3 (L%, ® Ly,)] — [HY(PY, f; (L%, ® Ly,)))-

1 <a<

1
1<b<it

.
Il

Considering (4), and using the method of [10], we can compute in ) br(Va) for equivariant
Chern polynomial. We will consider three cases.
Case 1) [H°(P', f5 (L3, @ Ly,))| — [H'(P', f5 (L%, ® Ly,)),1<a<i,1 <b<i+1.
Note c1(Ly, ® Ly,)lp = Wa — W)lp = Uu(a) — Uw();w € Sp corresponds to p and
inYa = Uw(a)([15]). We also have

lab = (LY, ® Ly, [Pal) = (Wa — b, [Pa]) = (O(As — M), [pal) = As — Ao,
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where A = xp — Xq and pq ~ ij(St), g = w(st). So as in lemma (3.1) we can compute l,p.

Namely assuming a < b we obtain

0 if s,t #a,b

-1 ift=aors=0b

lap =
’ 1 ifs=a,t#bors=>b,t#a
2 if s=a,t =0,
and for b < a we have
0 if s,t #a,b
; —1 ifs=bandt#aors=a,t#b
ab —

1 ifs=aort=">
-2 ifs=bt=a

for1 <a<i,1<b<i+1,1<i<n—2. This contributes as (z+c1 (L}, @ Ly, )|, —kM\/9)
forlay >0,k =0,...,lwd and (z+ci (L}, @Ly, )|p+kA/6) for lyy <0,k =1,..., —lp0—1
and eventually we get

lapd .
HlabZO [TiZo(@ + er(L3, @ Ly, )lp — kA/0)
—lapd— N
T1.,, <o [Ll’ (@ + er(Ls, ® Ly,)lp + kA/O)

Case 2) —[HO(]Pl,fg(L;a ® Ly, )] — [Hl(]Pl,fg(L*a @ Ly ))),1<a,b<n-1.

X
Similarly, i5 (Yo — ¥b) = Uw(a)—w(v) and set

lab = <Cl (L;a ® LXb)’ [P(]D,

which can be computed as before and we obtain

—lagpd—1
[T II @+ea@y, Lol +kN0)
lap<0 k=1
labd
H (4 1(Ly, @ Ly, )lp — kA/0)
lap >0 k=0

because of the negative sign in front.
Case 3) [HOP', f; (L%, ©5,,)] — [H'(P, £ (L%, @S, )], 1 <i<n1<a<n—1.
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This time we have c1(L}, ® Sy,)lp = Uu(a) — u; and
la = {c1(L}, ® Sx.), [pa))-

The contribution will be

lad
[[@+a(@y, @Syl —kA/6)

1o >0 k=0

—lg—1
(x4 c1(Ly, ®Sy,)lp +EXNa)

lo<0 =1

Combining all of the above we obtain the next theorem.

Theorem 3.2 Let X = Fl(n), F = (P!, fs,0) with d = §[pq] for a balloon pqg C X where
p=w,q=w(jn) and pq ~ X2U™) | Then at o = A/

lad

I e+ ey, @S0l —kA/6)

V) = TITI 22
T ey, @S0l + kA ja)

la<0 i=1

—lapd—1

n—1 H H (+cr(Ly, ® Ly, )lp + kA/0)

H lab<0 k=1
. lab0
Shsas T [T+ alzs, @ Lol - k6

lab >0 k=0

ab6
o II TG+ ea(@s, ® Lyl — kA/6)
H lap>0 k=0
=1 1<a<i ot '
ThESh I TI @+ all, © Lyl +EA/6)
lap<0 k=1
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For d = 3" d;&;, in A% (W) define

da_dafl

n n—1 H H (x—i_ﬁa_ﬁa—l_ui—ka)

H H dg—de—1>0 k=0
da—1—dg—1
i=1a=1
H H (T + Kg — Ka—1 — Ui + ka)

—dgp—1
- H H (T + Kab + ka)
dep<0 k=1
- . dab
i=1 1<a,b<i H H(fl; T Ry — ka)
dap>0 k=0

da
H ﬁ(m—i— Kab — kat)
o
! %%91 H H (T + Kab —i—ka)

i
[ V)

.
Il

dep<0 k=1
where
day = Wa—UYp,d)=(6q—6a-1—6p+6Gp_1,d) =dyg —da—1 —dp +dp_1,
Kab = HKa— Ka—1— (Kb — Kp—1).

Proposition 3.3 With the notations of the previous theorem, i,7*j5Qa = i;(F)bT(Vd).

Proof. = We have d = d[pg],a = A/ and note that d; = (&;,d[pq]) and 7*j} K,
T*H; = 6;. S0 ip7*j5Qq will give the same expression as theorem (3.2).

Proposition 3.4 B(t) = e St/ 75Qa N Lgedt is an Q—Euler series. Here &
(61, . 7611—1)-
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Proof. Equivariant Chern polynomial of Fi(n) is given by

n n—1
HHx+ya_ H H x+ya_yb)
i=1a=1 i=1 1<al<z
Q=7T=0by(V) — Lsbsitl
(T +Ya— vb)
i=1 1<a,b<i

where I' is a T equivariant class in H;(Y") given by

HH("T"'H — Ha 1_“11_[ H (7 + Hap)

i=1a= i=1 1<a<i
1<b<i+1
F = — )
H H (z + Hap)
i=1 a,b<i

where Hab = Ha — Ha—l — (Hb — Hb—l)-
We must show that I' - j5Qq = jiQr - j§Qd—r,0 X 7 < d. We will consider several
cases. Let’'sfix1 <i<nand1<a<n-1 For0=<r=<d:

o Ifdy,—dy—1>0,7q —714-1>0and d, —dg—1 — (rq —Ta—1) > 0, then we will have

a term HZ‘;Bda’l (x4 Kg — Ka—1 — U; — ka) in Qq. Isolate (x + Hy, — Hyo—1 — 1), a
part of 2, to compute

do—da—1
(r+Hy— Ho1 — i) - i H (T + kg — Ka—1 — u; — ka)) =
k=0
do—da—1
@+ya—w) [[ (@+Ho—Hoor—ui+ ((ra—rac1 — k)a) (5)
k=0

On the other hand we have r, —7,—1 > 0 and dy —dq—1 — (14 —7a—1) > 0. Consider

Ta—Ta—1 (d_T)a
Js H (T + kg — Ka—1 — u; — ka) - 45 H (T + kg — Ka—1 — U; — ka)
k=0 k=0

75
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where (d — a)q = dy — dya—1 — (e — Ta—1). This becomes

Ta—Ta—1 (d—a)q
H (r+Hy— Ho1 —ui + ka) H (r+ Hy — Ho1 —ui — kay), (6)
k=0 k=0

Expanding (5) and comparing to (6) we clearly see that they are equal. This is also

contained as an example of Euler data in [8].

e dy—dy—1>0,7—74-1 >0 Dbut (d—a), < 0. In this case we still have (5) but

this time we must consider the division

Ta—Ta—1

H (r+Hy— Ho1 —u; + ka)
k=0
_(d_a)a_l (7)
H (r+ Hy — Ho1 — u; + ka).
k=1

Recall that dy — dg—1 — (14 —Ta—1) < 0= —(d —a)s — 1 < 7y —T4—1. Moreover,

expanding (7) we see that the only remaining term is
(t+H,—Ho1—uw)(e+Hy—Hoo1 —uj— (d—71)qa) - (. + Hy — Hoo1 — uy
+(Ta - Ta—l)a)u

which is equal to (5).

e dy—d,—1>0andr, —7r4-1 < 0. In this case, we have (d — a), > 0 and obtain the

equality
da_dafl
(r+Hy— Hoo1 —u;) - H (t+Hy,—Ho1—ui+ (rg —ra—1 — k)a)
k=0
(d—a)q
H (r+Hy— Ho1 —u; — ka)
k=0

Ta—1—Tq—1

H (r+ Hy— Ho1 — u; — kay),
k=1
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which is in fact

da_dafl
(r+Hy— Ho1—w;) - ji H (T4 kg — Ka—1 — u; — ka) =
k=0
(d—a)q
o T] @+ ka— ka1 —u; —ka)
k=0

Ta—1—Tq—1

(j(’j H (x4 Kq — Ka—1 — u; + ka))
k=1

o dy —dy—1 <0,74 —rq—1 > 0. Obviously this implies (d — r), < 0. We compare

(LL' + Ha - Ha—l - ui)
R and (8)
Jr H (T + Ko — Ka—1 — Ui + ka)
k=1
Ta—Ta—1
(j(’j H (T+ Kg — Ka—1 — Uj — ka))
k=0
“(d—a)a—1 (9)
7o H (T + Ka — Ka—1 — Ui + ka)
k=1
If ro —rq-1 = —(d—1)sg —1 = 14 —Tg—1 — do + da—1 + 1 then we have
dy, —ds—1 = —1 and no term on (8) except (x + H, — H,—1 — u;) appears.

Clearly only the same term survives on (9) after cancellation. Otherwise, observing
—(d—=7)a —1>rs — 141, and expanding (9) accordingly, we obtain the equality
of (8) and (9).

o dy—dy_1<0,7y —1rq—1 <0,(d—7r) > 0. This time we will compare

(x+Hy—Ho1 —wy)

i and (10)

1—de—1
H (t+Hy—Ho1—ui+ (rg —ra—1 + k)a)

k=1

7
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(d—7)q
H (r+Hy— Ho1 —u; — ka)
k=0 (11)

Ta—1—Tq—1

H (r+ Hy — Ho1 — u; — ka).
k=1

Observe that

>0 dy—dg—1<—1

Tae1l—Ta—1—(d—7)g=—-1—(dg —dg—1) =
! (d=r) ( ) {o dy — dg_y = —1

If dy — do—1 = —1, (10) is just (x + H, — Ho—1 — u;) and same for (11). Note
if dg, —da—1 < —1 then after cancellations on (11) we obtain the equality again.

Finally:
dg —da—1 <0,174 —1q—1 <0,(d—7)q <0. Then we will have the equality of

(e +Hq— Hoo1 —wy)

dog—1—dg—1

-
H (t+Ho—Hoo1—ui + (rq —ma—1 + k)a)
k=1
and
1
—(d—r)a—1 Ta—1—Ta—1
H (r+Hy— Ho1 —u; + ka) - H (r+Hy— Ho1 —u; — ka)
k=1 k=1

since (d —7)q <0=dg_1 —dq > Te—1 — ¢ and we will obtain the term (x + H, —

H,_1 — u;) in the first expression when k =r,_1 — r,.

To summarize, we obtain for 0 < r < d

(x4 Ho — Hoo1 — w3) 57Q4 = j5 QL - 5 Ql_,

n n—1
i=

1a=1

T1
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where

da_dafl
H (T + Kg — Ka—1 — U; — ka)
n n—1
Ql B H H dg—de—1>0 k=0
d— do_1—dg—1
i=1a=1
H (T + kg — Ka—1 — Ui + ka)

dqg—da—1<0 k=1

In fact preceding argument can easily be seen to be true for the other two parts composing

Q4. Namely, once we set

—dagp—1
1 n—1 H l_bl (x + Kab + ka)
PQ 1:[ dab<0 /;jbl

H H1<a b<z(x + Hab)

1sabs H H(x—i—mab—ka)

dap>0 k=0

and

dab
_ R (R
3 dab>0 k=0
H II @+aw.Qi=11 11 T
—UQab—
i=1 1<a<i i=1 1<a<i
1<b<it1 1<b<it1 H H x—i—nab—i—ka)
dep<0 k=1

where dup and Kqp are as before. Note Qg = Q,Qq = Q}i . QZ . Qg, Q=010 Q3 and

combining all of above, we obtain
[ jrQa=joQr - joQa—r,0 =7 = d.

This shows that the list @ : Qg4 gives an I-Euler data and then by theorem (2.5) we
obtain the desired result. O

Now we want to compute the o degree of Q4. Observing closely we find that after

79



PAKSOY

possible cancellations are done QZ . Qg can be written as

dig—1

1 H H(x—i—ma—i—ka)
2 3 dia <0 k=1
Qd ! Qd - ( dia

i=1 a=1 H
dia >0

(T + Kiqg — ka)
k=0

The a degree of this expression is less than Z?;ll Zfl:l(—dw —1). In addition,

da_dafl

n n—1 H H (T + kg — Ka—1 — u; — ko)
dega(H H da—da—1>0 dii?_da_l ) i
R | | [T @+ ke Far +ka)

dqg—daq—1<0 k=1

So we obtain degoQq < nd,_1 — 2?2—11 Zi (dia +1). Recall that c1(X) =2(61 4+ ---

a=1

Sp_1) for X = Fl(n). Then

n—1 n—1 1<
(c1(X),d) — degaQa > 2 di—ndn_1+ Y Y (dig +1).
i=1 i=1 a=1
We know dia = di — di—l — (da — da—l)' Then
n—1 1 n—1 n—1 1
S (dia+1) = > ildi—din) =YY (da — da1)
i=1 a—=1 i=1 i=1 a—=1
= —dy— - —dpr+ndp1—(d1+---+dn-1)

= _2(d1 + "'+dn—1)+ndn—1'

Therefore (12) becomes

n—1

<01(X)7d> - degan Z ZZ Z 0.
i=1

As a result we conclude that 7*j5Q4 satisfies the conditions of theorem (2.12) and we

have the following theorem
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Theorem 3.5 Let X = Fl(n) and V =TX be the equivariant tangent bundle. The A-

series AV:'r(X) with equivariant Chern polynomial by can be computed as

At +g) = e/ B(t)

where B(t) = e~ ¥t/ > oaT96QaN]a and f, g are formal power series given as in theorem

(2.12). O
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