Turkish Journal of Chemistry

Volume 29 | Number 6

Article 3

1-1-2005

Catalytic Oxidation Properties and Characterization of LaSrCo_{0.9}B'_{0.1}O_4 (B'= Mn, Fe, Ni, Cu) Mixed Oxides

LAITAO LUO

GUANGXIN SHAO

ZHANHUI DUAN

Follow this and additional works at: https://journals.tubitak.gov.tr/chem

Part of the Chemistry Commons

Recommended Citation

LUO, LAITAO; SHAO, GUANGXIN; and DUAN, ZHANHUI (2005) "Catalytic Oxidation Properties and Characterization of LaSrCo_{0.9}B'_{0.1}O_4 (B'= Mn, Fe, Ni, Cu) Mixed Oxides," *Turkish Journal of Chemistry*: Vol. 29: No. 6, Article 3. Available at: https://journals.tubitak.gov.tr/chem/vol29/iss6/3

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for inclusion in Turkish Journal of Chemistry by an authorized editor of TÜBİTAK Academic Journals. For more information, please contact academic.publications@tubitak.gov.tr.

Turk J Chem 29 (2005) , 597 – 605. © TÜBİTAK

Catalytic Oxidation Properties and Characterization of LaSrCo_{0.9} $B'_{0.1}O_4(B'=Mn, Fe, Ni, Cu)$ Mixed Oxides

Laitao LUO*, Guangxin SHAO, Zhanhui DUAN

Institute of Applied Chemistry, Nanchang University, 330047 Nanchang, P. R. CHINA e-mail: luolaitao@yahoo.com.cn

Received 13.11.2004

Using a polyacrylamide gel method, a series of $LaSrCo_{0.9}B'_{0.1}O_4(B'=Mn, Fe, Ni, Cu)$ mixed oxides were prepared and their catalytic activity was studied with CO and C_3H_8 oxidations as a testing reaction. The results show that the specific effects of B' ions on CO and C_3H_8 oxidations depend on their category. In comparison to $LaSrCoO_4$ catalyst, the activity of $LaSrCo_{0.9}Ni_{0.1}O_4$ catalyst for CO and C_3H_8 oxidations is higher, while only lower activity is obtained for Mn, Fe or Cu-doped catalysts. The information derived from TPD, XRD and iodometry experiments shows that the increase in oxidation activity of $LaSrCo_{0.9}Ni_{0.1}O_4$ catalyst towards CO and C_3H_8 oxidation can be related to the increases in O_2 -adsorption quantity, CO₂-desorption quantity, oxygen vacancies and lattice distortion due to the adulteration of nickel. Further investigation shows that the apparent activation energy of $LaSrCo_{0.9}Ni_{0.1}O_4$ towards CO oxidation is lower than that of $LaSrCoO_4$.

Key Words: B-site adulteration, catalytic oxidation, Co-based mixed oxides, A₂BO₄.

Introduction

Perovskite-like A_2BO_4 mixed oxides, with a K_2NiF_4 -type structure, have attracted more and more attention in the catalysis field because of their unique features, such as low cost, high catalytic activity and excellent thermal stability^{1,2}. Many studies have shown that the catalytic performances of A_2BO_4 mixed oxides, to a large extent, are associated with the species of A-site and B-site ions, and their corresponding valences, as well as the crystal structure of these oxides³⁻⁵. As commonly accepted, B-site ions, i.e. framework ions, can play important roles in determining catalytic activity. It is noted that there are many studies in the literature on investigations of LaSrCuO₄ and LaSrNiO₄ catalysts^{2-3,6-9}. Recently, it was reported^{10,11} that in some catalytic oxidation reactions LaSrCoO₄ catalyst shows excellent performance. Studies involving the investigation of LaSrCoO₄ catalyst are considerably limited. Furthermore, almost no research has been dedicated to the adulteration of B-site ions in such catalysts, although the adulteration in the B-site is promising. Therefore, further investigation is necessary.

 $^{^{*} {\}rm Corresponding} \ {\rm author}$

Four ions (Mn, Fe, Ni, Cu) in the present case are introduced into $LaSrCoO_4$ catalyst and one of main purposes is to discuss the specific role of B-site doped-ions in catalysis. With CO and C_3H_8 oxidations as testing reactions, the catalytic performances of all these catalysts were investigated. To show the probable intrinsic properties, XRD, TEM and TPD were employed.

Experimental

Preparations of LaSrCoO₄ and LaSrCo_{0.9} $B'_{0.1}O_4$ (B=Mn, Fe, Ni, Cu) catalysts

The mixed oxides were prepared by the polyacrylamide-gel method³. Under stirring, a certain molar ratio of lanthanum, strontium, cobalt and manganese (or iron, nickel, copper) in salt nitrate forms were dissolved in a citric solution. At pH 6-7 (ammonia adjustor), acrylamide and N, N'-methylene-bis-acrylamide were added, and then the system was heated to 90~95 °C. Subsequently, N, N, N', N'-tetramethylethylenediamine and 2,2'-azo-bis-iso-butyronitrile (dissolved in ethanol) were added as initiators and the resulting gel was dried by evaporation. With the temperature-increasing rate of 2 °C·min⁻¹, the obtained precursor was heated to 450 °C and left for 6 h, followed by calcination at 850 °C for 9 h.

Catalytic activity measurements

The CO and C_3H_8 oxidation reaction was carried out with a flow reactor. For each experiment, 0.2 g of catalyst was used. The space velocity was 6000 h⁻¹ and the composition of the mixture gases was CO, 3.5%-vol, C_3H_8 , 1.0%-vol, O_2 , 7.0% -vol and N_2 , 88.5%-vol. For the determination of the conversions of CO and C_3H_8 , evaluating the activity of catalyst, on-line chromatography with a TCD detector was used. For the analysis of CO oxidation, the separation column was TDX-01 and a Porapak Q column was used for C_3H_8 oxidation.

XRD measurement

The XRD analysis was carried out on an X-ray diffractometer (D/max-3B, Japan), with the operation conditions as 40 kV/10 mA, Cu K α and nickel filter.

Valence analysis of B-site ions

The valence of B-site ions was determined by means of iodometry 12 .

TPD characterizations

O₂-TPD or CO₂-TPD: under O₂ or CO₂ gas, a catalyst sample (250 mg) was heated from ambient temperature to 800 °C (500 °C for CO₂-TPD) at a rate of 10 °C ·min⁻¹ and subsequently left for 1 h. When the system was cooled to room temperature, He (carrier gas) was used to remove the O₂ or CO₂ in the gas-phase. Subsequently, with the temperature-increasing rate of 8 °C·min⁻¹, the O₂ or CO₂-desorption was recorded by on-line chromatography.

Results and Discussion

Catalytic oxidation activity of $LaSrCoO_4$ and $LaSrCo_{0.9}B'_{0.1}O_4$ catalysts

Table 1 and Figure 1 show the oxidation activity of various catalysts. Here, T_{50} and T_{100} are the temperatures of CO and C_3H_8 conversions reaching 50% and 100%, respectively. As is apparent, the oxidation activity of LaSrCo_{0.9}Ni_{0.1}O₄ catalyst is higher than that of LaSrCoO₄, while only lower activity is obtained for Fe, Mn or Cu doped-catalysts than for LaSrCoO₄. In comparison to LaSrCoO₄, T_{50} and T_{100} of CO oxidation of LaSrCo_{0.9}Ni_{0.1}O₄ are decreased respectively 15 and 10 °C. Both decreases become more evident in the case of C_3H_8 oxidation. This strongly indicates that the presence of B-site adulteration plays an important role in affecting the catalytic activity. In comparison to the lowest T_{100} (350 °C) of CO oxidation over La_{2-x}Sr_xNiO₄(x=0-1.0) and Eu_{2-x}Sr_xCuO₄(x=0-0.6) reported in the literature^{7,13}, the case of LaSrCo_{0.9}Ni_{0.1}O₄ catalyst presents lower T_{100} (220 °C). This indicates that LaSrCo_{0.9}Ni_{0.1}O₄ is a better oxidation-typed catalyst.

Table 1. Effect of doped-ions on the catalytic activity of $LaSrCo_{0.9}B'_{0.1}O_4$ mixed oxides towards CO and C_3H_8 oxidation.

Figure 1. Effect of reaction temperature on the catalytic activity. of $LaSrCoO_4$ and $LaSrCo_{0.9}B'_{0.1}O_4$ (B' = Mn, Fe, Ni, Cu) catalysts.

As also noted, the oxidation temperature of C_3H_8 is actually higher than that of CO. This may be due to the higher C-H and C-C bond-energy (411 kJ·mol⁻¹, 345.6 kJ·mol⁻¹) than π bond-energy (273

 $kJ \cdot mol^{-1}$) held in CO. As a result, opening a bond in C_3H_8 would need higher energy than in CO molecule and therefore a higher oxidation temperature for C_3H_8 oxidation than for CO oxidation is obtained.

Studies on apparent activation energy towards CO oxidation

Activation energy indicates that a reaction is hard or easy and to what extent. The nature of catalysts' increasing reaction speed is that catalysts decrease the activation energy. The CO oxidation is such that CO reacts with O_2 to form CO_2 , and the reaction equation is

 $2CO + O_2 = 2CO_2$

The mechanism of CO oxidation is discovered through Doden's research:

$$CO + * \underset{k_{-1}}{\overset{k_{1}}{\longleftrightarrow}} CO^{*} \tag{1}$$

$$O_2 + \overset{k_2}{\underset{k_{-2}}{\Leftrightarrow}} O_2^* \tag{2}$$

$$O_2^* + \mathop{\Leftrightarrow}\limits_{k_{-3}}^{k_3} 2O^* \tag{3}$$

$$CO^* + O^* \xrightarrow{k_4} CO_2^* +$$
^{*} (4)

$$CO_2^* \xrightarrow{k_5} CO_2 +^* \tag{5}$$

The surface reaction is the speed-control step, and equations can be drawn when other steps come to balance:

$$k_1 P_{CO} \theta_0 = k_{-1} [CO^*] \tag{6}$$

$$k_2 P_{O_2} \theta_0 = k_{-2} [O_2^*] \tag{7}$$

$$k_3[O_2^*]\theta_0 = k_{-3}[O^*]^2 \tag{8}$$

The speed of the surface reaction is

$$r = k_4 [CO^*][O^*]$$
(9)

Import Equations of [6], [7] and [8] to equation [9]

$$r = -\frac{dP}{dt} = k_4 \frac{k_1 P_{CO} \theta_0}{k_{-1}} \sqrt{\frac{k_3 k_2 P_{O_2} \theta^2}{k_{-2} k_{-3}}} = K P_{CO} P_{O_2}^{1/2} \theta_0^2$$
(10)

From the equation above, it can be seen that CO oxidation is a 3/2 grade reaction. Oxygen is abundant in the reaction condition, and so partial pressure of oxygen and the quantity of free adsorption center are thought to be invariable when the reaction comes to balance. Thus equation [10] can be written as

$$r = -\frac{dP}{dt} = Ae^{-Ea/RT} \cdot P_{CO} \cdot C$$

600

$$-\int \frac{1}{P_{CO}} dP = \int A e^{-Ea/RT} \cdot C \cdot dt$$
$$-Ln \frac{P}{P_0} = A e^{-Ea/RT} \cdot t + C'$$
(11)

Because the gas-space velocity and the catalyst quantity are the same in the reaction process, the time spent by the gas that passes through the catalyst bed should be the same, and it is a constant. The total gas pressure is regarded as invariable due to plentiful diluting gas in the mixed reaction gas. Thus, CO conversion $X=(P_0-P)/P_0$.

$$LnLn\frac{1}{1-X} = -Ea/RT + C''$$
(12)

From equation [12], figures of $LnLn\frac{1}{1-X}$ vs. 1/T can be drawn, and the apparent activation energy towards CO oxidation can be obtained from the slope (-Ea/R).

The apparent activation energy of LaSrCoO₄ and LaSrCo_{0.9}Ni_{0.1}O₄ is shown in Table 2. In comparison to LaSrCoO₄, the apparent activation energy of LaSrCo_{0.9}Ni_{0.1}O₄ is lower by 11.8 kJ·mol⁻¹. Because of the speed constant K=Ae^{-Ea/RT}, the less the activation energy (Ea) is, the greater the speed constant is, and the faster the reaction is with high catalytic activity, which hits the experiment results.

Table 2. Apparent activation energy towards CO oxidation.

Samples	Activation energy $/kJ \cdot mol^{-1}$
$LaSrCoO_4$	153.7
$LaSrCo_{0.9}Ni_{0.1}O_4$	141.9

Structural characterizations of $LaSrCoO_4$ and $LaSrCo_{0.9}Ni_{0.1}O_4$ catalysts

As is well known, the formation of K_2NiF_4 -typed A_2BO_4 mixed oxides has 2 aspects of requirements, that is, the limitation of structure factor t ($R_A/R_B=1.7\sim2.4$) and the requirement of charge balance^{14,15}. Since the 2 aspects of have been met, LaSrCoO₄ and LaSrCo_{0.9}Ni_{0.1}O₄ can form K_2NiF_4 -typed structure under appropriate conditions. It is also known that K_2NiF_4 -typed A_2BO_4 mixed oxides can be classified specially into 2 forms, i.e. space group Fmmm orthorhombic-phase and space group I4/mmm tetragonal-phase; also the I4/mmm tetragonal-phase of A_2BO_4 can be classified further into 3 phases (T, T*, T') ¹⁶. B-site ions are coordinated with 6, 5 and 4 oxygen atoms (BO₆, BO₅ and BO₄) in T, T* and T' phases, respectively. The results of the XRD pattern (Figure 2) clearly indicate that both LaSrCoO₄ and LaSrCo_{0.9}Ni_{0.1}O₄ also contains less orthorhombic phase.

Figure 2. XRD patterns of the LaSrCo_{0.9}Ni_{0.1}O₄and LaSrCoO₄mixed oxides.

Figure 3 shows the schemes of oxygen transformation in the octahedral BO₆ over LaSrCo_{0.9}B'_{0.1}O₄ catalysts in the reaction of CO and C_3H_8 oxidation¹⁷. Here, BO₆, the activity unit of LaSrCo_{0.9}B'_{0.1}O₄ catalysts, is a distorted octahedron. In BO₆, the B-O₁bond-length is longer than that of B-O⁷_{II}. For catalytic oxidation, the O_I that connects with the high-valence B-site ions plays an important role in the catalytic oxidation. In the process of oxidation, CO and C₃H₈ are adsorbed to the high-valence B-site ions and subsequently activated, followed by their reaction with O_I.

As commonly accepted^{3,9}, the distortion of the active unit BO₆, caused by different B-site ions or Bsite doped ions, is an important reason for the different activity. For evaluations of average crystal size and lattice distortion, the Scherrer equation $L=0.9\lambda/\beta\cos\theta$ and $\beta^2\cos^2\theta=4(\lambda/L)^2/\pi^2+32(\varepsilon^2)\sin^2\theta$ were used. Here, L is the average crystal size, λ the X-ray wavelength used (0.1542 nm), β the half-peak width, θ the diffraction angle and $(\varepsilon^2)^{1/2}$ the lattice distortion. In the direction of [110] and [103], the results (Table 3) show that the crystal size of LaSrCo_{0.9}Ni_{0.1}O₄ is smaller than that of LaSrCoO₄; also the lattice distortion is actually greater. The increase in lattice distortion will increase the B-O_I bond-length and decrease B-O_{II} bond-length (O_I: oxygen in c lattice axis; O_{II}: oxygen in x-y lattice plane). As a result, the mobility of O_I will increase, which is beneficial to the process of oxidation reaction^{18,19}.

Table 3. Average crystal size and lattice distortion of the $LaSrCoO_4$ and $LaSrCo_{0.9}Ni_{0.1}O_4$ mixed oxides.

Mixed oxides	L_{110}/nm	$(\varepsilon^2)_{110}^{1/2}/10^{-3}$	L_{103}/nm	$(\varepsilon^2)_{103}^{1/2}/10^{-3}$
$LaSrCoO_4$	39.32	1.61	32.23	1.88
$LaSrCo_{0.9}Ni_{0.1}O_4$	33.31	1.91	31.76	1.92

Figure 3. Schemes of oxygen transformation in the octahedral BO_6 .

TPD Characterizations of $LaSrCoO_4$ and $LaSrCo_{0.9}Ni_{0.1}O_4$ catalysts

 O_2 -TPD curves of LaSrCoO₄ and LaSrCo_{0.9}Ni_{0.1}O₄ catalysts are shown in Figure 4. There are 3 peaks (i.e. α, α' and β) in the desorption curve of LaSrCoO₄ catalyst. The peak α may be due to the desorbing of the ordinarily chemically adsorbed oxygen on the surface of the catalyst, while the peak α' may be related to the chemically adsorbed oxygen in the oxygen vacancies of the catalyst²⁰. The release of oxygen vacancies may be due to the reduction of Co³⁺:

 $(2 \operatorname{Co}^{3+} + \operatorname{O}^{2-} \longrightarrow 2 \operatorname{Co}^{2+} + 1/2 \operatorname{O}_2 + [\text{vacancies}]).$

The peak β responds to the release of oxygen in the lattice of the catalyst. For LaSrCo_{0.9}Ni_{0.1}O₄ catalyst, there are some differences in the curve, that is, another peak (i.e. α^*) appearing in the TPD curve. This is probably due to the presence of 2 different oxygen vacancies, since the B-site ions contain not only Co but also Ni. Thus, logically, the peak α' and α^* may be responsible for the reduction of Co³⁺ ions and Ni³⁺ ions with the release of oxygen vacancies.

As can also be seen from Figure 4, the ordinarily chemically adsorbed oxygen and the chemically adsorbed oxygen on oxygen vacancies of $LaSrCo_{0.9}Ni_{0.1}O_4$ are more those that of $LaSrCoO_4$.

Since CO_2 is the product of CO and C_3H_8 full-oxidation, the investigation of CO_2 -TPD is necessary, and this may reveal some information about the oxidation. As shown in Figure 5, there are 2 CO₂-desorption peaks in the TPD curves of both LaSrCoO₄ and LaSrCo_{0.9}Ni_{0.1}O₄, while the bigger area desorbed is under the curve of LaSrCo_{0.9}Ni_{0.1}O₄. This indicates that a larger empty position on the surface of the catalyst can be left, therefore giving more room for subsequent reactions, which is beneficial to the reaction.

Figure 4. O₂-TPD curves of the LaSrCoO₄ and LaSrCo_{0.9}Ni_{0.1}O₄ mixed oxides.

Figure 5. CO_2 -TPD curves of the LaSrCoO₄ and LaSrCo_{0.9}Ni_{0.1}O₄ mixed oxides.

Valence of B-site ions and non-stoichiometric oxygen analysis

The iodometry experiments show that the average valence of B-site ions in LaSrCoO₄ and LaSrCo_{0.9}Ni_{0.1}O₄ is 2.323 and 2.226, respectively. In addition, the content of their non-stoichiometric oxygen is 0.339 and 0.387, respectively, indicating that oxygen vacancies of LaSrCo_{0.9}Ni_{0.1}O₄ increase. As mentioned above, the oxygen vacancies play an important role in the catalytic oxidation reaction. During the catalytic oxidation, these oxygen vacancies, on one hand, aid in the transformation of the chemisorbed oxygen to the lattice oxygen continuously, thereby supplementing the consumption of lattice oxygen, and, on the other hand, also increase the mobility of lattice oxygen, as well as produce more lattice oxygen. As a result, the activity of LaSrCo_{0.9}Ni_{0.1}O₄ catalyst is reinforced.

Conclusions

A series of perovskite-like LaSrCo_{0.9}B'_{0.1}O₄(B' = Mn, Fe, Ni, Cu) mixed oxides, in nanometer size, were prepared by polyacrylamide gel method. The results show that the specific effects of B' ions on CO and C₃H₈ oxidations depend on their category. In comparison to LaSrCoO₄ catalyst, the activity of LaSrCo_{0.9}Ni_{0.1}O₄ catalyst is higher, while only lower activity is obtained for Mn, Fe or Cu-doped catalysts. Further information shows that the increase the activity may be related to the increases in O₂-adsorption quantity, CO₂desorption quantity, oxygen vacancies and the lattice distortion due to the adulteration of nickel. In addition, the apparent activation energy of LaSrCo_{0.9}Ni_{0.1}O₄ towards CO oxidation is lower than that of LaSrCoO₄.

Acknowledgments

The authors thank Dr. Songjun Li for the valuable discussions on this work.

References

- 1. N. Guilhaume, S.D. Peter and M. Primet, Appl. Catal. B. 10, 325-344 (1996).
- 2. S.D. Peter, E. Garbowski, N. Guilhaume, V. Perrichon and M. Primet, Catal. Lett. 54, 79-84 (1998).
- 3. Y. Liu, X.G. Yang, Y.M. Liu and Y. Wu, Acta Phys.-chim. Sin. 15, 506-511 (1999).
- 4. L.Z. Gao, Q.S. Li, Y. Wu and Z.L. Yu, Acta Chim. Sin. 54, 234-241 (1996).
- 5. Z. Zhao, X.G. Yang and Y. Wu, Acta Phys.-chim. Sin. 13, 344-350 (1997).
- 6. A.K. Ladavos and P.J. Pomonis, Appl. Catal. A, 165, 73-85 (1997).
- H. Lou, H.Y. Zhen, J.Y. Yang, Z.Q. Yao, X. Yu, S.B. Du and F.T. Ma, Chem. J. Chinese U. 16, 107-110 (1995).
- 8. Y. Wu, Z. Zhao, Y. Liu and X.G. Yang, J. Mol. Catal. A Chem. 155, 89-100 (2000).
- 9. Z. Zhao, X. G. Yang, Y. Liu and Y. Wu, J. Rare Earth 16, 325-331 (1998).
- 10. X.M. Yang, L.T. Luo and H. Zhong, React. Kinet. Catal. Lett. 81, 219-227 (2004).
- 11. T.X. Cheng, X.G. Yang and Y. Wu, Sci. China Ser. B, 38, 1025-1037 (1995).
- 12. D.C. Harris, T.A. Hewton, J. Solid State Chem. 69, 182-191 (1987).
- 13. H. Lou, J.G. Liu, X.J. Liu and F.T. Ma, J. Rare Earth 19, 324-328 (2001).
- 14. D. Ganguli, J. Solid State Chem. 30, 353-356 (1979).
- 15. H. Lou, Y.Z. Xu, P. Cheng, Y.P. Ge, G.L. Lu and F.T. Ma, Chinese J. Inorg. Chem. 15, 158-164 (1999).
- 16. Y. Tokura, H. Takagi and S. Uchida, Nature 337, 345 (1989).
- 17. X.M. Yang, L.T. Luo and H. Zhong, Appl. Catal. A, 272, 299-303 (2004).
- 18. L.Z. Gao, B.L. Dong, Q.S. Li, X. Lu, Z.L. Yu and Y. Wu, J. Fuel Chem. Tech. 22, 113-118 (1994).
- 19. X.Z. Qi, Z. Ma and S.W. Wang, Chem. Industry Engi. 17, 358-361 (2000).
- 20. Z. Zhao, X.G. Yang and Y. Wu, Appl. Catal. B Environmental 8, 281-297 (1996).