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On the Distribution of Random Dirichlet Series in the
Whole Plane

Qiyu Jin and Daochun Sun

Abstract

For some random Dirichlet series of order(R) infinite almost surely, every hori-
zontal line is a strong Borel line of order(R) infinite and without exceptional Little

functions.
Key Words: Random Dirichlet series, Order(R), strong Borel line, little function.
1. Preliminaries

For random Dirichlet-Rademacher, Steinhaus and N series of order(R) infinite almost
surely (a.s.), it was proved that a.s. every horizontal line is a Borel line of order(R)
infinite and with a possible exceptional value [10], [11]. Later, in [12], by generalized
Paley-Zygmund lemma in [8], it is proved that for more general random Dirichlet series
of order(R) infinite a.s. every horizontal line is a Borel line of order(R) infinite and
without exceptional values. In this paper, we replay exceptional values by exceptional
Little functions, and prove that for the random Dirichlet series of order(R) infinite a.s.,
every horizontal line is a strong Borel line of order(R) infinite and without exceptional
Little functions. Our method can be applied to study some random Dirichlet series of

generalized Orders(R) as, [1], [5], [11], [13].
The books [2], [3], [9] are very enlightening and helpful in the related research.
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Consider random Dirichlet series

+oo
f(saw) = ZanZn(w)e_)\nsa (1'1)
n=0
and an associated Dirichlet series
“+o00
g(s) = > ane, (1.2)
n=0

— Ilnn — Injay,]
nll}f_il_loox < +OO,nBI_{_IOOT = —00, (13)
IntIn™ M
m o(7) =400 (0 € R), (1.4)
o——00 —0

Inu : of u>1,

M,(o) = su o+it)||t € R}, Int u =
(o) = sup{lg(o + )|t B} { o

and in the probability space (Q, A, P), {Z,(w)}(w € Q) is a sequence of non-degenerate,

symmetric and independent random variables of the same distribution and verifying
0 < E(|Z,(w)]?) < +o0, (1.5)

and consequently
0 < E(|Z,(w)]) =d < +o0. (1.6)

Theorem 1.1 If series (1.1) satisfies all the above conditions, then f(s,w) is an entire
function of order(R) infinite and it is almost sure (a.s.) that a.s. every horizontal line
{s|Ims = to}(to € R) is a strong Borel line of f(s,w) of order(R) infinite and without
exceptional Little functions, i.e.JA € A(P(A) = 1) such that Yw € A, (1.4) holds and
that Vw € A,Vtg € R,V >0 and Vo € H

i It et fsw) =el) W

o——00 —0

where
n(o,to, n, f(s,w) = ¢(s)) = #{s|f(s,w) = ¢(s),s € B (0, t0,n),p € H},
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B (0,t0,7) = {s[Res > o} (1 B(to, )
B(thn) = {SHII’DS - tOl < 77})

“+oo
_ — 1 — 1 n
1= {o=3 e T B0 < oo, T 20— e b o) = o)) — —o0)}.
n=0 n

2. Lemmas

In order to prove Theorem 1.1 we need some lemmas.

Lemma 2.1 Under condition (1.3), series (1.2) converges absolutely in C. Condition 1.4

indicates the entire function g(s) is of order(R) infinite and

In™ |ay| B

(1.4) & lim

n—+too A\, In Ny, (2:8)

Proof of the lemma is stated in [11], [12].
The following is an extension of Nevanlinna second theorem in [4] in special case (see
[5], [6], [12]):

Lemma 2.2 Let G(w) and gj(w)(j = 1,2)be holomorphic in D(1) and satisfy the limit

. In"T(R,G(w))
Ao m ™ (29)

and
T(R, g;(w)) = o(T(R, G(w)))(R — 1), (2.10)
Then
T(R, R(w)) <33 NI 0w) = g5 w)+6 3 7L g(w)) + An(1—R) 4B,
(2.11)

where tg € R and A and B are positive constants.
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Given tg € R and 1 > 0, consider the simple mapping

z—1
241

z=¢1(s) = exp[—;—n(s —itg)], w=¢a(z) = (2.12)

Denote the inverse mappings by s = ®1(z) and z = ®2(w) and let
w = ¢(s) = P2 0 ¢1(5), 5 = P(w) = &1 0 Pa(w),
T T
Hy = {z]|arg 2| < 5}, Ho = {2[|arg 2| < 7},

H*(r) = {z]|2] < r} 0 Hi(k = 1,2), D(R) = {w||w| < R}R € (0,1]).

Then ®(D(1)) = B(to,n); and we have the following lemma [7], [12], [13].

Lemma 2.3 For R € (0,1), let

Then we have

2 2 1 1
B*(c — ?nlnkzl,no, g) N{s|Res =0 — ?nlnkzl} C ®(D(R)) C B*(o, to,n)(g <k < z),

2
(2.13)
and
o o
—— —In2< —In(1 - - 2.14
o n2<-In(l-R) < o (2.14)

By the mappings (2.12), the series (1.1) and V(s) € H are transformed into a random

series of holomorphic functions in D(1):

+oo
U(w,w) = Z anZn(w) exp (=X, ®(w)), (2.15)
n=0
+oo
P(w) = Z B exp(=A, ®(w)) (2.16)
n=0
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and ¥(w,w) and ¢ (w) are a random holomorphic in D(1). Let

+oo
H' = {th(w)[th(¢(5)) = p(s) = > Bnexp(—Ans) € H}. (2.17)

n=0
By lemma 2.3, it obviously holds that T(R,¥(w)) = o(T(R, ¥(w)))(R — 1). We now
have the following lemma.

Lemma 2.4 For ¥(w,w) in D(1),

+
T In" T'(R, ¥ (w,w))
rR—1- —In(l — R)

=400 a.s., (2.18)

and Vv € H' with a possible exceptional value v,,.

— InT N(R, ¥(w,w) = ¢(w))
Rlinl{ IR =+o00 a.s., (2.19)

where

1 2 )
T(R, ¥ (w,w)) = — In™ |¥(Re?, w)|db,
2 0

N(Ra \I/(w, w) = w(w)) =

/R n(“a \I/(w, w) = w(w))du

Ro u
n(u, ¥(w,w) = P(w)) = Hw|¥(w,w) = p(w), |w] < u},

Ry being a fized number € (0,1).

Proof. By (2.13) and (2.14), we have the relation

2
My(o — L Inky, to, g,w) < My(R,w) < My (o,w)
™

and

In*In" My(0 — Zlnky,to, 2,w) _ In*InT My(R,w) _ "ot My(o,w)
—7o/2n - —-In(1-R) ~ (-mo/2n)—1n2°

By Lemma 4 in [12],

— In"InT My(R,w)
Ti = 5. 2.2
T “m(l-R) 0 *f (2:20)
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Since

R-1

In*t My (R,w) > T(R, ¥(w,0)) > 3 Int My(2R — 1,w),

(2.18) follows from (2.20), (2.19) follows from Lemma 2.3. O

Consider now some non-random holomorphic function in D(1).YM(€ N) > 1. Let
{Cj}jioMH C C such that

T In|a,c,| 0
n—o+oo \pIn N,
Then by Lemma 2.1 and Lemma 2.4,
+oo
Gw)= Y anchexp(—An®(w)) (2.21)
n=M+1

is holomorphic in D(1) and satisfies the first condition (2.9).

Lemma 2.5 There exists at most a point (cy,cy, -+, cyy,) € CMHL and a Little function
' (w) € H' such that

— In" N(R, G1(w, c) = 1(w))

1 2.22
e ~(1— R) < oo, (2.22)
where
M
Gi(w,c) = Z al cnexp(—A\, ®(w)) + G(w), (2.23)
n=0
c= (CIOaclla"' ;CM,CM+1,CM+2,"') (S C—i—oo.
Proof. We cannot find another point (cjj, ¢}, -, c},) # (ch, ¢, -+, c)y)in CMHLand

another 9" (w) # ¢’ (w) in H' such that we would have (2.22) and (2.23’) obtained from
(2.19) and 2.23 by replacing (cp, ¢, -+, cyy) and ' (w) by (¢, cf, -, c};) and " (w).

In this case, there would be two different holomorphic functions in D(1),

M
g1 (w) = () = 3" e, exp(— Ay @ (w))

n=0
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and

M

galw) = ¥ (w) = " ancl exp(=A, D(w)),

n=0

which would satisfy the second condition (2.10). By Lemma 2.2, this is impossible. O

Denote by E the set of all ¢ € C*°° which satisfy the above conditions and set
Eoot = {(cr41,crig2, -+ )|c € B} € O,

Now we can improve Lemma (2.4) as follows.

Lemma 2.6 For ¥(w,w) in D(1) , Vip(w) € H’,

= In* n(R, ¥(w,w) =1p(w))
R—1— —1n(1 - R)

=400 a.s. (2.24)

Proof. We calculate at first the probability of the event

— InT N(R, ¥(w,w) = (w))
— ! . ’ )
S = {w‘ﬂw € H' such that ngrff "o - R) < 400 .

Let

Soo = {(Zo(w), (Zo(w),*)|w € S} C Ew.

Consider the probability space (C, By, un) generated by the random variables Z, (w)
and let

[eS) M [eS)
Hoo = HMn;ﬂM = H Hny foo,M = H Hn,

n=0 n=0 n=M+1

z=1(20,21,""),2m = (20,21, -+ s 2m) and Zeo,m = {ZM+1,2M+2, " }-
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We have, by Lemma 2 (iii) in [12],

Q oo o
/ / 1(2():%7'"7ZM=C§W)M(d2M)
Eo,p JCMAL

[ L PUZ) = )

0o, M p=(

P(5)

IN

< pMFL
Take M ' 4+00. We obtain P(S) =0, i.e. Va € C,

— InT N(R, ¥(w,w) = ¢(w))
Rli,nllf —In(l1 — R) -

By (2.25) we obtain that Vk > 0,Va € C,

/0 N (u, ¥(w,w) = (w))(1 —u)*du = +oc.

Otherwise 3k > 0,Ve.0, for R € (0,1) and 1 — R sufficiently small,

(2.25)

(2.26)

1

e = / N (u, ¥(w,w) = h(w))(1 — u)fdu > N(u, ¥(w,w) = w(w))/ (1 —u)*du
R

= —— (1= R)*"'N(R, ¥(w,w) = (w)).

R

(2.27)

But by (2.25), 3R, /1 such that (1 — R,,)*T'N(R,,, ¥(w,w) = ) > 1. Hence (2.27)

is a contradiction and we obtain (2.26).

From (2.26) it follows that Vk > 1 and hence Vk > 0,Vi)(w) € H’,

/0 n(u, ¥(w,w) = Y(w)(1 — u)kfdu = +oo.
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ForVk > 1,4 < Ry < R <1,

R
k R N(ua \I/(waw) = w(w))(l - u)k_ld“ = (1 - RO)kN(ROa \I/(waw) = w(w))

(1 - R)kN(Ra \I/(w, w) = w(w))

R
+ / n(u, ¥(w,w) = (w))(1 — u)k%

Ro

By (2.26), as R " 1, the integral in the right-hand side of the above equality diverges to
+00. We have

R R
3 [t w,w0) = ) -0 5 < [ Bww) = v)(1 - 0

R() u RO

and (2.28) follows immediately.
If (2.24) were not true, there would exist k > 0 and ¥ € h’ such that the integral in

(2.28) would converge, which is impossible. The lemma is proved. |

3. Proof of the theorem 1.1

The first part this Theorem is contained in main Theorem in [12]. Now we prove the

second part. By lemma 2.3, given tg € R and n > 0, we have, Vi) € H'.

In* n(R’ lI/(w, w) = w(w)) < In* n(a, o, n, f(s’ w) = @(s))
—In(1 - R) - —mo/2n —1n2

and (1.7) follows from (2.24).
In order to complete the proof of ty and 7, we consider a sequence {9}, 7m \, 0.and

a sequence of all rational numbers {¢;} and apply the previous result. O
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