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doi:10.3906/mat-0804-24
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Abstract

The main purpose of the paper is to investigate geodesics on the tangent bundle with respect to the

Cheeger-Gromoll metric.
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1. Introduction

In [1] Cheeger and Gromoll study complete manifolds of nonnegative curvature and suggest a construction

of Riemannian metrics useful in that contex. Inspired by a paper of Cheeger and Gromoll, in [4] Musso and

Tricerri defined a new Riemannian metric CGg on tangent bundle of Riemannian manifold which they called

the Cheeger-Gromoll metric. The Levi-Civita connection of CGg and its Riemannian curvature tensor are
calculated by Sekizawa in [5] (for more details see [2],[3]). The main purpose of this paper is to investigate
geodesics of the Cheeger-Gromoll metrics on tangent bundle.

Let Mn be a Riemannian manifold with metric g . We denote by �p
q(Mn) the set of all tensor fields of

type (p, q) on Mn . Manifolds, tensor field and connections are always assumed to be differentiable and of class
C∞ .

Let T (Mn) be a tangent bundle of Mn , and π the projection π : T (Mn) → Mn . Let the manifold

Mn be covered by system of coordinate neighbourhoods (U, xi), where (xi), i = 1, ..., n is a local coordinate

system defined in the neighbourhood U . Let (yi) be the Cartesian coordinates in each tangent spaces Tp(Mn)

at P ∈ Mn with respect to the natural base
{

∂
∂xi

}
, P being an arbitrary point in U whose coordinates are

xi . Then we can introduce local coordinates (xi, yi) in open set π−1 (U) ⊂ T (Mn) . We call them coordinates

induced in π−1 (U) from (U, xi). The projection π is represented by (xi, yi) → (xi). We use the notations

xI = (xi, xı̄) and xı̄ = yi . The indices I, J, ... run from 1 to 2n, the indices ı̄, j̄, ... run from n+1 to 2n .

Let X ∈ �1
0 (Mn), which locally are represented by X = Xi∂i,

(
∂i =

∂

∂xi

)
. Then the vertical and

horizontal lifts V X and HX of X (see [6]) are given, respectively by
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V X = Xi∂ı̄,

(
∂ı̄ =

∂

∂xı̄

)
(1)

and

HX = Xi∂i − Γi
jkxj̄Xk∂ı̄ (2)

where Γi
jk are the coefficents of the Levi-Civita connection � .

Suppose that we are given on Mn a tensor field S ∈ �p
q(Mn), q > 1. We then define a tensor field

γS ∈ �p
q−1(T (Mn)) in π−1 (U) by [6, p. 12]

γS = (xēS
j1...jp

ei2...iq
)∂j̄1 ⊗ ...⊗ ∂j̄p

⊗ dxi2 ⊗ .. ⊗ dxiq

with respect to the induced coordinates (xi, xı̄). The tensor field γS defined in each π−1 (U) determine global

tensor field on T (Mn). We easily see that for any ϕ ∈ �1
1(Mn), γϕ has components (γϕ) =

(
0

xı̄ϕj
i

)
with

respect to the induced coordinates (xi, xı̄) and (γϕ)(V f) = 0, f ∈ �0
0(Mn) i.e. γϕ is a vertical vector field on

T (Mn).

Let there be given in U ⊂ Mn a vector field X = Xi∂i and a covector field gX = gijX
idxj . Then

we define a function γgX ∈ �0
0(Mn) in π−1 (U) ⊂ T (Mn) by γgX = xj̄gijX

i with respect to the induced

coordinates (xi, xı̄). Now, let r be the norm a vector y = (yi) = (xı̄), i.e. r2 = gijx
ixj̄ . The Cheeger-Gromoll

metric CGg on tangent bundle T (Mn) is given by

CGg(HX,H Y ) =V (g(X, Y )), (3)

CGg(HX,V Y ) = 0, (4)

CGg(V X,V Y ) =
1

1 + r2

[
V (g(X, Y )) + (γgX) + (γgY )

]
(5)

for all vector field X, Y ∈ �1
0(Mn), whereV (g(X, Y )) = (g(X, Y )) ◦ π .

It is obvious that the Cheeger-Gromoll metric CGg is contained in the class of natural metrics (Recall

that by a natural metric on tangent bundles we shall mean a metric which satisfies conditions (3) and (4)).

2. Expressions in Adapted Frames

In each local chart U ⊂ Mn , we put X(j) =
∂

∂xj
, j = 1, ..., n.Then from (1) and (2), we see that these

vector fields have, respectively, local expressions
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HX(j) = δh
j ∂h + (−Γh

sjx
s)∂h̄ (6)

V X(j) = δh
j ∂h̄ (7)

with respect to the natural frame {∂h, ∂h̄}, where δh
j -Kronecker delta. These 2n vector fields are linear

independent and generate, respectively, the horizontal distribution of � and the vertical distribution of T (Mn)

We have call the set
{

HX(j),
V X(j)

}
the frame adapted to the affine connection � in π−1(U) ⊂ T (Mn). On

putting

e(j) = HX(j),

e(j̄) = V X(j),

we write the adapted frame as {eβ} =
{
e(j), e(j̄)

}
. The indices α, β, ... run over the range {1, ..., 2n} and

indicate the indices with respect to the adapted frame.
Using (1), (2), (6) and (7) we have

HX =
(

Xjδh
j

−XjΓh
sjx

s̄

)
= Xj

(
δh
j

−Γh
sjx

s̄

)
= Xje(j)

V X =
(

0
Xh

)
=

(
0
Xjδh

j

)
= Xj

(
0
δh
j

)
= Xje(j̄),

i.e. the lifts HX and V X have respectively components

HX =
(
HXβ

)
=

(
HXj

HX j̄

)
=

(
Xj

0

)

V X =
(
V Xβ

)
=

(
V Xj

V X j̄

)
=

(
0
Xj

)

with respect to the adapted frame {eβ} . From (3)–(5) we see that the Cheeger-Gromoll metric CGg has
components

(CGg̃βγ) =
(

CGgjl
CGgjl̄

CGgj̄l
CGgj̄l̄

)
=

(
gjl 0
0 1

1+r2 (gjl + gjsgltx
s̄xt̄)

)

with respect to the adapted frame {eβ} .

For the Levi-Civita connection of the Cheeger-Gromoll metric we have the following.
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Theorem 1 [5] Let (Mn, g)be a Riemannian manifold and equip its tangent bundle T (Mn) with the Cheeger-

Gromoll metric CGg . Then the corresponding Levi-Civita connection CG� satisfies the following:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CG�HY
HX =H (�XY ) − 1

2

V

(R(X, Y )y),

CG�V Y
HX =

1
2α

H

(R(y, Y )X) +V (�XY ),

CG�HY
V X =

1
2α

H

(R(y, X)Y ),

CG�V Y
V X = − 1

α
(CGg(V X, γδ)V Y +CG g(V Y, γδ)V X)

+
1 + α

α

CG

g(V X,V Y )γδ − 1
α

CG

g(V X, γδ)CGg(V Y, γδ)γδ.

(8)

for any X, Y ∈ �1
0(Mn) , where R and γδ denotes respectively the curvature tensor of � and the canonical

vertical vector field on T (Mn) with components

γδ =
(

0
xı̄δj

i

)
=

(
0
xj̄

)
= xj̄∂j̄ = xj̄e(j̄).

With respect to the adapted frame {eα} of T (Mn) , we write CG�eαeβ =CG Γγ
αβeγ where CGΓγ

αβ denote the

Christoffel symbols constructed by CGg . The particular values of CGΓγ
αβ for different indices, on taking account

of (8) are then found to be

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CGΓh
ji = Γh

ji,
CGΓh̄

ji = −1
2
Rh

jikx
k̄

CGΓh
jı̄ = − 1

2α
Rh•

•jkix
k̄, CGΓh̄

jı̄ = Γh
ji

CGΓh
j̄i

= − 1
2α

Rh•
•ikjx

k̄, CGΓh̄
j̄i

= 0

CGΓh
j̄ı̄

= 0

CGΓh̄
j̄ı̄

= − 1
α

(xj̄δ
h
i +xı̄δ

h
j ) +

1 + α

α
gjix

h̄ − 1
α

xj̄xı̄x
h̄

(9)

with respect to the adapted frame, where xj̄ = gjix
ı̄, Rh•

•ikj = ghtgjsR
h
tik .

3. Results

Let C̃ : [0, 1] → T (Mn) be a curve on T (Mn) and suppose that C̃ is expressed locally by xA = xA(t),

i.e., xh = xh(t), xh̄ = xh̄(t) = yh(t) with respect to induced coordinates (xh, xh̄) in π−1 (U) ⊂ T (Mn), t

being a parameter. Then the curve C = π ◦ C̃ on Mn is called the projection of the curve C̃ and denoted by

πC̃ which is expressed locally by xh = xh(t). Let Xh(t) be a vector field along C . Then , on T (Mn) we define

a curve C̃ by
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{
xh = xh(t)
xh̄ = Xh(t).

(10)

If the curve (10) satisfies at all points the relation

δXh

dt
=

dXh

dt
+ Γh

ji

dxj

dt
Xi = 0,

then the curve C̃ is said to be a horizontal lift of the curve C and denoted by HC [6,p.172]. If Xh is the

tangent vector field
dxh

dt
to C , then the curve C̃ defined by (10) is called the natural lift of the curve C and

denoted by C∗ .

The geodesics of the connection CG� is given by the differential equations

δ2xA

dt2
=

d2xA

dt2
+CG ΓA

CB

dxC

dt

dxB

dt
= 0, (11)

with respect to induced coordinates (xh, xh̄), where t is the arc length of a curve on T (Mn).

We find it more convenient to refer equations (11) to the adapted frame {eα} . From (6) and (7) we see

that the matrix of change of frames eβ = A H
β ∂H has components of the form

A = (A B
β ) =

(
δk
j

−Γh
sjx

s̄

0
δk
j

)

The inverse of the matrix A is given by

Ã = (Ãα
A) =

(
δh
i

Γh
six

s̄

0
δh
i

)
.

Using Ã , we now write

θα = Ãα
AdxA

or

θh = Ãh
AdxA = δh

i dxi = dxh,

for α = h

θh̄ = Ãh̄
AdxA = Γh

six
s̄dxi + δh

i dxı̄ = dyh + Γh
siy

sdxi = δyh,

for α = h̄ and put
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θh

dt
= Ah

A

dxA

dt
=

dxh

dt
,

θh̄

dt
= Ah̄

A

dxA

dt
=

δyh

dt

along a curve xA = xA(t) on T (Mn).

If we therefore write down the form equivalent to (11), namely,

d

dt
(
θα

dt
) +CG Γα

γβ

θγ

dt

θβ

dt
= 0

with respect to adapted frame and taking account of (9), then we have

⎧⎪⎪⎨
⎪⎪⎩

(a)
δ2xh

dt2
+

1
α

Rh
kjiy

k δyj

dt

dxi

dt
= 0,

(b)
δ2yh

dt2
+ [− 1

α
(yjδ

h
i + yiδ

h
j ) +

1 + α

α
gjiy

h − 1
α

yjyiy
h]

δyj

dt

δyi

dt
= 0,

(12)

where yi = xı̄. Thus we have the following theorem.

Theorem 2 Let C̃ be a curve on T (Mn) and locally expressed by xh = xh(t), xh̄ = yh(t) with respect to

induced coordinates (xh, xh̄) in π−1 (U) ⊂ T (Mn) . The curve C̃ is a geodesic of CGg , if it satisfies the

equations (12).

If a curve C̃ satisfying (12) lies on a fibre given by xh = const, then by virtue of
dxh

dt
= 0 and

δyh

dt
=

dyh

dt
+ Γh

ij

dxi

dt
yj =

dyh

dt
, the equations (12) reduces to

d2yh

dt2
+ [− 1

α
(yjδ

h
i + yiδ

h
j ) +

1 + α

α
gjiy

h − 1
α

yjyiy
h ]

dyj

dt

dyi

dt
= 0. (13)

Hence we have this final theorem

Theorem 3 If a geodesic lies on a fibre of T (Mn) with metric CGg , the geodesic is expressed by equation (13).

Let C = π ◦ CH be a geodesic of � on Mn . Then
δ2xh

dt2
= 0 . Using this condition and condition

δyj

dt
=

δXh

dt
= 0 , we have

Theorem 4 The horizontal lift of a geodesic on Mn is always geodesic on T (Mn) with the metric CGg .

Let now C = π ◦ C∗ be a geodesic of �on Mn , i.e.
δ2xh

dt2
=

δ

dt

(
dxh

dt

)
= 0. On the other hand, from

definition of the natural lift of the curve, we obtain
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δyh

dt
=

δ

dt

(
dxh

dt

)
= 0. (14)

Then from (12) and (14) we easily see that the natural lift of a curve on Mn defined xh = xh(t) is geodesic on

T (Mn) with the metric CGg . Thus we have

Theorem 5 The natural lift C∗ of a any geodesic on Mn is a geodesic on T (Mn) with the metric CGg .
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