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Geodesics of the Cheeger-Gromoll Metric

A. A. Salimov, S. Kazimova

Abstract

The main purpose of the paper is to investigate geodesics on the tangent bundle with respect to the

Cheeger-Gromoll metric.
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1. Introduction

In [1] Cheeger and Gromoll study complete manifolds of nonnegative curvature and suggest a construction
of Riemannian metrics useful in that contex. Inspired by a paper of Cheeger and Gromoll, in [4] Musso and
Tricerri defined a new Riemannian metric ““g on tangent bundle of Riemannian manifold which they called
the Cheeger-Gromoll metric. The Levi-Civita connection of ““g and its Riemannian curvature tensor are
calculated by Sekizawa in [5] (for more details see [2],[3]). The main purpose of this paper is to investigate
geodesics of the Cheeger-Gromoll metrics on tangent bundle.

Let M, be a Riemannian manifold with metric g. We denote by SL(M,,) the set of all tensor fields of
type (p,q) on M, . Manifolds, tensor field and connections are always assumed to be differentiable and of class
C>.

Let T'(M,,) be a tangent bundle of M, , and 7w the projection 7 : T (M,) — M, . Let the manifold
M,, be covered by system of coordinate neighbourhoods (U, z%), where (z),i = 1,...,n is a local coordinate
system defined in the neighbourhood U. Let (y') be the Cartesian coordinates in each tangent spaces T, (M,,)
at P € M, with respect to the natural base {%}, P being an arbitrary point in U whose coordinates are
x'. Then we can introduce local coordinates (z%,y%) in open set 7! (U) C T'(M,,). We call them coordinates
induced in 7! (U) from (U, x%). The projection 7 is represented by (z%,3") — (2*). We use the notations

! = (2%,2%) and 2 = ¢*. The indices I, J, ... run from 1 to 2n, the indices 7, j, ... run from n+1 to 2n .

6.) . Then the vertical and

Let X € S (M,), which locally are represented by X = X'9;, (81- = 5

horizontal lifts VX and X of X (see [6]) are given, respectively by
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. Bl
\% _ P9 )
X = X0, (az W) (1)
and
HX = X19; - I, 27 X*0, (2)

where l"; . are the coeflicents of the Levi-Civita connection V.
Suppose that we are given on M, a tensor field S € SP(M,),q > 1. We then define a tensor field
vS €SP (T(M,,)) in 7= (U) by [6, p. 12]

qg—1

¥8 = (2°8% )05, © .. ® 9, ®da? @ .. @ da's

eig...iqg/ ]

with respect to the induced coordinates (z°,2%). The tensor field S defined in each 7=! (U) determine global
tensor field on T'(M,,). We easily see that for any ¢ € S1(M,), ¢ has components (yp) = ( iO j > with
TP

respect to the induced coordinates (z%,z%) and (y¢)(Y f) =0, f € SY(M,,) i.e. yp is a vertical vector field on
T(M,).

Let there be given in U C M,, a vector field X = X%0; and a covector field gx = ginidxj . Then
we define a function ygx € S§(M,,) in 7= (U) C T (M,) by vgx = xigini with respect to the induced
coordinates (z?,z"). Now, let r be the norm a vector y = (y) = (2), i.e. r? = gi;z’z?. The Cheeger-Gromoll

metric ““g on tangent bundle T (M,,) is given by

CGQ(HXvH Y) =V (9(X,Y)), (3)
CGQ(Hva Y) =0, (4)
oGV XVY) = 1 [V V) + () + ()] o)

for all vector field X,Y € S§(M,), where" (¢(X,Y)) = (9(X,Y)) o .
It is obvious that the Cheeger-Gromoll metric ““g is contained in the class of natural metrics (Recall

that by a natural metric on tangent bundles we shall mean a metric which satisfies conditions (3) and (4)).

2. Expressions in Adapted Frames

0
——,j =1,...,n.Then from (1) and (2), we see that these

In each local chart U C M,,, we put X;) = 5
b

vector fields have, respectively, local expressions
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HX(j) = 5f8h + (—F?jl's)aﬁ

VX =605

(6)

(7)

with respect to the natural frame {0y, d;}, where 55?-Kr0necker delta. These 2n vector fields are linear

independent and generate, respectively, the horizontal distribution of v and the vertical distribution of T'(M,,)

We have call the set {#X;)," X(;)} the frame adapted to the affine connection v in 7=1(U) C T(M,). On

putting
H
ey = X4
_ _ \%
eG = Xy

we write the adapted frame as {eg} = {e(j),e@}. The indices a, f3,... run over the range {1,...,2n} and

indicate the indices with respect to the adapted frame.
Using (1), (2), (6) and (7) we have

XIgh _(oh ,
HX = ( _le'\ijylj > =X/ ( _Jl'\h‘lj > :Xje(j)
57

0 0 (0 .
(Xh>:<Xj52>:XJ<5? >:XJ€“”

i.e. the lifts #X and V' X have respectively components

VX

- e (1))
xo= =g )= (%)

with respect to the adapted frame {eg}. From (3)—(5) we see that the Cheeger-Gromoll metric ““g has

components

(CCis,) = ( “C g Cng[ > _ [ 9 0 o
7 o gy 0 H%(sz + gjsguasa’)
with respect to the adapted frame {es}.

For the Levi-Civita connection of the Cheeger-Gromoll metric we have the following.
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Theorem 1 [5] Let (M, g)be a Riemannian manifold and equip its tangent bundle T(M,,) with the Cheeger-

Gromoll metric ““g. Then the corresponding Levi-Civita connection €CV satisfies the following:

v

COYLY = (IxY) ~ 3 (R(X,Y)y),

1 H
CGyLY = 5 (Ry,Y)X) +V (vxY),

1 H
COvvX = 5= (Ry,X)Y), ®
1
CeyyY = —=(““g(" X, 70)"Y +9¢ g(VY,70)" X)

L+a% oy 19¢ v cG (v
(" X, Y)%—E g(" X, 78)“ g(VY, v5)7d.

«

for any X,Y € S}(M,), where R and 3 denotes respectively the curvature tensor of V and the canonical

vertical vector field on T (M,) with components

0 0 . .
5= (o )= (5 ) =72 =,

With respect to the adapted frame {es} of T(M,), we write “¢v. ez =°¢ l"zlﬁenY where CGI‘:;B denote the
Christoffel symbols constructed by ©“g. The particular values of CGI‘:;B for different indices, on taking account

of (8) are then found to be

_ 1 _
CGTh _ Th CGTh _ ok
Iy =17, Iy = _§Rjikx
1 _ _
CGTh _ he .k CGPh _ Th
Iy = _%R.jkﬂ ) Iy =Ty
cerh — L phe 4k corh g )
ji 2 eikj” ji
CGrh —
Ve
7 1 14+« i 1 7
CGF% = —E(CCE(S?-HC%(S?) + o gjil'h — Eﬁfjl’ﬂ'h

with respect to the adapted frame, where x; = gj;x”, R’.‘i’kj = ghtg;sRl, .

3. Results

Let C : [0,1] — T(M,) be a curve on T(M,) and suppose that C is expressed locally by x4 = z4(t),

ie., ah = ah(t), o = 2"(t) = y"(t) with respect to induced coordinates (z",2") in 7=1(U) c T (M,), t
being a parameter. Then the curve C' =7 o C on M, is called the projection of the curve C and denoted by
7C which is expressed locally by 2" = 2"(t). Let X" () be a vector field along C'. Then , on T(M,,) we define

a curve C by
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h _ b
xﬁ =z h(t) (10)
" = X"(t).
If the curve (10) satisfies at all points the relation

sXh o dxh dzd .
2 A Trh I xi—
dt a ’
then the curve C is said to be a horizontal lift of the curve C' and denoted by #C' [6,p.172]. If X" is the

dzh ~
tangent vector field % to C, then the curve C defined by (10) is called the natural lift of the curve C' and

denoted by C*.
The geodesics of the connection ““V is given by the differential equations
8224 A2t oo a do©daP

az ~ az Vo Tes g =0 (11)

with respect to induced coordinates (z”,z"), where t is the arc length of a curve on T(M,,).
We find it more convenient to refer equations (11) to the adapted frame {e,}. From (6) and (7) we see

that the matrix of change of frames eg = A4 "9y has components of the form

5k 0
A= (AB B) = ( —P}-Z»l'g 51@ >
sJ

The inverse of the matrix A is given by

- - 5h 0
Using A, we now write

oo — A dut

or

oh = A" ,dz? = ohdx' = dah,
for a=h
o = Ah adz? =Thaddat + 6tda® = dyh + Thysdat = oy,
for « = h and put
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O et
dt ATat T dt
@ — AR @_M
dt ATat T dt

along a curve x4 = 24(t) on T(M,,).
If we therefore write down the form equivalent to (11), namely,

i(e_a) CG 1o 6‘_7@_
dt " dt Batdt

with respect to adapted frame and taking account of (9), then we have

82z 1 5 k&yj dx’
(@) S+ ol 5o =0

*y" 1 h h
(b) W'i_[_a(yj&i'i_yi&j)'i_

" dy’ oy’ _

14+« h 1
gjiy _Eyjyiy L dr

@
where y* = z?. Thus we have the following theorem.

Theorem 2 Let C be a curve on T(M,) and locally expressed by z" = z"(t), =" = y"(t) with respect to

induced coordinates (z", x") in 7='(U) C T (M,). The curve C is a geodesic of “Cg, if it satisfies the
equations (12).

~ dx" syl
If a curve C satisfying (12) lies on a fibre given by x" = const, then by virtue of % =0 and % =
dy" det . dyl
_31% + l"fj CZ Y = _31% , the equations (12) reduces to
d?>yh 1 1+« 1 dy? dy
—— 5h Zéh —dG; b Zy; i h 2 = 13
g T W0+ yid)) + =gy — —yiyiy ] (13)

Hence we have this final theorem

Theorem 3 If a geodesic lies on a fibre of T(M,,) with metric ““g, the geodesic is expressed by equation (13).
2..h

Let C = wo CH be a geodesic of Vv on M,. Then d—; = 0. Using this condition and condition
sy sXh
E—W—O, we have

Theorem 4 The horizontal lift of a geodesic on M, is always geodesic on T(M,) with the metric ““g.
§2zh ) (dxh

o T @ —> = 0. On the other hand, from

Let now C = mwo C* be a geodesic of Von M,, i.e. o

definition of the natural lift of the curve, we obtain
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Syl 5 (dah
o d@ (ﬂ) =0 (14)

Then from (12) and (14) we easily see that the natural lift of a curve on M,, defined x" = x"(t) is geodesic on
T(M,) with the metric ““g. Thus we have

G

Theorem 5 The natural lift C* of a any geodesic on M, is a geodesic on T(M,) with the metric ““g.
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