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Abstract: One of the key issues in robotics is finding high-performance manipulator structures. To evaluate the

performance of a parallel manipulator, researchers mostly use kinematic performance indices (such as condition number,

minimum singular value, dexterity, and manipulability), which are based on inverse Jacobian matrices. Driving the

inverse Jacobian matrix of even one parallel manipulator is a very cumbersome process. However, in this paper, general

equations for the inverse Jacobian matrices of 195 GSP mechanisms are symbolically derived by considering 4 basic leg

types having 1 angular and 4 distance constraints. With the help of these general equations, the development of the

inverse Jacobian matrix for a GSP mechanism can be achieved by defining only the leg connection points on the base

and moving platforms with minimum cost. Having derived the inverse Jacobian matrices, one can directly compute

kinematic performance indices to measure and compare the manipulator performance of the 195 GSP mechanism. These

analyses may yield new high-performance GSP mechanisms for use in engineering, medical device design, and other

applied branches. Two different mechanisms (symmetrical and asymmetrical) are given as examples to describe the

methodology for deriving the inverse Jacobian matrices. Finally, 2 numerical examples are given for illustrating the

practical applications of the procedure.

Key words: Inverse Jacobian matrix, parallel manipulators, angular and distance constraints, 6-DOF

1. Introduction

Over the last decade, designing new types of parallel robot mechanisms has very much attracted the interest of

the robotics research community. Although there have been several studies conducted on the classification and

enumeration of topological structures of parallel robot mechanisms in the literature, the type synthesis problem

of parallel robot mechanisms has not been fully solved yet [1]. Type synthesis aims to find all possible types of

novel parallel robot mechanisms. Gao et al. [2] used distance (D) and/or angular (A) constraints between pairs

of points, lines, and/or planes located on the base and moving platforms in order to classify these manipulators.

They classified 6 degrees of freedom (6-DOF) GSP mechanisms into 4 groups, namely, 6D, 5D1A, 4D2A, and

3D3A, where D and A mean distance and angular constraints, respectively. The names of the classes identify

the types and numbers of the constraints used, e.g., 3D3A is the class of 6-DOF GSP mechanisms that are

constructed by using 3 distance and 3 angular constraints between their base and moving platforms. Gao et al.

[2] showed that there are 3850 types of 6-DOF GSP mechanisms. Furthermore, several researchers have been

interested in these manipulators. Gan et al. [3,4] designed a new 3CCC (cylindrical–cylindrical–cylindrical)
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6-DOF parallel mechanism that has 3 legs between its base and moving platforms. Each leg has 2 active joints,

which are located between 2 passive cylindrical joints. One of the active joints has a distance actuator, while

the other has an angular actuator. They solved the forward kinematics and the Jacobian matrix of the new

3CCC mechanism. Toz and Kucuk [5] performed the dimensional optimization of the mechanism proposed

by Gan et al. [3,4] and showed that the mechanism has better dexterous workspace characteristics than the

traditional GSP manipulator. Luo et al. [6,7] proposed a new method for solving the forward kinematics of

4SPS–2CCS and 5SPS–1CCS mechanisms using quaternions, where S and P denote spherical and prismatic

joints, respectively. They first searched the initial point provided by a hyperchaotic circuit system and then

computed all real solutions of nonlinear equations using the Newton iterative method. In another study, Luo et

al. [8] used the hyperchaotic Newton-downhill method to solve the forward kinematic problem of a 3SPS–3CCS

type GSP mechanism. All of the above studies were focused on only one single type of 3850 GSP mechanism.

On the other hand, Toz and Kucuk [9] proposed a criterion to achieve feasible structures among the 3850 GSP

mechanisms. This criterion disregards planar joints, which are not used in practical applications [9]. Thus,

3850 GSP mechanisms are reduced to 195 GSPs, which include 191 asymmetrical and 4 symmetrical GSP

mechanisms.

In this study, general inverse kinematics equations of the 195 6-DOF GSP mechanisms were first obtained

symbolically by using 4 basic types of legs considering 1 angular and 4 distance constraints, which were defined

between geometric primitives arbitrarily located on the base and moving platforms. Subsequently, the inverse

Jacobian matrices of the 195 6-DOF GSP mechanisms were symbolically derived. It is well known that the

inverse Jacobian matrix provides an instantaneous transformation between joint velocities and linear and angular

velocities of the end-effector [5]. It can be used in several analysis processes of these mechanisms, such as the

performance evaluation [9–14] and dynamical analysis [15]. A condition number based on the maximum and

minimum singular values of the inverse Jacobian matrix is computed in general for performance evaluation of

parallel manipulators [16–19]. However, an inconsistency problem between elements of the inverse Jacobian

matrix arises when computing the condition number. To overcome this problem, a dimensionally homogeneous

inverse Jacobian matrix was also obtained for 195 6-DOF GSP mechanisms. Finally, 2 numerical examples are

provided for demonstrating the practical usefulness of the symbolically derived inverse Jacobian matrices.

2. GSP mechanisms

Distance and/or angular constraints between the base and moving platforms can be used for designing 6-DOF

GSP mechanisms [2]. The constraints can be defined between the pairs of geometric primitives (point, line, and

plane) that are arbitrarily located on the base and moving platforms [2]. Gao et al. [2] used these distance

and angular constraints for categorizing GSP mechanisms into 4 classes, namely 6D, 5D1A, 4D2A, and 3D3A.

Toz and Kucuk [9] ignored the constraints defined by means of the plane geometric primitives due to their

inconvenience [9]. They used the remaining constraints (1 angular and 4 distance constraints) to design 6-DOF

of GSP mechanisms. These constraints were named D1 , D2 , D3 , D4 , and A1 for the point–point distance

constraint, line–point distance constraint, point–line distance constraint, line–line distance constraint, and line–

line angular constraint, respectively. According to these constraint types, Toz and Kucuk [9] reduced the

possible combinations of GSP mechanisms from 3850 to 195 using the same combination formula used by Gao

et al. [2]. They also grouped 195 GSP mechanisms into 6D, 5D1A, 4D2A, and 3D3A classes [9]. Four types of

legs illustrated in Figure 1 can be used for forming these constraints. The D1 type constraint, defined between

2 points located on the base and moving platforms, can be obtained by using the SPS type leg illustrated in
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Figure 1a. The SPS type leg has 2 spherical passive joints attached to each end of the active prismatic joint.

The D2 type constraint was obtained by using the SPC type leg illustrated in Figure 1b, while the D3 type

constraint was obtained by a CPS type leg demonstrated in Figure 1c, where C shows the cylindrical joint. D4

and A1 type constraints were defined between 2 lines. Therefore, the CCC type leg shown in Figure 1d can

form both D4 and A1 type constraints. A cylindrical joint comprises a prismatic and a revolute joint that

slides along and rotates around the same axis, respectively. It should be noted that the active joint of the CCC

type leg for the D4 type constraint was determined as the prismatic part of the second cylindrical joint, while

the active joint of the CCC type leg for the A1 type constraint was the revolute part of the second cylindrical

joint. Active joints are indicated by underlying the corresponding joint symbol. For example, prismatic joint P

is underlined in order to show the active joint in the SPS type leg. All 195 symmetrical and asymmetrical GSP

mechanisms can be constructed by using the 4 types of legs given in Figure 1. A symmetrical GSP mechanism

constructed using 6 D1 type constraints is given in Figure 2a, and an asymmetrical mechanism that has 5 D3

and 1 D4 constraints between its platforms is given in Figure 2b.

Figure 1. a) SPS type leg for D1 ; b) SPC type leg for D2 ; c) CPS type leg for D3 ; d) CCC leg type for D4 and A1

type constraints.

3. Inverse kinematics

In this section, the inverse kinematics of GSP mechanisms are presented. Since 195 GSP mechanisms can be

built by using the 4 types of legs given in Figure 1, kinematic equations were derived by considering these 4 leg

types. O(x, y, z) and P (u, y, w) are coordinate systems located on the base and moving platforms, respectively.

All 4 leg types can be mounted on the base and moving platform as illustrated in Figure 3. In the figure, Ai ,

Aj and Bi , Bj are arbitrarily selected points on the base and moving platforms, respectively, and Ki and Li

are the lines that passing through these 2 pairs of points. The position vectors of the Ai , Aj and Bi , Bj points

are a⃗i , a⃗j and b⃗i , b⃗j according to the O and P coordinate systems, respectively, while P⃗ is the position vector

between the centers of the 2 coordinate systems. Finally, di and θi are the distance and angle constraints

provided by the active prismatic and angular actuators, respectively.
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Figure 2. a) Symmetrical GSP mechanism constructed using 6 D1 type constraints; b) asymmetrical GSP mechanism

constructed using 5 D3 and 1 D4 constraints.

Figure 3. a) SPS type leg for D1 type constraint; b) SPC type leg for D2 type constraint; c) CPS type leg for D3 type

constraint; d) CCC type leg for D4 and A1 type constraints.

3.1. Inverse kinematics for the D1 type constraint

As described in the previous section, the D1 type constraint can be obtained by using the SPS type leg illustrated

in Figure 1a. The SPS type leg is one of the most preferred leg types used in Stewart–Gough platform-type

mechanisms. An SPS type leg can be mounted on the base and moving platform as illustrated in Figure 3a.

According to the figure, the d⃗i vector can be written as follows:

d⃗i = P⃗ +Rb⃗i − a⃗i, (1)

where R is the rotation matrix of the end-effector in terms of the O coordinate system and defined by using

the RXY Z (α, β, γ) roll, pitch, and yaw angle set. The norm of the d⃗i vector given in Eq. (1) can be used as

the inverse kinematic equation of the SPS type leg where · is the dot product of 2 vectors [2].

d2i =
(
P⃗ +Rb⃗i − a⃗i

)
·
(
P⃗ +Rb⃗i − a⃗i

)
. (2)
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3.2. Inverse kinematics for the D2 type constraint

The D2 type constraint can be obtained by using an SPC type leg, as demonstrated in Figure 3b. It should be

noted that the active prismatic joint is perpendicular to the cylindrical joint and Li . By using the identities in

the figure, the inverse kinematics for the SPC type leg can be obtained as follows [2]:

d2i =
((

P⃗ +Rb⃗i − a⃗i

)
×Rt⃗i

)
·
((

P⃗ +Rb⃗i − a⃗i

)
×Rt⃗i

)
, (3)

where t⃗i =
b⃗j−b⃗i

|⃗bj−b⃗i| and | | is the norm of a vector.

3.3. Inverse kinematics for the D3 type constraint

The D3 type constraint can be obtained by a CPS type leg as drawn in Figure 3c, and the inverse kinematic

equation can be obtained as follows, where s⃗i =
a⃗j−a⃗i

|⃗aj−a⃗i| [2]:

d2i =
((

P⃗ +Rb⃗i − a⃗i

)
× s⃗i

)
·
((

P⃗ +Rb⃗i − a⃗i

)
× s⃗i

)
. (4)

3.4. Inverse kinematics for the D4 type constraint

The D4 type constraint can be obtained by a CCC type leg as drawn in Figure 3d. By using the identities in

Figure 3d, the inverse kinematic equation of the CCC type leg for the D4 type constraint can be defined by

using the following equation [2]:

d2i =

((
P⃗ +Rb⃗i − a⃗i

)
·
(
Rt⃗i × s⃗i

))2

(
Rt⃗i × s⃗i

)
·
(
Rt⃗i × s⃗i

) . (5)

3.5. Inverse kinematics for the A1 type constraint

The A1 type constraint illustrated in Figure 4 can be described as the angle between lines passing through the

axes of the first and last cylindrical joints of the CCC type leg [2].

cos θi = Rt⃗i · s⃗i (6)

In Figure 4, θi is the angle between 2 unit vectors parallel to Ki and Li . It should be noted that all of the

inverse kinematic equations derived in this section were also obtained by means of Lazard’s and Mourrain’s

coordinate systems in [2].
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Figure 4. An illustration of CCC type leg building the A1 type constraint.

4. Inverse Jacobian matrix

The Jacobian matrix of a 6-DOF parallel robot manipulator given by Eq. (7) provides a relationship between

active joint variables and linear and angular velocities of the manipulator end-effector [20]:

[
vp ωp

]T
= J

[
ρ̇1 · · · ρ̇6

]T
, (7)

where vp =
[
vpx vpy vpz

]T
and ωp =

[
α̇ β̇ γ̇

]T
are linear and angular velocities of the end-effector,

respectively, and ρ̇i(i = 1 · · · 6) are the time derivatives of the active joint variables. J is the Jacobian matrix

of the mechanism. Since analytical derivation of the forward Jacobian matrix is almost impossible [20], the

inverse Jacobian matrix is commonly derived for 6-DOF parallel manipulators:

[
ρ̇1 · · · ρ̇6

]T
= J−1

[
vp ωp

]T
, (8)

where J−1 is the inverse Jacobian matrix of a 6-DOF parallel manipulator. The inverse Jacobian matrix

of the GSP mechanisms is one of the most important factors for the design and performance evaluations

of parallel robot mechanisms and can be obtained by writing the time derivatives of the inverse kinematic

equations. Therefore, inverse Jacobian matrices for the 195 GSP mechanisms can be developed by performing

time derivatives of the inverse kinematic equations for each constraint type. Moreover, general row vectors can

be defined for all the constraint types to obtain the inverse Jacobian matrices of the GSP mechanisms as follows.

4.1. General row vectors for all the constraint types

The time derivative of Eq. (2) can be written as follows:

ḋi =
1

di

(
ωp ×Rb⃗i + vp

)
·
(
P⃗ +Rb⃗i − a⃗i

)
. (9)

The linear and angular velocities in Eq. (9) should be decoupled in order to obtain the row vector of the inverse

Jacobian matrix for the D1 type constraint:

ḋi =
1

di

((
P⃗ +Rb⃗i − a⃗i

)
· vp +

(
Rb⃗i ×

(
P⃗ +Rb⃗i − a⃗i

))
· ωp

)
. (10)
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TOZ and KÜÇÜK/Turk J Elec Eng & Comp Sci

Eq. (10) can be reorganized as follows:

ḋi = JD1

[
vp ωp

]T
, (11)

where JD1 is the row vector that can be used for obtaining the inverse Jacobian matrix of a GSP mechanism

that includes an SPS type leg and is defined as follows:

JD1 =
1

di

[(
P⃗ +Rb⃗i − a⃗i

)T (
Rb⃗i ×

((
P⃗ +Rb⃗i − a⃗i

)))T
]
. (12)

General row vectors for the other constraint types can be written by using the same procedure with the D1

type constraint as follows:

JD2 =
1

di

[
εvp εωp

]
, (13)

where:

εvp =
(
Rt⃗i ×

((
P⃗+Rb⃗i−a⃗i

)
×Rt⃗i

))T

εωp =
(((

P⃗−a⃗i

)
·Rt⃗i

)((
P⃗+Rb⃗i−a⃗i

)
×Rt⃗i

))T

+
((((

P⃗+Rb⃗i−a⃗i

)
×Rt⃗i

)
·Rb⃗i

)
Rt⃗i

)T

JD3 =
1

di

[(
s⃗i×

((
P⃗+Rb⃗i−a⃗i

)
×s⃗i

))T ((((
P⃗+Rb⃗i−a⃗i

)
×s⃗i

)
×s⃗i

)
×Rb⃗i

)T
]
, (14)

JD4 =
1

ni

[
εvp εωp

]
, (15)

where:

ni = di
((
Rt⃗i×s⃗i

)
·
(
Rt⃗i×s⃗i

))
εvp =

(((
P⃗+Rb⃗i−a⃗i

)
·
(
Rt⃗i×s⃗i

)) (
Rt⃗i×s⃗i

))T

εωp =
(((

P⃗+Rb⃗i−a⃗i

)
·
(
Rt⃗i×s⃗i

))((
Rb⃗i·s⃗i

)
Rt⃗i −

(
Rb⃗i·Rt⃗i

)
s⃗i

))T

+
(((

P⃗+Rb⃗i−a⃗i

)
·
(
Rt⃗i×s⃗i

))((
−s⃗i ·Rt⃗i

) (
P⃗+Rb⃗i−a⃗i

)))T

+
(((

P⃗+Rb⃗i−a⃗i

)
·
(
Rt⃗i×s⃗i

))(((
P⃗+Rb⃗i−a⃗i

)
·Rt⃗i

)
s⃗i

))T

−
(
d2i

((
−s⃗i ·Rt⃗i

) (
Rt⃗i×s⃗i

)
+

((
Rt⃗i×s⃗i

)
·Rt⃗i

)
s⃗i
))T

JA1 = − 1

sin θi

[
0 0 0

(
Rt⃗i×s⃗i

)T ]
. (16)

Since a GSP mechanism can be designed by combining 6 constraints selected from 4 distance and 1 angular

constraint types as given by Toz and Kucuk [9], the inverse Jacobian matrix of a GSP mechanism can also be

constructed by using the related row vectors given in Eqs. (12)–(16).
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4.2. Building inverse Jacobian matrices for 195 GSP mechanisms

In this section, the methodology for building the inverse Jacobian matrix of 195 GSP mechanisms is described

by 2 examples: a symmetrical D6
3 GSP mechanism composed of 6 legs, and a D1D2D3D4A

2
1 type asymmetrical

GSP mechanism composed of 5 legs.

The D6
3 GSP mechanism given in Figure 5 is a member of the 6D class given in [9]. It has 6 D3 type

constraints between the base and the moving platforms. The base platform of the mechanism is assembled by

using 6 line segments that intersect at a common point O (the center of the base platform). The end points

of the line segments are located on the circumferential circle of a hexagon whose corner points are labeled as

A1A2, · · · ,A5, and A6 . The moving platform of the mechanism is constructed by using the 6 points located

on the circumferential circle of a hexagon and whose corner points were labeled as B1B2, · · · ,B5, andB6 The

base and moving platforms were connected to each other by using the 6 CPS type legs whose active prismatic

joints were labeled as d1d2, · · · ,d5, and d6 . Since the mechanism is symmetrical, the 6 × 6 inverse Jacobian

matrix of this mechanism is produced by using the row vector given in Eq. (14) six times as follows:

Figure 5. D6
3 type symmetrical GSP mechanism.

JD6
3
=

[
JD3i

JD3i
JD3i

JD3i
JD3i

JD3i

]T
(i = 1, 2, · · · , 6). (17)

TheD1D2D3D4A
2
1 GSP mechanism given in Figure 6 is a member of the 4D2A class and has 4 distance and

2 angular constraints between its base and moving platforms. In the figure, the constraints are provided by

using 2 CCC, 1 SPS, 1 SPC, and 1 CPS type legs. Since the mechanism has 5 D4 legs and 1 of the A1 type,

constraints are provided by 1 of the CCC type legs. The second cylindrical joint (C) of this leg performs both

revolute and prismatic motion. The other CCC leg performs only revolute motion to produce the other A1

type constraint, while the SPS, SPC, and CPS type legs perform prismatic motions to provide D1 , D2 , and D3

type constraints, respectively. The related row vectors JD1 , JD2 , JD3 , JD4 , and JA1 were obtained from Eqs.

(12)–(16), and the 6 × 6 inverse Jacobian matrix of the D1D2D3D4A
2
1 type asymmetrical GSP mechanism

was produced as follows:

JD1D2D3D4A2
1
=

[
JD1 JD2 JD3 JD4 JA11 JA12

] T
. (18)

It should be noted that although the mechanism has 5 legs, its inverse Jacobian matrix is a 6 × 6 matrix

because of the defined 6 constraints between its base and moving platforms.
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Figure 6. D1D2D3D4A
2
1 type 5 legs asymmetrical GSP mechanism.

4.3. Homogeneity of the inverse Jacobian matrices of 195 GSP mechanisms

The GSP mechanisms may have inhomogeneity between the elements of their Jacobian matrices. Since this

inhomogeneity causes miscalculation of dexterity, the elements of the Jacobian matrices must be homogenized.

Characteristic length [17] or weighting factor methods [19] are used to homogenize the elements of the Jacobian

matrices. In order to homogenize the elements of the inverse Jacobian matrices, the units of the row vectors

JD1 , JD2 , JD3 , JD4 , and JA1 should first be determined, as in Eqs. (19)–(23):

UJD1 = [1 1 1mmm]1x6, (19)

UJD2 = [1 1 1mmm]1x6, (20)

UJD3 = [1 1 1mmm]1x6, (21)

UJD4 = [1 1 1mmm]1x6, (22)

UJA1 = [1 1 1 1 1 1]1x6, (23)

where 1 means that the elements of the row vectors has no units, while m illustrates that the units of the

elements of the row vectors are meters.

4.3.1. Numerical examples for D6
3 and D1D2D3D4A

2
1 GSP mechanisms

Two numerical examples are also provided for D6
3 and D1D2D3D4A

2
1 GSP mechanisms. The first example

is presented for the D6
3 GSP mechanism (Figure 5), whose coordinates of leg connection points located on

the base and moving platforms are given in the Table. The goal position and orientation of the D6
3 GSP

mechanism are given as P =
[
px py pz

]T
= [10mm − 10mm 138mm]

T
and (α, β, γ) = (5◦, −5◦, −10◦),

respectively. According to the Table, the inverse kinematics results of the active joint variables of the D6
3

type GSP mechanism were obtained as follows: d1 = 143.909mm , d2 = 132.988mm, d3 = 155.211mm ,

d4 = 123.512mm , d5 = 126.31mm , and d6 = 126.963mm . Additionally, the inverse Jacobian matrix was

computed by considering the characteristic length as 95 mm.
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TOZ and KÜÇÜK/Turk J Elec Eng & Comp Sci

Table. Coordinates of leg connection points for D6
3 type symmetrical and for D1D2D3D4A

2
1 type asymmetrical GSP

mechanisms.

M
ec
h
an

is
m
s

Legs (i)

Coordinates of leg connection points on the platforms in mm

Base platform Moving platform

Ai (x, y, z) Aj (x, y, z) Bi (x, y, z) Bj (x, y, z)

D
1
D

2
D

3
D

4
A

2 1

as
y
m
m
et
ri
ca
l
G
S
P 1 145.131 –20.932 30 * * * 64.147 –69.174 0 * * *

2 145.131 20.932 30 * * * 145.131 69.174 0 0 0 0

3 –54.437 136.153 30 0 0 0 27.833 90.14 0 * * *

4 –90.693 115.221 30 0 0 0 –91.98 20.966 0 0 0 0

5 –90.693 –115.221 30 0 0 0 –91.98 –20.966 0 0 0 0

D
6 3
sy
m
m
et
ri
ca
l
G
S
P 1 145.131 –20.932 30 0 0 0 64.147 –69.174 0 * * *

2 145.131 20.932 30 0 0 0 64.147 69.174 0 * * *

3 –54.437 136.153 30 0 0 0 27.833 90.14 0 * * *

4 –90.693 115.221 30 0 0 0 –91.98 20.966 0 * * *

5 –90.693 –115.221 30 0 0 0 –91.98 –20.966 0 * * *

6 –54.437 –136.153 30 0 0 0 27.833 –90.14 0 * * *

JD6
3
=



0.243

0.231

0.501

−0.263

−0.829

−0.936

0.658

−0.575

0.462

0.726

0.473

−0.346

−0.568

0.155

−0.046

0.361

−0.821

−0.919

−0.726

−0.346

0.418

−0.844

0.479

−0.39

0.215

−0.46

−0.401

−0.011

−0.89

−0.887

0.05

0.872

−0.878

0.072

0.408

−0.453


. (24)

The second example presented is for the D1D2D3D4A
2
1 GSP mechanism (Figure 6), whose coordinates of

the leg connection points located on the base and moving platforms are illustrated in the Table. The

goal position and orientation of the D1D2D3D4A
2
1 GSP mechanism are given as P =

[
px py pz

]T
=

[7mm − 8mm 124mm]
T

and (α, β, γ) = (2◦, 5◦, −5◦), respectively. The inverse kinematics results of the

active joint variables were obtained as follows: d1 = 133.007 mm , d2 = 87.5579mm, d3 = 130.427mm ,

d4 = 130.427 mm , θ4 = 34.0845◦ , and θ5 = 44.0236◦ . In addition, the inverse Jacobian matrix is computed by

considering the characteristic length of 160 mm as follows:

JD1D2D3D4A2
1
=



−0.599

−0.106

−0.457

0.181

0.656

0.977

−0.084

0.283

−0.645

−0.781

−0.527

0.176

−0.533

−0.08

−0.026

−0.309

−0.845

0.947

−0.458

0.102

0.161

0.311

0.284

0.11

0

0

0

0

0

0

−0.08

0.058

−0.309

−0.294

0.947

−0.953


. (25)
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5. Conclusion

In this paper, the general equations for inverse Jacobian matrices of 195 6-DOF GSP mechanisms were

symbolically obtained for 4 basic leg types considering 1 angular and 4 distance constraints. Since the 195

GSP mechanisms are designed by using combinations of these 4 basic leg types, verification of these general

equations for all 195 GSP mechanisms can be made by only verifying the general equations of these 4 basic leg

types. In addition, some types of GSP mechanisms (D3
4A

3
1 is a member of 3D3A, and D5

1D3 is a member of 6D)

given in this paper have also been studied by other authors. The inverse Jacobian matrices of these mechanisms

were verified by comparison with the results given in these studies. Since the inverse Jacobian matrix of 195 GSP

mechanisms may comprise several pages, the methodology for building the inverse Jacobian matrix was defined

through 2 symmetrical and asymmetrical GSP mechanisms. The inhomogeneous elements of these matrices

were also described. Finally, numerical examples for 2 different 6-DOF GSP mechanisms were also provided

for illustrating the practical usefulness of the symbolically derived inverse Jacobian matrices. Since designing

even one parallel manipulator is a very cumbersome issue, only a few types of 6-DOF GSP mechanisms have

been designed and analyzed by researchers. With the help of the presented method and equations, researchers

can easily design and analyze the 195 6-DOF GSP mechanism. These analyses may produce new and feasible

6-DOF GSP mechanisms for important specific tasks used in engineering, medical device design, and other

applied branches.

References

[1] Merlet JP. Parallel Robots. Solid Mechanics and Its Applications Series. 2nd ed. Dordrecht, the Netherlands:

Springer, 2006.

[2] Gao XS, Lei D, Liao Q, Zhang GF. Generalized Stewart–Gough platforms and their direct kinematics. IEEE T

Robot 2005; 21: 141-151.

[3] Gan D, Liao Q, Dai JS, Wei S. Design and kinematics analysis of a new 3CCC parallel mechanism. Robotica 2010;

28: 1065-1072.

[4] Gan D, Liao Q, Wei S. Forward kinematics analysis of the new 3-CCC parallel mechanism. In: IEEE International

Conference on Mechatronics and Automation; 5–8 August 2007; Harbin, Heilongjiang, China. Piscataway, NJ, USA:

IEEE. pp. 905-910.

[5] Toz M, Kucuk S. Dimensional optimization of 6-DOF 3-CCC type asymmetric parallel manipulator. Adv Robotics

2014; 28: 625-637.

[6] Luo Y, Huang X, Zeng B. Forward displacement analysis of the 4SPS-2CCS generalized Stewart Platform based on

hyper-chaotic neural network mathematical programming method. In: The 9th International Conference for Young

Computer Scientists; 18–21 November 2008; Hunan, China. Piscataway, NJ, USA: IEEE. pp. 2857-2862.

[7] Luo Y, Xiao W, Zeng B, Huang X. Forward displacement analysis of the 5SPS-1CCS generalized Stewart Parallel

robot mechanism based on hyper-chaotic methods. In: International Workshop on Chaos-Fractals Theories and

Applications; 6–8 November 2009; Shenyang, China. Los Alamitos, CA, USA: IEEE. pp. 69-73.

[8] Luo YX, Che XY, Zeng B. Displacement analysis of the 3SPS-3CCS mechanism based on hyper-chaotic Newton-

downhill method. Key Eng Mat 2011; 467–469: 401-406.

[9] Toz M, Kucuk S. Dexterous workspace optimization of an asymmetric six-degree of freedom Stewart–Gough platform

type manipulator. Robot Auton Syst 2013; 61: 1516-1528.

[10] Gao Z, Zhang D, Ge Y. Design optimization of a spatial six degree-of-freedom parallel manipulator based on artificial

intelligence approaches. Robot Cim-Int Manuf 2010; 26: 180-189.

[11] Ma O, Angeles J. Optimum architecture design of platform manipulators. In: Fifth International Conference on

Advanced Robotics; 19–22 June 1991; Pisa, Italy. Piscataway, NJ, USA: IEEE. pp. 1130-1135.

4152

http://dx.doi.org/10.1017/S0263574709990555
http://dx.doi.org/10.1017/S0263574709990555
http://dx.doi.org/10.1109/ICMA.2007.4303666
http://dx.doi.org/10.1109/ICMA.2007.4303666
http://dx.doi.org/10.1109/ICMA.2007.4303666
http://dx.doi.org/10.1109/ICYCS.2008.24
http://dx.doi.org/10.1109/ICYCS.2008.24
http://dx.doi.org/10.1109/ICYCS.2008.24
http://dx.doi.org/10.1109/IWCFTA.2009.22
http://dx.doi.org/10.1109/IWCFTA.2009.22
http://dx.doi.org/10.1109/IWCFTA.2009.22
http://dx.doi.org/10.4028/www.scientific.net/KEM.467-469.401
http://dx.doi.org/10.4028/www.scientific.net/KEM.467-469.401
http://dx.doi.org/10.1016/j.robot.2013.07.004
http://dx.doi.org/10.1016/j.robot.2013.07.004
http://dx.doi.org/10.1016/j.rcim.2009.07.002
http://dx.doi.org/10.1016/j.rcim.2009.07.002
http://dx.doi.org/10.1109/ICAR.1991.240404
http://dx.doi.org/10.1109/ICAR.1991.240404
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