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Uniqueness of derivatives of meromorphic functions sharing two or

three sets

Abhijit Banerjee and Pranab Bhattacharjee

Abstract

In the paper we consider the problem of uniqueness of derivatives of meromorphic functions when they

share two or three sets and obtained five results which will improve all the existing results.
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1. Introduction, definitions and results

In this paper by meromorphic functions we will always mean meromorphic functions in the complex plane.
It will be convenient to let E denote any set of positive real numbers of finite linear measure, not necessarily the
same at each occurrence. For any non-constant meromorphic function h(z) we denote by S(r, h) any quantity
satisfying

S(r, h) = o(T (r, h)) (r −→ ∞, r �∈ E).

Let f and g be two non-constant meromorphic functions and let a be a finite complex number. We say
that f and g share a CM, provided that f − a and g − a have the same zeros with the same multiplicities.
Similarly, we say that f and g share a IM, provided that f − a and g − a have the same zeros ignoring
multiplicities. In addition, we say that f and g share ∞ CM, if 1/f and 1/g share 0 CM, and we say that f

and g share ∞ IM, if 1/f and 1/g share 0 IM. We denote by T (r) the maximum of T
(
r, f(k)

)
and T

(
r, g(k)

)
.

The notation S(r) denotes any quantity satisfying

S(r) = o(T (r)) (r −→ ∞, r �∈ E).

Let S be a set of distinct elements of C∪{∞} and Ef(S) =
⋃

a∈S{z : f(z)−a = 0} , where each zero is counted

according to its multiplicity. If we do not count the multiplicity the set Ef(S) =
⋃

a∈S{z : f(z) − a = 0} is

denoted by Ef(S). If Ef(S) = Eg(S) we say that f and g share the set S CM. On the other hand, if

Ef (S) = Eg(S), we say that f and g share the set S IM.

F. Gross first considered the uniqueness of meromorphic functions that share sets of distinct elements
instead of values and in 1976 he posed the following question in [8]:
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Question A Can one find two finite sets Sj (j = 1, 2) such that any two non-constant entire functions f and

g satisfying Ef(Sj) = Eg(Sj) for j = 1, 2 must be identical?

Now it is natural to ask the following question.
Question B [19]Can one find two finite sets Sj (j = 1, 2) such that any two non-constant meromorphic

functions f and g satisfying Ef(Sj) = Eg(Sj) for j = 1, 2 must be identical ?

Also for meromorphic functions in [22] the following question was asked.

Question C Can one find three finite sets Sj (j = 1, 2, 3) such that any two non-constant meromorphic

functions f and g satisfying Ef(Sj) = Eg(Sj) for j = 1, 2, 3 must be identical ?

The possible answer to Question B and Question C has been investigated by many authors and naturally
a substantial number of remarkable as well as elegant results have been obtained in this aspect (see [3]–[5],

[7], [10], [14], [17], [19], [22], [25], [28]–[29]} and {[1]–[2], [6], [15], [18], [21]–[23], [27]). But the uniqueness of
derivatives of two meromorphic functions when they share two or three sets is seldom studied. To the knowledge
of the authors, perhaps the following result is the only known result on the uniqueness of the derivatives of
meromorphic functions in the direction of Question B.

Theorem A [7] Let S1 = {z : zn + azn−1 + b = 0} and S2 = {∞} , where a , b are nonzero constants such

that zn + azn−1 + b = 0 has no repeated root and n (≥ 7) , k be two positive integers. Let f and g be two

non-constant meromorphic functions such that Ef(k)(S1) = Eg(k)(S1) and Ef (S2) = Eg(S2) , then f(k) ≡ g(k) .

In 2003, in the direction of Question C, concerning the uniqueness of derivatives of meromorphic functions,
Qiu and Fang obtained the following result.

Theorem B [21] Let S1 = {z : zn − zn−1 − 1 = 0} , S2 = {∞} and S3 = {0} and n (≥ 3) , k be two positive

integers. Let f and g be two non-constant meromorphic functions such that Ef(k)(Sj) = Eg(k)(Sj) for j = 1, 3

and Ef(S2) = Eg(S2) then f(k) ≡ g(k) .

In 2004 Yi and Lin [27] independently proved the following theorem.

Theorem C [27] Let S1 = {z : zn + azn−1 + b = 0} , S2 = {∞} and S3 = {0} , where a , b are nonzero

constants such that zn +azn−1 + b = 0 has no repeated root and n (≥ 3) , k be two positive integers. Let f and

g be two non-constant meromorphic functions such that Ef(k)(Sj) = Eg(k)(Sj) for j = 1, 2, 3, then f(k) ≡ g(k) .

The following two examples show that the condition n(≥ 3) in Theorems B–C is the best possible.

Example 1.1 Let f(z) = 1 + ez and g(z) = 1 + (−1)k+1e−z and S1 = {1,−1} , S2 = {∞} , S3 = {0} .

Clearly Ef(k)(Sj) = Eg(k)(Sj) for j = 1, 2, 3, but f(k) �≡ g(k) .

Example 1.2 Let f(z) =
√

a
√

b ez and g(z) = (−1)k√a
√

b e−z and S1 = {a, b} , S2 = {∞} , S3 = {0} ,

where a and b be two arbitrary non zero constants. Clearly Ef(k)(Sj) = Eg(k)(Sj) for j = 1, 2, 3, but

f(k) �≡ g(k) .

In view of the above two examples one perhaps will not try to reduce the lower bound of n in Theorems
B–C. So in order to improve the theorems one can only try to relax the nature of sharing of the sets. Relaxation
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of the nature of sharing of sets may be done with the aid of the notion of a gradation of sharing of values
and sets known as weighted sharing introduced in [12, 13] which measures how close a shared value is to being
shared IM or to being shared CM. We now give the following definition.

Definition 1.1 [12, 13] Let k be a nonnegative integer or infinity. For a ∈ C ∪ {∞} we denote by Ek(a; f)
the set of all a-points of f , where an a-point of multiplicity m is counted m times if m ≤ k and k + 1 times
if m > k . If Ek(a; f) = Ek(a; g) , we say that f , g share the value a with weight k .

The definition implies that if f , g share a value a with weight k then z0 is an a-point of f with
multiplicity m (≤ k) if and only if it is an a-point of g with multiplicity m (≤ k) and z0 is an a-point of

f with multiplicity m (> k) if and only if it is an a-point of g with multiplicity n (> k), where m is not
necessarily equal to n .

We write f , g share (a, k) to mean that f, g share the value a with weight k . Clearly if f, g share

(a, k) then f , g share (a, p) for any integer p , 0 ≤ p < k . Also we note that f , g share a value a IM or CM

if and only if f , g share (a, 0) or (a,∞), respectively.

Definition 1.2 [12] Let S be a set of distinct elements of C ∪ {∞} and k be a nonnegative integer or ∞ .

We denote by Ef(S, k) the set Ef (S, k) =
⋃

a∈S Ek(a; f) .

Clearly Ef(S) = Ef(S,∞) and Ef (S) = Ef(S, 0) .

We now state the following five theorems which are the main results of the paper.

Theorem 1.1 Let S1 = {z : zn + azn−1 + b = 0} and S2 = {∞} , where a , b are nonzero constants such that

zn+azn−1+b = 0 has no repeated root and n (≥ 7) , k be two positive integers. If f and g are two non-constant

meromorphic functions such that Ef(k)(S1, 2) = Eg(k)(S1, 2) , Ef(S2, 1) = Eg(S2, 1) , then f(k) ≡ g(k) .

Theorem 1.2 Let Si , i = 1, 2 be defined as in Theorem 1.1 and k be a positive integer. If f and g are
two non-constant meromorphic functions such that Ef(k)(S1 , 3) = Eg(k)(S1 , 3) , Ef(S2, 0) = Eg(S2 , 0) , then

f(k) ≡ g(k) .

Theorem 1.3 Let Si , i = 1, 2, 3 be defined as in Theorem C and k be a positive integer. If f and g are
two non-constant meromorphic functions such that Ef(k)(S1, 4) = Eg(k)(S1, 4) , Ef(S2 ,∞) = Eg(S2,∞) and

Ef(k)(S3, 7) = Eg(k)(S3 , 7) , then f(k) ≡ g(k) .

Theorem 1.4 Let Si , i = 1, 2, 3 be defined as in Theorem C and k be a positive integer. If f and g are
two non-constant meromorphic functions such that Ef(k)(S1, 5) = Eg(k)(S1, 5) , Ef(S2 ,∞) = Eg(S2,∞) and

Ef(k)(S3, 1) = Eg(k)(S3 , 1) , then f(k) ≡ g(k) .

Theorem 1.5 Let Si , i = 1, 2, 3 be defined as in Theorem C and k be a positive integer. If f and g are
two non-constant meromorphic functions such that Ef(k)(S1, 6) = Eg(k)(S1, 6) , Ef(S2 ,∞) = Eg(S2,∞) and

Ef(k)(S3, 0) = Eg(k)(S3 , 0) , then f(k) ≡ g(k) .

Though we follow the standard definitions and notations of the value distribution theory available in [9],
we explain some notations which are used in the paper.
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Definition 1.3 [11] For a ∈ C ∪ {∞}we denote by N(r, a; f |= 1) the counting function of simple a-points

of f . For a positive integer m we denote by N(r, a; f |≤ m)(N(r, a; f |≥ m)) the counting function of those

a points of f whose multiplicities are not greater(less) than m where each a point is counted according to its
multiplicity.

N(r, a; f |≤ m) (N(r, a; f |≥ m)) are defined similarly, where in counting the a-points of f we ignore
the multiplicities.

Also N(r, a; f |< m), N(r, a; f |> m), N(r, a; f |< m) and N(r, a; f |> m) are defined analogously.

Definition 1.4 We denote by N(r, a; f |= k) the reduced counting function of those a-points of f whose
multiplicities is exactly k , where k ≥ 2 is an integer.

Definition 1.5 Let f and g be two non-constant meromorphic functions such that f and g share (a, k) , where

a ∈ C ∪ {∞} . Let z0 be a a-point of f with multiplicity p , a a-point of g with multiplicity q . We denote

by NL(r, a; f) the counting function of those a-points of f and g where p > q , by N
(k+1

E (r, a; f) the counting
function of those a-points of f and g where p = q ≥ k+1 ; each point in these counting functions is counted only

once. In the same way we can define NL(r, a; g) and N
(k+1

E (r, a; g). Clearly N
(k+1

E (r, a; f) = N
(k+1

E (r, a; g) .

Definition 1.6 [13] We denote N2(r, a; f) = N(r, a; f) + N(r, a; f |≥ 2) .

Definition 1.7 [12, 13] Let f , g share a value a IM. We denote by N∗(r, a; f, g) the reduced counting function
of those a-points of f whose multiplicities differ from the multiplicities of the corresponding a-points of g .

Clearly N∗(r, a; f, g) ≡ N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f) + NL(r, a; g) .

Definition 1.8 [16] Let a, b ∈ C ∪ {∞} . We denote by N(r, a; f | g = b) the counting function of those
a-points of f , counted according to multiplicity, which are b-points of g .

Definition 1.9 [16] Let a, b1, b2, . . . , bq ∈ C ∪ {∞} . We denote by N(r, a; f | g �= b1, b2, . . . , bq) the

counting function of those a-points of f , counted according to multiplicity, which are not the bi -points of g for
i = 1, 2, . . . , q .

2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Let F and G be two non-
constant meromorphic functions defined as follows.

F =

(
f(k)

)n−1
(f(k) + a)

−b
, G =

(
g(k)

)n−1
(g(k) + a)

−b
, (2.1)

where n(≥ 2) and k be two positive integers.

Henceforth we shall denote by H , Φ and V the following four functions:

H =

(
F

′′

F ′ − 2F
′

F − 1

)
−

(
G

′′

G′ − 2G
′

G − 1

)
,

24



BANERJEE, BHATTACHARJEE

Φ =
F

′

F − 1
− G

′

G − 1

and

V =

(
F

′

F − 1
− F ′

F

)
−

(
G

′

G − 1
− G′

G

)
=

F ′

F (F − 1)
− G′

G(G − 1)
.

Lemma 2.1 ([13], Lemma 1) Let F , G share (1, 1) and H �≡ 0 . Then

N(r, 1; F |= 1) = N(r, 1; G |= 1) ≤ N(r, H) + S(r, F ) + S(r, G).

Lemma 2.2 ([16], Lemma 4) If two non-constant meromorphic functions F and G share (1, 0) , (∞, 0) and
H �≡ 0 then

N(r, H) ≤ N(r, 0; F |≥ 2) + N(r, 0; G |≥ 2) + N∗(r, 1; F, G)+ N∗(r,∞; F, G)

+N0(r, 0; F
′
) + N0(r, 0; G

′
),

where N0(r, 0; F
′
) is the reduced counting function of those zeros of F

′
which are not the zeros of F (F − 1)

and N0(r, 0; G
′
) is similarly defined.

Lemma 2.3 [20] Let f be a non-constant meromorphic function and let

R(f) =

n∑
k=0

akfk

m∑
j=0

bjfj

be an irreducible rational function in f with constant coefficients {ak} and {bj}where an �= 0 and bm �= 0 .

Then
T (r, R(f)) = dT (r, f) + S(r, f),

where d = max{n, m} .

Lemma 2.4 Let F and G be given by (2.1). If f(k) , g(k) share (0, 0) and 0 is not a Picard exceptional value

of f(k) and g(k) . Then Φ ≡ 0 implies F ≡ G .

Proof. We omit the proof since proceeding in the same way as done in Lemma 2.4 [2] we can prove the
lemma. �

Lemma 2.5 Let F and G be given by (2.1), n ≥ 3 an integer and Φ �≡ 0 . If F , G share (1, m) ; f , g share

(∞, l) , and f(k) , g(k) share (0, p) , where 0 ≤ p < ∞ then

[(n − 1)p + n − 2] N(r, 0; f(k) |≥ p + 1) ≤ N∗(r, 1; F, G)+ N∗(r,∞; F, G)

+S(r).

Proof. The lemma can be proved in the line of proof of Lemma 2.5 [2]. �
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Lemma 2.6 Let F and G be given by (2.1) and f , g share (∞, 0) and ∞ is not a Picard exceptional value
of f and g . Then V ≡ 0 implies F ≡ G .

Proof. We omit the proof since it can be proved in the line of proof of Lemma 2.6 [2]. �

Lemma 2.7 Let F , G be given by (2.1) and H �≡ 0 . If f(k) , g(k) share (0, p) ; f and g share (∞, l) , where

0 ≤ l < ∞ and F , G share (1, m) , where 1 ≤ m ≤ ∞ then

{(nl + nk + n) − 1} N(r,∞; f |≥ l + 1)

≤ N∗
(
r, 0; f(k), g(k)

)
+ N

(
r, 0; f(k) + a

)
+ N

(
r, 0; g(k) + a

)
+N∗(r, 1; F, G)+ S(r).

Similar expressions hold for g , also.

Proof. Suppose ∞ is not an e.v.P. of f and g . Since H �≡ 0, it follows that F �≡ G . So from Lemma 2.6
we know that V �≡ 0. Since f , g share (∞; l), it follows that F , G share (∞; n(k + l)) . Clearly a pole of F

with multiplicity s(≥ n(k + l) + 1) is a pole of G with multiplicity r(≥ n(k + l) + 1) and vice versa. We note

that F and G have no pole of multiplicity q where n(k + l) < q < n(k + l + 1). Also since any common pole

of F and G of multiplicity s ≤ n(k + l) is a zero of V of multiplicity s− 1, using Lemma 2.3 we get from the
definition of V

{n(l + k + 1) − 1} N(r,∞; f |≥ l + 1)

≤ N(r, 0; V )

≤ N(r,∞; V ) + S(r, f(k)) + S(r, g(k))

≤ N∗(r, 0; f(k), g(k)) + N(r, 0; f(k) + a) + N(r, 0; g(k) + a)

+N∗(r, 1; F, G)+ S(r).

If ∞ is an e.v.P. of f and g and F and G respectively then the lemma follows immediately. �

Lemma 2.8 Let F , G be given by (2.1) and V �≡ 0 . If f , g share (∞, l) , where 0 ≤ l < ∞ and F , G share

(1, m) then the poles of F and G are the zeros of V and

{n(k + l + 1) − 1} N(r,∞; f |≥ l + 1)

≤ N(r, 0; f(k)) + N(r, 0; g(k)) + N(r, 0; f(k) + a) + N(r, 0; g(k) + a)

+N∗(r, 1; F, G)+ S(r).

Similar expressions hold for g also.

Proof. Suppose ∞ is an e.v.P. of f and g then the lemma follows immediately.
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Next suppose ∞ is not an e.v.P. of f and g . Now using the same argument as in Lemma 2.7, we can
deduce from the definition of V that

{n(k + 1) − 1} N(r,∞; f |= 1) + {n(k + 2) − 1}N(r,∞; f |= 2) + . . . +

{n(k + l) − 1}N(r,∞; f |= l) + {n(k + l + 1) − 1} N(r,∞; f |≥ l + 1)

≤ N(r, 0; V )

≤ T (r, V )

≤ N(r,∞; V ) + S(r, f(k)) + S(r, g(k))

≤ N(r, 0; f(k)) + N(r, 0; g(k)) + N(r, 0; f(k) + a) + N(r, 0; g(k) + a)

+N∗(r, 1; F, G)+ S(r).

�

Lemma 2.9 ([1], Lemma 3) Let f and g be two meromorphic functions sharing (1, m) , where 2 ≤ m < ∞ .
Then

N(r, 1; f |= 2) + 2N(r, 1; f |= 3) + . . . + (m − 1)N(r, 1; f |= m) + mNL(r, 1; f)

+(m + 1)NL(r, 1; g) + mN
(m+1
E (r, 1; f) ≤ N(r, 1; g)− N(r, 1; g).

Lemma 2.10 Let F , G be given by (2.1) and they share (1, m) . If f , g share (0, p) , (∞, l) where 2 ≤ m < ∞
and H �≡ 0 . Then

T (r, F ) ≤ N(r, 0; f(k)) + N(r, 0; g(k)) + N∗(r, 0; f(k), g(k)) + N2(r, 0; f(k) + a)

+N2(r, 0; g(k) + a) + N(r,∞; f) + N(r,∞; g) + N∗(r,∞; f, g)

−m(r, 1; G)− N(r, 1; F |= 3) − −(m − 2)N(r, 1; F |= m) . . .

−(m − 2) NL(r, 1; F )− (m − 1)NL(r, 1; G)− (m − 1)N
(m+1
E (r, 1; F )

+S(r).

Proof. We omit the proof since it can be carried out in the line of proof of Lemma 2.9 [2]. �

Lemma 2.11 Let F , G be given by (2.1) and they share (1, m) . If f , g share (∞, k) where 2 ≤ m < ∞
and H �≡ 0 . Then

T (r, F ) ≤ 2N(r, 0; f(k)) + 2N(r, 0; g(k)) + N2(r, 0; f(k) + a) + N2(r, 0; g(k) + a)

+N(r,∞; f) + N(r,∞; g) + N∗(r,∞; f, g)− m(r, 1; G)

−N(r, 1; F |= 3) − . . .− (m− 2)N(r, 1; F |= m) − (m − 2) NL(r, 1; F )

−(m − 1)NL(r, 1; G)− (m − 1)N
(m+1
E (r, 1; F )+ S(r).
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Proof. We omit the proof since using Lemmas 2.1, 2.2 and 2.9 the proof of the lemma can be carried out in
the line of proof of Lemma 2.10. �

Lemma 2.12 Let f(k) , g(k) be two non-constant meromorphic functions sharing (0,∞) , (∞,∞) . Then(
f(k)

)n−1 (
f(k) + a

)
≡

(
g(k)

)n−1 (
g(k) + a

)
implies f(k) ≡ g(k) , where n (≥ 2) is an integer, k be a positive

integer and a is a nonzero finite constant.

Proof. We first note that Θ
(
∞; f(k)

)
+ Θ

(
∞; g(k)

)
> 2 − 2

k+1 = 2k
k+1 > 0. Now since the given condition

implies f(k) , g(k) share (0;∞), the lemma can be proved in the line of proof of Lemma 3 [15]. �

Lemma 2.13 If two meromorphic functions f , g share (∞, 0) then for n ≥ 2

(
f(k)

)n−1 (
f(k) + a

)(
g(k)

)n−1 (
g(k) + a

)
�≡ b2,

where a , b are finite nonzero constants and k be a positive integer.

Proof. Noting that according to the lemma f(k) , g(k) share (∞, k), we omit the proof since the proof of

the lemma can be carried out in the line of proof of Lemma 5 [14]. �

Lemma 2.14 ([26], Lemma 6) If H ≡ 0 , then F , G share (1,∞) . If further F , G share (∞, 0) then F , G

share (∞,∞) .

Lemma 2.15 Let F , G be given by (2.1) and they share (1, m) . Also let ω1, ω2 . . . ωn are the members of

the set S1 = {z : zn + azn−1 + b = 0} , where a , b are nonzero constants such that zn + azn−1 + b = 0 has no

repeated root and n (≥ 3) is an integer. Then

NL(r, 1; F ) ≤ 1
m + 1

[
N

(
r, 0; f(k)

)
+ N(r,∞; f)− N⊗

(
r, 0; f(k+1)

)]
+ S(r),

where N⊗
(
r, 0; f(k+1)

)
= N

(
r, 0; f(k+1) | f(k)

)
�= 0, ω1, ω2 . . . ωn) .

Proof. The proof can be carried out along the lines of the proof of Lemma 2.14 [2]. �

Lemma 2.16 [24] Let F , G be two meromorphic meromorphic functions sharing (1,∞) and (∞,∞) . If

N2(r, 0; F )+ N2(r, 0; G) + 2N(r,∞; F ) < λT1(r) + S1(r),

where λ < 1 and T1(r) = max{T (r, F ), T (r, G)} and S1(r) = o(T1(r)) , r −→ ∞ , outside a possible exceptional
set of finite linear measure, then F ≡ G or FG ≡ 1 .

Lemma 2.17 Let F , G be given by (2.1) n ≥ 3 and they share (1, m) . If f(k) , g(k) share (0, 0) , and f , g

share (∞, l) and H ≡ 0 . Then f(k) ≡ g(k) .
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Proof. Since H ≡ 0 we get from Lemma 2.14 F and G share (1,∞) and (∞,∞). If possible let us suppose
F �≡ G . Then from Lemma 2.4 and Lemma 2.5 we have

N(r, 0; f(k)) = N(r, 0; g(k)) = S(r).

Again from Lemma 2.6 we get V �≡ 0 and so in view of Lemma 2.7 we have

N(r,∞; f) + N(r,∞; g) ≤ 4
n(k + 1) − 1

T (r) + S(r).

Therefore we see that

N2(r, 0; F )+ N2(r, 0; G)+ 2N(r,∞; F ) (2.2)

≤ 2N(r, 0; f(k)) + 2N(r, 0; g(k)) + N2(r, 0; f(k) + a) + N2(r, 0; g(k) + a)

+2N(r,∞; f)

≤ N2

(
r, 0; f(k) + a

)
+ N2

(
r, 0; g(k) + a

)
+ N(r,∞; f) + N(r,∞; g)+ S(r).

Using Lemma 2.3, we obtain

T1(r) = n max
{

T
(
r, f(k)

)
, T

(
r, g(k)

)}
+ O(1) = n T (r) + O(1). (2.3)

So again using Lemma 2.3 we get from (2.2) and (2.3)

N2(r, 0; F )+ N2(r, 0; G)+ 2N(r,∞; F )

≤

[
2 + 4

n(k+1)−1

]
n

T1(r) + S(r).

Since k ≥ 1 and n ≥ 3 we have by Lemma 2.16 FG ≡ 1, which is impossible by Lemma 2.13. Hence F ≡ G

i.e.
(
f(k)

)n−1
(f(k) + a) ≡

(
g(k)

)n−1
(g(k) + a). From this condition it is clear that f(k) and g(k) share (0,∞).

Now the lemma follows from Lemma 2.12. �

Lemma 2.18 Suppose F and G be defined as in (2.1) and n ≥ 7 be an integer. Then F ≡ G implies

f(k) ≡ g(k) .

Proof. We note that Θ
(
∞; f(k)

)
> 1 − 1

k+1 = k
k+1 ≥ 1

2 > 2
n−1 , for n ≥ 7. So the proof of the lemma can

be carried out along the lines of proof of Lemma 2 [28]. �

Lemma 2.19 Suppose F and G be defined as in (2.1) and n ≥ 7 be an integer. If f , g share (∞, k) and

H ≡ 0 . Then f(k) ≡ g(k) .
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Proof. Since H ≡ 0 we get from Lemma 2.14 F and G share (1,∞) and (∞,∞). If possible let us suppose
F �≡ G . Using Lemma 2.6 and Lemma 2.8 with l = 0 we have

N2(r, 0; F )+ N2(r, 0; G)+ 2N(r,∞; F )

≤ 2N(r, 0; f(k)) + 2N(r, 0; g(k)) + N2(r, 0; f(k) + a)

+N2(r, 0; g(k) + a) + 2N(r,∞; f)

≤

[
6 + 8

nk+n−1

]
n

T1(r) + S(r).

So respectively using Lemmas 2.16, 2.13 we can deduce a contradiction. Hence F ≡ G . Now the lemma follows
from Lemma 2.18. �

3. Proofs of the theorems
Proof. [Proof of Theorem 1.1] Let F , G be given by (2.1). Then F and G share (1, 2), (∞; k + 1). We
consider the following cases.
Case 1. Let H �≡ 0. Then F �≡ G . Suppose ∞ is not an e.v.P. of f and g . Then by Lemma 2.6 we get
V �≡ 0. Hence from Lemmas 2.3, 2.8, 2.11 and 2.15 we obtain

nT
(
r, f(k)

)
≤ 2N

(
r, 0; f(k)

)
+ 2N

(
r, 0; g(k)

)
+ N2

(
r, 0; f(k) + a

)
(3.1)

+N2

(
r, 0; g(k) + a

)
+ N(r,∞; f) + N(r,∞; g)

+N(r,∞; f |≥ 2) − NL(r, 1; G)+ S(r)

≤ 3T
(
r, f(k)

)
+ 3T

(
r, g(k)

)
+

[
2

nk + n − 1

+
1

nk + 2n − 1

] {
2T

(
r, f(k)

)
+ 2T

(
r, g(k)

)

+
1
3

(
N

(
r, 0; f(k)

)
+ N(r,∞; f)

)}
+ S(r)

≤
[
6 +

28
3(nk + n − 1)

+
14

3(nk + 2n − 1)

]
T (r) + S(r).

If ∞ is an e.v.P. of f and g , then (3.1) automatically holds.
In the same way we can obtain

nT
(
r, g(k)

)
≤

[
6 +

28
3(nk + n − 1)

+
14

3(nk + 2n − 1)

]
T (r) + S(r). (3.2)

Combining (3.1) and (3.2) we see that

[
n − 6 − 28

3(nk + n − 1)
− 14

3(nk + 2n − 1)

]
T (r) ≤ S(r),
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which leads to a contradiction for n ≥ 7.
Case 2. Let H ≡ 0. Now the theorem follows from Lemma 2.19. �

Proof. [Proof of Theorem 1.2] Let F , G be given by (2.1). Then F and G share (1, 3), (∞; 0). We omit
the proof as it can be demonstrated by proceeding in the same way as in Theorem 1.1. �

Proof. [Proof of Theorem 1.3] Let F , G be given by (2.1). Then F and G share (1, 4), (∞;∞);

f(k) , g(k) share (0, 7). We consider the following cases.

Case 1. Let H �≡ 0. Then F �≡ G . Suppose 0, ∞ are not exceptional values Picard of f(k) and g(k) . Then
by Lemma 2.4 and Lemma 2.6 we get Φ �≡ 0 and V �≡ 0. Hence from Lemmas 2.3, 2.5, 2.7, 2.10 and 2.15 we
obtain

nT
(
r, f(k)

)
(3.3)

≤ N
(
r, 0; f(k)

)
+ N

(
r, 0; g(k)

)
+ N

(
r, 0; f(k) |≥ 8

)

+N2

(
r, 0; f(k) + a

)
+ N2

(
r, 0; g(k) + a

)
+ N(r,∞; f)

+N(r,∞; g)− 2N∗(r, 1; F, G)− NL(r, 1; G) + S(r)

≤
(

2
n − 2

+
2

nk + n − 1

)
N∗(r, 1; F, G)+

(
1 +

2
nk + n − 1

)

N
(
r, 0; f(k) |≥ 8

)
+

(
2 +

4
nk + n − 1

)
T (r) − 2N∗(r, 1; F, G)

−NL(r, 1; G)+ S(r)

≤
(

2 +
4

nk + n − 1

)
T (r) +

nk + 17n− 17
(nk + n − 1)(8n − 9)

NL(r, 1; F )+ S(r)

≤
[
2 +

4
nk + n − 1

+
2(nk + 17n − 17)

5(nk + n − 1)(8n − 9)

]
T (r) + S(r).

If 0, ∞ are e.v.P. of f and g , then (3.3) automatically holds. In the same way we can obtain

nT
(
r, g(k)

)
≤

[
2 +

4
nk + n − 1

+
2(nk + 17n− 17)

5(nk + n − 1)(8n − 9)

]
T (r) + S(r). (3.4)

Combining (3.3) and (3.4) we see that

[
n − 2 − 4

(nk + n − 1)
− 2(nk + 17n− 17)

5(nk + n − 1)(8n − 9)

]
T (r) ≤ S(r),

which is a contradiction for n ≥ 3.
Case 2. Let H ≡ 0. Now the theorem follows from Lemma 2.17. �
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Proof. [Proof of Theorem 1.4] Let F , G be given by (2.1). Then F and G share (1, 5), (∞;∞);

f(k) , g(k) share (0, 1). We omit the proof since proceeding in the same way as done in Theorem 1.3 the
proof of the theorem carried out. �

Proof. [Proof of Theorem 1.5] Let F , G be given by (2.1). Then F and G share (1, 6), (∞;∞). Since

f(k) and g(k) share we observe that N∗
(
r, 0; f(k), g(k)

)
≤ N

(
r, 0; f(k)

)
. We consider the following cases.

Case 1. Let H �≡ 0. Then F �≡ G . Suppose 0, ∞ are not exceptional values Picard of f and g . Then by
Lemma 2.4 and Lemma 2.6 we get Φ �≡ 0 and V �≡ 0. Hence from Lemmas 2.3, 2.5, 2.7 and 2.10 we see that

nT
(
r, f(k)

)
(3.5)

≤ 3 N
(
r, 0; f(k)

)
+ N2

(
r, 0; f(k) + a

)
+ N2

(
r, 0; g(k) + a

)
+2N(r,∞; f)− 4N∗(r, 1; F, G)+ S(r)

≤
(

3 +
2

nk + n − 1

)
N

(
r, 0; f(k)

)
+

2
nk + n − 1

N∗(r, 1; F, G)

+
(

2 +
4

nk + n − 1

)
T (r) − 4N∗(r, 1; F, G)+ S(r)

≤
[

3
n − 2

+
2(n − 1)

(n − 2)(nk + n − 1)

]
N∗(r, 1; F, G)

+
(

2 +
4

nk + n − 1

)
T (r) − 4N∗(r, 1; F, G)+ S(r)

≤
[
2 +

4
nk + n − 1

]
T (r) + S(r).

If 0, ∞ are e.v.P. of f and g , then (3.5) automatically holds.
In the same way we can obtain

nT
(
r, g(k)

)
≤

[
2 +

4
nk + n − 1

]
T (r) + S(r). (3.6)

Combining (3.5) and (3.6) we see that

[
n − 2 − 4

nk + n − 1

]
T (r) ≤ S(r).

which is a contradiction for n ≥ 3.
Case 2. Let H ≡ 0. Now the theorem follows from Lemma 2.17. �
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