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doi:10.3906/mat-0804-22

The Riemann Hilbert problem for generalized Q-holomorphic

functions

Sezayi Hızlıyel and Mehmet Çağlıyan

Abstract

In this work, the classical Riemann Hilbert boundary value problem is extended to generalized Q-

holomorphic functions.
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1. Introduction

In [6] A. Douglis developed an analogue of analytic functions theory for more general elliptic systems in
the plane of the form

wx + iwy + aEwx + bEwy = 0, (1)

where E is an m × m constant matrix, w is an m × 1 vector, and a and b are complex valued functions of x

and y . Subsequently in [5] B. Bojarskĭı extended the function theory of Douglis to a system which he wrote in
the form

wz = qwz. (2)

He assumed that the variable m × m matrix q is “lower diagonal with all eigenvalues of q having magnitude
less than 1. The systems (1) and (2) are natural ones to consider because they arise from the reduction of
general elliptic systems of first order in the plane to a standard canonical form.

Douglis and Bojarskĭı theory has been used to study the elliptic systems of more general form:

wz − qwz = aw + bw.

Solutions of this equation were called generalized (or pseudo) hyperanalytic functions. Works in this direction

appear in [7, 8, 10, 11]. These results extend the generalized (or “pseudo”) analytic function theory of Bers

[4] and Vekua [17]. Also, the classical boundary value problems for analytic functions were extended to the
generalized hyperanalytic functions. A good survey of the methods encountered in the hyperanalytic case may
be found in [3, 9], see also [1, 2].

AMS Mathematics Subject Classification: 30G20, 30G35, 35J55.
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In [13], Hile noticed that what appears to be the essential property of the elliptic systems in the plane
for which one can obtain a useful extension of analytic function theory is the self commuting property of the
variable matrix Q , which means

Q (z1)Q (z2) = Q (z2)Q (z1)

for any two points z1, z2 in the domain G0 of Q . Further, such a Q matrix can not be brought into the

quasi-diagonal form of Bojarskĭı by a similarity transformation. So Hile [13] attempts to extend the results of

Douglis and Bojarskĭı to a wider class of systems in the same form as (2). If Q (z) is self-commuting in G0

and if Q (z) has no eigenvalues of magnitude 1 for each z in G0 , then Hile called the system (2) generalized

Beltrami system and the solutions of such a system are called Q-holomorphic functions. Later in [14, 15] using
Vekua and Bers techniques a function theory is given for the equation

wz − Qwz = Aw + Bw, (3)

where the unknown w(z) = {wij(z)} is an m×s complex matrix, Q(z) = {qij(z)} is a self commuting complex

matrix with m × m , and qk,k−1 �= 0 for k = 2, . . .m . A = {aij(z)} and B = {bij(z)} are m × m-complex

matrices commuting with Q . Solutions of such equation were called generalized Q-holomorphic functions.

In this work, we consider the Riemann Hilbert boundary value problem for the equation (3) with the
boundary condition

Re(γw) = ϕ on ∂G,

where the coefficients A and B are Hölder continuous in a bounded simply connected region G with piecewise
Hölder continuous boundary. γ is commuting with Q . A and B are continuous in G ∪ ∂G . Moreover, γ

has one Hölder continuous derivative, ϕ is real Hölder continuous function on ∂G . Also we assume that Q

commute with Q .

2. Fundamental operators

To investigate Q -holomorphic functions, Hile introduced the notion of generating solution for generalized
Beltrami operator

D :=
∂

∂z
− Q

∂

∂z
. (4)

This generating solution can be written as φ (z) := φ0 (z) I + N (z) and satisfies the equation Dφ = 0, where
N is the nilpotent part of φ and φ0 is the main diagonal term of φ satisfying the Beltrami equation

∂φ0

∂z
− λ

∂φ0

∂z
= 0,

where |λ(z)| �= 1.

Hile also gave the following representation formula called the generalized Cauchy-Pompieu representation
for the m × s complex matrix-valued functions.
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Theorem 1 Let G be a regular subdomain of G0 , with Γ = ∂G and w be an m× s-matrix in C1 (G)∩C
(
G

)
with bounded first derivatives in G . Then for z in G

w (z) = P−1

∫
Γ

(φ (ζ) − φ (z))−1
dφ (ζ)w (ζ) (5)

−2iP−1

∫∫
G

φζ (ζ) (φ (ζ) − φ (z))−1
[
wζ (ζ) − Q (ζ)wζ (ζ)

]
dξdη.

In (5) P is constant matrix defined by

P (z) =
∫

|z|=1

(zI + zQ)−1 (Idz + Qdz) . (6)

It is called P -value for (4) [13].

Using Beltrami homeomorphism ρ(z) = φ0(z), we may write

∂

∂z
− Q

∂

∂z
=

[
ρz(λQ − I)

] (
∂

∂ρ
− Q̂

∂

∂ρ

)
,

where Q̂ =
[
ρz(λQ − I)

]−1
[ρz(λI − Q)] is self-commuting matrix whose the main diagonal terms are zero (see

[14], pp. 431). Note that for the equation in normal form the generating solution is φ(z) = zI + N(z) and the
complex Pompieu formula is

w (z) = P−1

∫
∂G

w (ζ)
ζ − z

dζ − 2iP−1

∫∫
G

wζ(ζ)
ζ − z

dξdη, (7)

where N(z) is m × m-type nilpotent matrix (see [16], pp. 581). The operators

Φ̃∂Gw(z) = P−1

∫
∂G

w (ζ)
ζ − z

dζ

T̃Gw(z) = −2iP−1

∫∫
G

wζ(ζ)
ζ − z

dξdη

and

Π̃Gw(z) = −2iP−1

∫∫
G

wζ(ζ)
(ζ − z)2

dξdη

have similar properties as Φ, T and Π-operators of Vekua’s theory and the following theorems concerning

Φ̃∂G , T̃G and Π̃G can be proved as in the book of Vekua [17].

Theorem 2 If G ∈ Cm
α , then Φ̃∂G : Cm

α (∂G) → Cm
α (G) .
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Theorem 3 If f ∈ L1(G) , then ∂zT̃Gf = f . If p > 2 , then T̃G : Lp(G) → C p−2
p

(C) . If G ∈ C, w ∈ C(G) ,

and ∂zw ∈ Lp(G), p > 2 , then

w(z) = Φ̃∂Gw(z) + T̃G(∂ζw)(z).

Theorem 4 If G ∈ Cm+1
α , then T̃G : Cm

α (G) → Cm+1
α (G) and Π̃G : Cm

α (G) → Cm
α (G) . Moreover ∂zT̃G = Π̃G .

The operator Π̃G can be extended to a bounded linear operator on Lp(C), p > 1 , with ∂zT̃C = Π̃C .

As in the complex case (see [12], pp. 259), using the complex Pompieu formula, for any complex matrix-

valued function w that is C1(G) and Hölder continuous in G we have the representation

w (z) = Ω (z) + (Pf) (z) , wz(z) = f(z),

where

Ω (z) = −2πiP−1

∫
∂G

[
dnGI (ζ, z) − idGII (ζ, z)

]
Rew (ζ)

−2πP−1

∫
∂G

dnGII (ζ, z) Imw (ζ)

(Pf) (z) = −2πP−1

∫∫
G

[
GI

ζ (ζ, z) + GII
ζ (ζ, z)

]
f (ζ) dζdζ

−2πP−1

∫∫
G

[
GI

ζ
(ζ, z) + GII

ζ
(ζ, z)

]
f (ζ)dζdζ. (8)

GI and GII are the first and second Green’s functions for G and dn denotes the differential in normal direction.

If θ is a conformal mapping of G onto the unit disk C0 , then the Green functions of first and second kinds
may be expressed as

GI (ζ, z) : =
−1
2π

log

∣∣∣∣∣ θ (ζ) − θ (z)
1 − θ (ζ)θ (z)

∣∣∣∣∣
GII (ζ, z) : =

−1
2π

log
∣∣∣(θ (ζ) − θ (z))

(
1 − θ (ζ)θ (z)

)∣∣∣ .

Thus Pf has the representation

(Pf) (z) = P−1

∫∫
G

θ
′
(ζ) f (ζ)

θ (ζ) − θ (z)
dζdζ + P−1θ (z)

∫∫
G

θ′ (ζ) f (ζ)
1 − θ (ζ)θ (z)

dζdζ (9)
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and ∂
∂z (Pf)(z) may be expressed as

∂ (Pf) (z)
∂z

=
(
Π̃f

)
(z)

= P−1θ
′
(z)

∫∫
G

⎧⎪⎨⎪⎩ θ
′
(ζ) f (ζ)

[θ (ζ) − θ (z)]2
+

θ′ (ζ) f (ζ)[
1 − θ (ζ)θ (z)

]2

⎫⎪⎬⎪⎭dζdζ.

The operator P may still put in a more convenient form. If we introduce the inverse mapping z = ρ(t) := θ−1(t),
we have

(Pf) (z) =
(
T̃C0f (ρ) ρ

′)
(θ (z)) − θ (z)

(
T̃C\C0f1 (ρ1) ρ

′
1

)
(θ (z))

where C0 is the unit disk and

ρ1(z) : = ρ

(
1
z

)
, ( z ∈ C \ C0)

f1 (ρ1(z)) : =
1
z
f

(
ρ1 (z)

)
.

By writing Pf in above form we obtain certain imbedding properties of T̃ and Π̃

Cα

(
Pf, G

)
≤ M1 (α, G)Cα

(
f, G

)
(10)

Cα

(
Πf, G

)
≤ M1 (α, G)Cα

(
f, G

)
. (11)

3. The Riemann-Hilbert problem

We consider the problem

Dw = Aw + Bw in G, Re (γw) = ϕ on ∂G. (12)

where the coefficients A and B are Hölder continuous in a bounded simply connected region G with piecewise
Hölder continuous boundary. γ = γ0I + N(z) is commuting with Q . A and B are continuous in G ∪ ∂G .
Moreover, γ has one Hölder continuous derivative and ϕ is real Hölder continuous function on ∂G . We assume

Q commute with Q . It is natural for us define the index of this problem as

κ := indγ :=
1
2π

∫
∂G

d arg γ0.

Case 1. κ = 0. In the case of index zero, we may reduce our problem by setting ω = γw to the case

Dω = Ãω + B̃ω in G,

Reω = ϕ on ∂G,

171



HIZLIYEL, ÇAĞLIYAN

where

Ã = A + γ−1Dγ, B̃ = γBγ−1.

To see that such a transformation is valid it is necessary to demonstrate that the inverse γ−1 exits in G .
This follows directly from the fact that |γ0| �= 0 on ∂G , and hence it is possible to continue harmonically the

component of γ := R exp (−iθ) into interior of G such that R0 := |γ0| nowhere vanishes. Our problem may
be written as the system

Dωk� = Ãkkωk� + B̃kkωk� + fk� in G

Reωk� = ϕk� on ∂G, k = 1, · · · , m, � = 1, · · · , s (13)

where

f1� = 0, fk� =
k−1∑
j=1

(
qkj

∂ωj�

∂z
+ Ãkjωj� + B̃kjωj�

)
, (2 ≤ k ≤ m, 1 ≤ � ≤ s).

The problem (13), which may be solved successively, may be replaced by integral equation by using Green

functions GI(ζ, z), GII(ζ, z) of first and second kinds respectively. We obtain

ωk� = Ωk� + P
(
Ãkkωk� + B̃kkωk� + fk�

)
,

where Ωk� is an analytic function given by

Ωk� = −2πP−1

∫
∂G

[
dnGI (ζ, z) − idGII (ζ, z)

]
ϕk� + ck� (14)

and ck� is arbitrary constant which can be fixed by setting it equal to boundary norm,

ck� = 2πP−1

∫
∂G

Im (ωk�) dnGII (ζ, z) , k = 1, · · · , m, � = 1, · · · , s.

Taking advantage of the fact that Q is nilpotent yields a concise representation for ω as

ω = Ω + P

[
m−1∑
k=0

(
QΠ̃

)k (
Ãω + B̃ω + QΩ

′
)]

,

where

Ω =
m∑

k=1

s∑
�=1

Ωk�e
k�, Ω

′
=

∂Ω
∂z

and Π̃ =
∂P
∂z

.

and ek� denotes m × s constant matrix in which k − th row and � − th column terms are 1 and the others
terms are 0. Moreover, by introducing

R := P
(
I − QΠ̃

)−1

= P
m−1∑
k=0

(
QΠ̃

)k

, (15)
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we obtain the matrix integral equation

ω = Ω − R
(
QΩ

′)
+ R

(
Ãω + B̃ω

)
. (16)

Using imbedding properties (10) and (11) we have following imbedding property in Cα(G)

Cα

(
Rf, G

)
≤ M1 (α, G)

Mm
3 (α, G)− 1

M3 (α, G)− 1
Cα

(
f, G

)
, (17)

where
M3 (α, G) := (m − 1)M2 (α, G)Cα

(
Q, G

)
, (18)

and the norm Cα(f, G) is

Cα(f, G) =
m∑

l=1

s∑
�=1

Cα

(
fk�, G

)
.

The operator R is then seen from (15), (17) and (18) to be compact in Cα , hence is a Fredholm integral

operator. To show that integral equation (16) has a unique solution we consider the homogenous version of

(12) i.e. Reω |∂G= 0, c = 0. This means, since ReΩ |∂G= 0, that Ω = 0 and the Fredholm integral equation
corresponding to homogenous Riemann Hilbert problem is homogenous integral equation

ω = R
(
Ãω + B̃ω

)
.

It is easily seen that this homogenous integral equation has only trivial solution. This discussion is then
summarized as

Theorem 5 For any given real, m×s matrix-valued function ϕ ∈ Cα(∂G) and given real, m×s-type constant

matrix c there exits a unique solution w of the integral equation (16) which satisfies

∫
∂G

Im (ω) dnGII (ζ, z) = c.

Case 2. κ < 0. We assume in present case the index is a negative integer

κ := indγ :=
1
2π

∫
∂G

d arg γ0 = −n.

We introduce a transformation

v := ψ−1w, ψ =
n∏

τ=1

[φ (z) − φ (zτ )] ,

where the points zτ lie in G . The boundary value problem becomes

Dv = Âv + B̂v in G, Re (ρv) = ϕ on ∂G,

173



HIZLIYEL, ÇAĞLIYAN

where

Â = A, B̂ = ψ−1Bψ and ρ = γψ.

This reduced Riemann Hilbert problem has index zero, and we have modified the problem to case previously
discussed.

The homogenous boundary value problem for v which is normalized such that

ch = −2πiP−1

∫
∂G

Imvh(ζ)dnGII (ζ, z)

has non-trivial solution vh . That exits a non-trivial solution to this problem can be seen by considering 1− th
row and � − th column of vh

∂vh1�

∂z
= Â11vh1� + B̂11

n∏
τ=1

z − zτ

z − zτ
vh1�

Re (ρ11vh1�) = 0 , Indρ11 = 0

which is known to have a solution non vanishing in G (see [12], 11.1).

Now, for fixed �, 1 ≤ � ≤ s , we consider the boundary value problem

Dw� = Aw� + Bw� in G

Re
(
γw�

)
= ϕ� on ∂G, (19)

where w� =
∑m

i=1 wi�e
i� and ϕ� =

∑m
i=1 ϕi�e

i� are m × s matrix-valued functions. Hence the homogenous

solutions w�
h of (19) with index κ = −n has a representation of the form

w�
h = λ�ψv�

h ,

where λ� is a real constant matrix commuting with Q and v�
h =

∑m
i=1 vhi�e

i� is a solution of

Dv� = Âv� + B̂v�, Re(ρv�) = 0.

Note that if λ commutes with Q then λ can be written as

λ =
m∑

k=1

Pkλk1,

where P1 = I, Pk =
∑m

1=1

∑i−1
j=1 (Cij)k eij , (2 ≤ k ≤ m) and (Ck,k−l)μ are real or complex constants such that

(Ck1)μ =
{

1, μ = k
0, μ �= k

(Ck,k−1)2 =
qk,k−1

q21
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(Ck,k−l)μ

: =

⎧⎨⎩
1

(Ck−l,k−l−1)2

l−1∑
s=1

∣∣∣∣ (Ck,k−s)2 (Ck,k−s)μ

(Ck−s,k−l−1)2 (Ck−s,k−l−1)μ

∣∣∣∣ for μ = 3, . . . , l + 1

0 for μ > l + 1

(Ck,k−l)2 =
qk,k−l

q21
− 1

(Ck−l,k−l−1)2

l+1∑
μ=3

(Ck,k−l)μ

qμ1

q21

=
ak,k−l

a21
− 1

(Ck−l,k−l−1)2

l+1∑
μ=3

(Ck,k−l)μ

aμ1

a21

(see [14], pp.442). Moreover, it is clear that λ1 and λ2 commute with Q then λ1 commutes with λ2 .

From this it is easily seen that each homogenous solutions of (19) having n + 1 distinct zeros must be

vanish identically in G . The general solution to (12) may be written as w = ψ(v0 +
∑s

�=1 λ�v
�
h), where v0 is a

particular solution of reduced equation and λ� are real constant matrices commuting with Q .

If w�
1 , w�

2 are distinct solutions of

Dw� = Aw� + Bw� in G,

Reγw� = 0 on ∂G (20)

with negative index, then any combination of them

w = λ1w
�
1 + λ2w

�
2

with real constant matrices λ1 and λ2 commuting with Q is also a solution of (20). The general solution of

(20) contains 2n arbitrary real constant zτ = xτ + iyτ , (1 ≤ τ ≤ n) and an arbitrary real constant matrix

λ� . It may therefore be conjectured that there are 2n + 1 linearly independent solution of (20).

r solutions w�
1, · · · , w�

r of (20) are said to be linearly independent if the equation

r∑
j=1

λjw
�
j = 0, (λj commuting with Q)

implies that λj = 0.

Suppose that we already know (2n + 1) linearly independent solutions w̃�
0, w̃

�
1, · · · , w̃�

2n of (20). No pair

of these solutions can have the same zeros. To show that there are no more than (2n + 1) solutions, with non
vanishing 1 − th row and � − th column terms , we show that each such solution can be written as a linear

combination of w̃�
j, (0 ≤ j ≤ 2n). To this end let

λ(0)
μ :=

m∑
i=1

i∑
j=1

λ
(0)
μije

ij
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be non-trivial solution of the system

2n∑
μ=0

λ(0)
μ w̃�

μ(zτ ) = 0, 1 ≤ τ ≤ n.

In component form this becomes

2n∑
μ=0

i∑
j=1

λ
(0)
μijw̃μj�(zτ ) = 0, (1 ≤ i ≤ m, 1 ≤ � ≤ s, 1 ≤ τ ≤ n)

For each μ we define the functions

w�
μ :=

2n∑
k=1

λ
(μ)
k w̃�

k (z) ,

where λ
(μ)
k are real constant matrices commuting with Q that are uniquely determined as the solution of system

w�
2μ (zτ ) = δμτe1� , w�

2μ−1 (zτ ) = iδμτ e1�.

In complex form this becomes

2n∑
k=1

t∑
j=1

λ
(2μ)
ktj wkj� (zτ ) = δ1tδμτ ,

2n∑
k=1

t∑
j=1

λ
(2μ−1)
ktj wkj� (zτ ) = iδ1tδμτ ,

1 ≤ t ≤ m, 1 ≤ μ, τ ≤ n . To show that these inhomogeneous equations have a unique solution it is sufficient
to demonstrate that the system

2n∑
k=1

χkw�
k (zτ ) = 0

possesses only trivial solution, where χk commutes with Q . This follows directly the fact that if

2n∑
k=1

χkw̃�
k (zτ )

is a solution of (20), that is, linearly independent of w�
0 , it must be trivial solution. From this we conclude,

since w̃�
k are linearly independent, that the χk are all zero. In this way we construct a system of functions w�

μ ,

μ = 0, · · · , 2n satisfying the conditions

w�
0 (zτ ) = 0, w�

2μ (zτ ) = δμτe1�, w�
2μ−1 (zτ ) = iδμτ e1�,

1 ≤ t ≤ m, 1 ≤ μ, τ ≤ n . It is seen that each solution of (20) may be represented as a linear combination of

w̃�
μ . For instance if we set (λ2τ )k1 = Rewk�(zτ ) and (λ2τ−1)k1 = Imwk�(zτ ) then the function w�−∑2n

μ=1 λμw�
μ
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is a solution of (20) and it vanishes at zτ , τ = 1, · · · , n . Where (· · · )k1 means the k − th row and 1 − th

column elements of (· · · ). Therefore there is a unique real constant matrix commuting with Q such that

w�(z) −
2n∑

μ=1

λμw�
μ(z) = λ0w

�
0 (z) .

We can, moreover, show that there are at most (2n + 1) linearly independent solutions. To this end, we

introduce w�
2μ,τ and w�

2μ−1,τ as linear combinations of w̃� :

w�
2μ,t : =

2n∑
k=1

λ
(2μ,t)
k w̃�

k

w�
2μ−1,t : =

2n∑
k=1

λ
(2μ−1,t)
k w̃�

k

which moreover satisfy the conditions

w�
2μ,t (zτ ) := δμτet�, w�

2μ−1,t (zτ ) := iδμτ et�.

These two conditions for determining λ
(2μ,t)
k , λ

(2μ−1,t)
k may be formulated in terms of their components as

2n∑
k=1

l∑
j=1

λ
(2μ,t)
klj w̃kj� (zτ ) = δtlδμτ

2n∑
k=1

l∑
j=1

λ
(2μ−1,t)
klj w̃kj� (zτ ) = iδtlδμτ

1 ≤ t, l ≤ m , 1 ≤ μ, τ ≤ n . If we fix w�
0,t := (w0)t� (1 ≤ t ≤ m), then each solution of (20) may be written as

a linear combination of w�
μ,t(z).

Now we show that there are exactly (2n + 1) linearly independent solutions of (20). Let w�
0(z) be non-

trivial solution of (20) that vanishes at each of given points zτ (1 ≤ τ ≤ n). If we have 2n additional solutions
that moreover satisfy the conditions

w�
2k(zτ ) = δkτe1�, w�

2k−1(zτ ) = iδkτe1�, 1 ≤ k, τ ≤ n,

then these solutions also have non-vanishing 1−th row and �−th column terms and form a linearly independent
system with w0(z).

Let us define

fk :=
n∏

τ=1
τ �=k

[φ (z) − φ (zτ )] .

Then if w� is a solution of (20), v� = f−1
k w� is a solution of the homogenous boundary value problem of index

−1,

Dv� = Av� + f−1
k Bfkv� in G, Re

(
γfkv�

)
= 0 on ∂G. (21)
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If v�
a, v�

b are two non-trivial solutions of (21) that satisfy the boundary conditions Rev�
a = Imv�

b = 0 on ∂G ,

then it is known (see [12], pp.272) that without loss of generality we may assume that Imva1� > 0, Revb1� > 0

on ∂G . Furthermore let v�
α(z), v�

β(z) be two solutions of (21) that satisfy v�
α(zτ ) = v�

β(zτ ) = 0 and the

inhomogeneous boundary conditions

Re
(
γfkv�

α

)
= −Re

(
γfkv�

a

)
on ∂G

Re
(
γfkv�

β

)
= −Re

(
γfkv�

b

)
on ∂G.

Then the two functions ω�
1 := fk(v�

a + v�
α), ω�

2 := fk(v�
b + v�

β) are solutions of (20) that satisfy

ω�
1 (zτ ) = ω�

2 (zτ ) = 0, τ �= k, 1 ≤ τ ≤ n

ω�
1 (zk) = fk (zk) v�

a (zk) �= 0, ω�
2 (zk) = fk (zk) v�

b (zk) �= 0.

Consequently, one has Im
[
(ω1)1� (zk) (ω2)1� (zk)

]
�= 0 and the linear equations

λ
(1)
2n ω�

1 (zk) + λ
(2)
2n ω�

2 (zk) = e1�

λ
(1)
2n−1ω

�
1 (zk) + λ

(2)
2n−1ω

�
2 (zk) = ie1�

may be solved for real constant matrices λ
(1)
2n , λ

(2)
2n , λ

(1)
2n−1 , λ

(2)
2n−1 , commuting with Q , having non vanishing

main diagonal terms. In this way we may construct two solutions

w�
μ = λ(1)

μ ω�
1 + λ(2)

μ ω�
2 , μ = 2n − 1, 2n

with the properties

w�
2k (zτ ) = δkτe1� , w�

2k−1 (zτ ) = iδkτe1�.

By doing this for each k , we obtain 2n + 1 linearly independent solutions. Hence, the homogenous boundary
value problem (20) has exactly (2n + 1)m linearly independent solutions over R . This discussion is then
summarized as the next theorem.

Theorem 6 The homogenous boundary value problem

Dw = Aw + Bw in G, Re (γw) = 0 on ∂G

has exactly (2n + 1)ms linearly independent solutions with non-identically vanishing 1 − th row and � − th
column terms of w over R .

Case 3. κ > 0. We consider the boundary value problem

Dw = Aw + Bw in G, Re (γw) = ϕ on ∂G.

We assume in present case the index is a positive integer

κ := Indγ =
1
2π

∫
∂G

d argγ0 = n.
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We introduce a transformation

ω = ψw, ψ−1 :=
κ∏

τ=1

[φ (z) − φ (zτ )]−1
,

where the points zτ lie in G . Then the new boundary value problem becomes

Dω = Ãω + B̃ω in G, Re
(
γψ−1ω

)
= ϕ on ∂G,

where

Ã = A, B̃ = ψBψ−1 .

Each of non-trivial solutions of homogenous boundary value problem with integral index has no zeros on
the boundary ∂G . Since w1� and γ0 are perpendicular on ∂G , w1� has the same index as γ0 . So, with each

solution w� of differential equation

Dw� = Aw� + Bw�

which has no zeros on ∂G , i.e. w �= 0 on ∂G , we can always associate a homogenous boundary value problem
of integral index. Hence the index

n =
1
2π

∫
∂G

dargw1�

of a solution w� of homogenous differential equation

Dw� = Aw� + Bw�,

which has neither zeros nor poles on ∂G, is equal to the difference between the numbers of its poles and zeros
in G . Hence every such solution w has a representation of the form

w =
s∑

�=1

λ�ψw�
h

and the poles and zeros of ψ coincide with those of w .

We clearly do not investigate the conditions under which there are continuous solution in G even when
the boundary vector family has positive index
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