Rotational embeddings in E^4 with pointwise 1-type gauss map

KADRİ ARSLAN
BENGÜ KILIÇ BAYRAM
BETÜL BULCA
YOUNG HO KİM
CENGİZHAN MURATHAN

See next page for additional authors

Follow this and additional works at: https://journals.tubitak.gov.tr/math

Part of the Mathematics Commons

Recommended Citation
ARSLAN, KADRİ; BAYRAM, BENGÜ KILIÇ; BULCA, BETÜL; KİM, YOUNG HO; MURATHAN, CENGİZHAN; and ÖZTÜRK, GÜNAY (2011) "Rotational embeddings in E^4 with pointwise 1-type gauss map," Turkish Journal of Mathematics: Vol. 35: No. 3, Article 13. https://doi.org/10.3906/mat-0910-59
Available at: https://journals.tubitak.gov.tr/math/vol35/iss3/13

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for inclusion in Turkish Journal of Mathematics by an authorized editor of TÜBİTAK Academic Journals. For more information, please contact academic.publications@tubitak.gov.tr.
Rotational embeddings in E^4 with pointwise 1-type gauss map

Authors
KADİR ARSLAN, BENGÜ KILIÇ BAYRAM, BETÜL BULCA, YOUNG HO KİM, CENGİZHAN MURATHAN, and GÜNAY ÖZTÜRK

This article is available in Turkish Journal of Mathematics: https://journals.tubitak.gov.tr/math/vol35/iss3/13
Rotational embeddings in \mathbb{E}^4 with pointwise 1-type gauss map

Kadri Arslan, Bengü Kılıç Bayram, Betül Bulca, Young Ho Kim*, Cengizhan Murathan and Günay Öztürk

Abstract

In the present article we study the rotational embedded surfaces in \mathbb{E}^4. The rotational embedded surface was first studied by G. Ganchev and V. Milousheva as a surface in \mathbb{E}^4. The Otsuki (non-round) sphere in \mathbb{E}^4 is one of the special examples of this surface. Finally, we give necessary and sufficient conditions for the flat Ganchev-Milousheva rotational surface to have pointwise 1-type Gauss map.

Key word and phrases: Rotation surface, gauss map, finite type, Pointwise 1-type.

1. Introduction

Since the late 1970’s, the study of submanifolds of Euclidean space or pseudo-Euclidean space with the notion of finite type immersion has been extensively carried out. An isometric immersion $x: M \rightarrow \mathbb{E}^m$ of a submanifold M in Euclidean m-space \mathbb{E}^m is said to be of finite type if x identified with the position vector field of M in \mathbb{E}^m can be expressed as a finite sum of eigenvectors of the Laplacian Δ of M, that is,

$$x = x_0 + \sum_{i=1}^{k} x_i,$$

where x_0 is a constant map $x_1, x_2, ..., x_k$ non-constant maps such that $\Delta x = \lambda_i x_i$, $\lambda_i \in \mathbb{R}$, $1 \leq i \leq k$. If $\lambda_1, \lambda_2, ..., \lambda_k$ are different, then M is said to be of k-type. Similarly, a smooth map ϕ of an n-dimensional Riemannian manifold M of \mathbb{E}^m is said to be of finite type if ϕ is a finite sum of \mathbb{E}^m-valued eigenfunctions of Δ ([4], [5]). Granted, this notion of finite type immersion is naturally extended in particular to the Gauss map G on M in Euclidean space ([8]). Thus, if a submanifold M of Euclidean space has 1-type Gauss map G, then G satisfies $\Delta G = \lambda(G + C)$ for some $\lambda \in \mathbb{R}$ and some constant vector C ([1], [2], [3], [11]). However, the Laplacian of the Gauss map of some typical well-known surfaces such as a helicoid, a catenoid and a right cone in Euclidean 3-space \mathbb{E}^3 take a somewhat different form; namely, $\Delta G = f(G + C)$ for some non-constant function f and some constant vector C. Therefore, it is worth studying the class of solution surfaces satisfying

2000 AMS Mathematics Subject Classification: 53C40, 53C42.
This paper was prepared during the fourth named author’s visit to the Uludag University, Bursa, Turkey in July 2009.
*supported by KOSEF R01-2007-000-20014-0 (2007).
such an equation. A submanifold M of a Euclidean space E^m is said to have pointwise 1-type Gauss map if its Gauss map G satisfies

$$\Delta G = f(G + C)$$

(1)

for some non-zero smooth function f on M and a constant vector C. A pointwise 1-type Gauss map is called proper if the function f defined by (1) is non-constant. A submanifold with pointwise 1-type Gauss map is said to be of the first kind if the vector C in (1) is zero vector. Otherwise, the pointwise 1-type Gauss map is said to be of the second kind ([6], [9], [12], [13]). In [9], one of the present authors characterized the minimal helicoid in terms of pointwise 1-type Gauss map of the first kind. Also, together with B.-Y. Chen, they proved that surfaces of revolution with pointwise 1-type Gauss map of the first kind coincides with surfaces of revolution with constant mean curvature. Moreover, they characterized the rational surfaces of revolution with pointwise 1-type Gauss map ([6]).

In [16], D. W. Yoon studied Vranceanu rotation surfaces in Euclidean 4-space E^4. He obtained the complete classification theorems for the flat Vranceanu rotation surfaces with 1-type Gauss map and an equation in terms of the mean curvature vector. For more details see also [15].

In this article we will investigate rotational embedded surface with pointwise 1-type Gauss map in Euclidean 4-space E^4.

The rotational embedded surface was studied by G. Ganchev and V. Milousheva as a surface in E^4 which is defined by the following surface patch with respect to an orthonormal system of coordinates

$$X(s, t) = (f_1(s), f_2(s), f_3(s)\cos t, f_3(s)\sin t),$$

(2)

where $\alpha(s) = (f_1(s), f_2(s), f_3(s))$ is a space curve parametrized by the arc-length, i.e., $(f_1')^2 + (f_2')^2 + (f_3')^2 = 1$ and $f_3(s) > 0$ ([10]).

We prove the following theorem.

Theorem A. Let M be a flat rotational embedded surface in Euclidean 4-space E^4. Then M has pointwise 1-type Gauss map if and only if

$$f_1(s) = \int \mu \cos(\frac{\lambda}{a\mu} \ln |as+b|)ds,$$

$$f_2(s) = \int \mu \sin(\frac{\lambda}{a\mu} \ln |as+b|)ds,$$

$$f_3(s) = as + b.$$

for some constants $\lambda \neq 0, \mu > 0, a \neq 0$ and b.

2. Preliminaries

Let $x : M \to E^n$ be an isometric immersion from an n-dimensional connected Riemannian manifold M into an m-dimensional Euclidean space E^m. Let $\bar{\nabla}$ be the Levi-Civita connection of E^m and ∇ the induced...
connection on M. Then the Gaussian and Weingarten formulas are given, respectively, by
\[\nabla_X Y = \nabla_X Y + h(X, Y), \]
\[\nabla_X \xi = -A_\xi X + D_X \xi \]
for vector fields X, Y tangent to M and a vector field ξ normal to M, where h denotes the second fundamental form, D the normal connection and A_ξ the shape operator in the direction of ξ that is related with h by
\[\langle h(X, Y), \xi \rangle = \langle A_\xi X, Y \rangle, \]
where $\langle \cdot, \cdot \rangle$ is the standard inner product in \mathbb{E}^4 and that in the submanifold M as well.

If we define a covariant differentiation ∇h of the second fundamental form h on the direct sum of the tangent bundle and the normal bundle $TM \oplus T^\perp M$ of M by
\[(\nabla_X h)(Y, Z) = D_X h(Y, Z) - h(\nabla_X Y, Z) - h(Y, \nabla_X Z) \]
then we have the Codazzi equation
\[(\nabla_X h)(Y, Z) = (\nabla_Y h)(X, Z). \]

Let us now define the Gauss map G of a submanifold M into $G(n, m)$ in $\wedge^n \mathbb{E}^m$, where $G(n, m)$ is the Grassmannian manifold consisting of all oriented n-planes through the origin of \mathbb{E}^m and $\wedge^n \mathbb{E}^m$ is the vector space obtained by the exterior product of n vectors in \mathbb{E}^m. In a natural way, we can identify $\wedge^n \mathbb{E}^m$ with some Euclidean space \mathbb{E}^N where $N = \binom{m}{n}$. Let $\{e_1, \ldots, e_n, e_{n+1}, \ldots, e_m\}$ be an adapted local orthonormal frame field in \mathbb{E}^m such that e_1, e_2, \ldots, e_n are tangent to M and $e_{n+1}, e_{n+2}, \ldots, e_m$ normal to M. The map $G : M \to G(n, m)$ defined by $G(p) = (e_1 \wedge e_2 \wedge \ldots \wedge e_n)(p)$ is called the Gauss map of M, that is a smooth map which carries a point p in M into the oriented n-plane in \mathbb{E}^m obtained from the parallel translation of the tangent space of M at p in \mathbb{E}^m.

For any real valued function f on M the Laplacian of f is defined by the relation
\[\Delta f = -\sum_i \langle \nabla_{e_i} \nabla f, e_i \rangle. \]

3. Proof of Theorem

Let M be a rotational embedded surface in \mathbb{E}^4 defined by the patch (2). We choose a moving frame e_1, e_2, e_3, e_4 such that e_1, e_2 are tangent to M and e_3, e_4 are normal to M in the following ([10]):
\[e_1 = \frac{\partial X}{\partial s}, \quad e_2 = \frac{\partial X}{\partial t}, \]
\[e_3 = \frac{1}{\kappa} (f_1''(s), f_2''(s), f_3''(s) \cos t, f_3''(s) \sin t), \]
\[e_4 = \frac{1}{\kappa} (f_1'(s)f_2''(s) - f_2'(s)f_3''(s), f_1''(s)f_3'(s) - f_2''(s)f_3'(s) - f_1'(s)f_3''(s), \]
\[(f_1'(s)f_2''(s) - f_2'(s)f_3''(s)) \cos t, (f_1'(s)f_2''(s) - f_1''(s)f_2'(s)) \sin t), \]
where
\[\kappa = \sqrt{(f_1'')^2 + (f_2'')^2 + (f_3'')^2} \neq 0 \] (7)
is the curvature of the space curve \(\alpha \).

Hence, the coefficients of the first fundamental form of the surface are
\[E = \langle X_s(s, t), X_s(s, t) \rangle = 1, \]
\[F = \langle X_s(s, t), X_t(s, t) \rangle = 0, \]
\[G = \langle X_t(s, t), X_t(s, t) \rangle = f_3^2(s). \]

Since \(EG - F^2 = f_3^2(s) \) does not vanish, the surface patch \(X(s, t) \) is regular.

We denote by \(\tilde{\alpha} \) the projection of \(\alpha \) on the 2-dimensional plane \(Oe_1e_2 \). So the curvature of \(\tilde{\alpha} \) is defined by \(\kappa_1 = f_1'f_2'' - f_2'f_1''' \). Then with respect to the frame field \(\{e_1, e_2, e_3, e_4\} \), the Gaussian and Weingarten formulas (3)–(4) of \(M \) look like [10]:
\[\tilde{\nabla}_{e_1}e_1 = \kappa e_3, \]
\[\tilde{\nabla}_{e_1}e_2 = 0, \]
\[\tilde{\nabla}_{e_2}e_2 = -\frac{f_3''}{f_3} e_1 - \frac{f_3'''}{\kappa f_3} e_3 - \frac{\kappa_1}{\kappa f_3} e_4, \]
\[\tilde{\nabla}_{e_2}e_1 = \frac{f_3'}{f_3} e_2 \] (8)
and
\[\tilde{\nabla}_{e_3}e_3 = -\kappa e_1 + \tau e_4, \]
\[\tilde{\nabla}_{e_3}e_2 = \frac{f_3''}{\kappa f_3} e_2, \]
\[\tilde{\nabla}_{e_4}e_4 = -\tau e_3, \]
\[\tilde{\nabla}_{e_4}e_2 = \frac{\kappa_1}{\kappa f_3} e_2. \] (10)

Where, \(\tau \) is the second curvature of space curve \(\alpha \). The Gauss curvature of \(M \) is obtained by equating
\[K = -\frac{f_3'''}{f_3}. \] (11)

Putting
\[
\begin{align*}
A(s) &= -\left(\kappa^2 + \frac{(f_3'')^2 + \kappa_1^2}{\kappa^2 f_3^2} \right), \\
B(s) &= -\left(\kappa' + \frac{f_3''' f_3'}{\kappa f_3^2} + \frac{\kappa f_3'}{f_3^3} \right), \\
D(s) &= -\left(\kappa \tau + \frac{\kappa_1 f_3'}{\kappa f_3^2} \right),
\end{align*}
\] (12)
we get, by using (6), (8) and (10),

\[-\Delta G = A(s)e_1 \wedge e_2 + B(s)e_2 \wedge e_3 + D(s)e_2 \wedge e_4.\]

(13)

We now suppose that the rotational embedded surface \(M\) is of pointwise 1-type Gauss map in \(E^4\). From (1) and (13),

\[f + f \langle C, e_1 \wedge e_2 \rangle = -A(s),\]
\[f \langle C, e_2 \wedge e_3 \rangle = -B(s),\]
\[f \langle C, e_2 \wedge e_4 \rangle = -D(s).\]

(14)

Since \(\Delta G\) is a linear combination of \(e_1 \wedge e_2, e_1 \wedge e_3, e_1 \wedge e_4, e_2 \wedge e_3, e_2 \wedge e_4\) and \(e_3 \wedge e_4\), we also have

\[f \langle C, e_1 \wedge e_3 \rangle = 0,\]
\[f \langle C, e_1 \wedge e_4 \rangle = 0,\]
\[f \langle C, e_3 \wedge e_4 \rangle = 0.\]

(15)

By differentiating (15) covariantly with respect to \(s\), we get

\[
\frac{f_3'}{f_3} < C, e_2 \wedge e_3 > + \frac{f_3''}{\kappa_f} < C, e_1 \wedge e_2 > = 0, \\
\frac{f_3'}{f_3} < C, e_2 \wedge e_4 > + \frac{\kappa_1}{\kappa_f} < C, e_1 \wedge e_2 > = 0, \\
\frac{f_3''}{\kappa_f} < C, e_2 \wedge e_4 > - \frac{\kappa_1}{\kappa_f} < C, e_2 \wedge e_3 > = 0.
\]

(16)

Since \(M\) is flat, (11) implies \(f_3'' = 0\). Thus \(f_3(s) = as + b\) for some constants \(a \neq 0\) and \(b\). Hence, substituting \(f_3'' = 0\) into (16) and using (14) we obtain,

\[f_3'B(s) = 0,\]
\[f_3'D + \frac{\kappa_1}{\kappa}(A(s) + f) = 0,\]
\[\kappa_1B(s) = 0.\]

(17)

Suppose \(Q = \{p \in M : B(s) \neq 0\}\) is a non-empty set. Then, from the third formula of (16) we have \(\kappa_1 = f_1'f_2'' - f_2'f_1'' = 0\). Consequently, using this equality with \((f_1')^2 + (f_2')^2 + (f_3')^2 = 1\), we get \((f_1')^2 + (f_2')^2 = 1 - a^2\). Therefore, \(f_1', f_2', f_3'\) are constant functions and \(\kappa = \sqrt{(f_1'')^2 + (f_2'')^2 + (f_3'')^2} = 0\), which is a contradiction. So, \(B(s) = 0\). Furthermore, if we make use of the second equation of (12) with \(f_3'' = 0\), then we obtain \(\kappa = \frac{\lambda}{\alpha \kappa + \beta}\), where \(\lambda\) is a nonzero constant. We may put

\[f_1' = \mu \cos \theta(s), f_2' = \mu \sin \theta(s)\]

(18)

497
for some function $\theta(s)$, where $1 - a^2 = \mu^2$. Furthermore, substituting (18), $\kappa = \frac{\lambda}{as+b}$ and $f_3 = as + b$ into (7) with some computation implies $\frac{da}{ds} = \frac{\lambda}{a\mu} \ln |as + b| > 0$. Solving this equation, we get $\theta(s) = \frac{\lambda}{a\mu} \ln |as + b|$. So, we obtain

\[
\begin{align*}
 f_1(s) &= \int \mu \cos \left(\frac{\lambda}{a\mu} \ln |as + b|\right) ds, \\
 f_2(s) &= \int \mu \sin \left(\frac{\lambda}{a\mu} \ln |as + b|\right) ds, \\
 f_3(s) &= as + b.
\end{align*}
\]

The converse is easily verified. Thus, our theorem is proved.

Corollary 3.1 Let M be a rotational embedded surface in Euclidean 4-space given by the surface patch (2). Then the Gauss map of M cannot be harmonic.

Proof. Suppose the Gauss map of the rotational embedded surface is harmonic. Then by (13), $A(s) = B(s) = D(s) = 0$. Thus, from the first equation of (12) we get $\kappa = 0$, which is a contradiction. \qed

References

Kadri ARSLAN, Betül BULCA, Cengizhan MURATHAN
Department of Mathematics
Uludağ University
16059 Bursa, TURKEY
e-mail: arslan@uludag.edu.tr,
Bengü KILIÇ BAYRAM
Department of Mathematics
Balıkesir University
Balıkesir, TURKEY
e-mail: benguk@balikesir.edu.tr
Young Ho KIM
Department of Mathematics
Kyunpook National University
Taegu, KOREA
e-mail: yhkim@knu.ac.kr
Günay ÖZTÜRK
Department of Mathematics
Kocaeli University
Kocaeli, TURKEY
e-mail: ogunay@kocaeli.edu.tr

Received: 09.10.2009