[Turkish Journal of Mathematics](https://journals.tubitak.gov.tr/math)

[Volume 35](https://journals.tubitak.gov.tr/math/vol35) [Number 3](https://journals.tubitak.gov.tr/math/vol35/iss3) Article 4

1-1-2011

Pseudo PQ-injective modules

ZHANMIN ZHU

Follow this and additional works at: [https://journals.tubitak.gov.tr/math](https://journals.tubitak.gov.tr/math?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol35%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages)

C Part of the [Mathematics Commons](https://network.bepress.com/hgg/discipline/174?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol35%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

ZHU, ZHANMIN (2011) "Pseudo PQ-injective modules," Turkish Journal of Mathematics: Vol. 35: No. 3, Article 4. <https://doi.org/10.3906/mat-0911-141> Available at: [https://journals.tubitak.gov.tr/math/vol35/iss3/4](https://journals.tubitak.gov.tr/math/vol35/iss3/4?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol35%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for inclusion in Turkish Journal of Mathematics by an authorized editor of TÜBİTAK Academic Journals. For more information, please contact academic.publications@tubitak.gov.tr.

Turk J Math 35 (2011) , 391 – 398. \odot TÜBİTAK doi:10.3906/mat-0911-141

Pseudo PQ-injective modules

Zhanmin Zhu

Abstract

A module M_R is called Pseudo PQ-injective (or PPQ-injective for short) if every monomorphism from a principal submodule of M to M extends to an endomorphism of M . Some characterizations and properties of this class of modules are investigated, PPQ-injective modules with some additional conditions are studied, semisimple artinian rings are characterized by PPQ-injective modules.

Key Words: PPQ- injective modules; Endomorphism rings; Strongly Kasch modules; semisimple artinian rings; perfect rings.

1. Introduction

Throughout R is an associative ring with identity and all modules are unitary. Following $|6|$, a right R-module M is called principally quasi-injective (or PQ-injective for short) if every homomorphism from a principal submodule of M to M extends to an endomorphism of M, or equivalently, $\mathbf{l}_M(\mathbf{r}_R(m)) = Sm$ for every $m \in M$, where $S = End(M_R)$. In this paper, we generalized the concept of PQ-injective modules to PPQ-injective modules and give some interesting results on these modules.

As usual, we denote the Jacobson radical of a ring R by $J(R)$ and denote the injective hull of a module M by $E(M)$. Let M be a right R-module, then we denote $S = End(M_R)$. Let $X \subseteq M$, $Y \subseteq M$ and $A \subseteq S$, then we write $\mathbf{r}_R(X) = \{r \in R \mid xr = 0, \text{ for all } x \in X\}, \ \mathbf{l}_S(Y) = \{s \in S \mid sy = 0, \text{ for all } y \in Y\},\$ and $\mathbf{r}_M(A) = \{m \in M \mid sm = 0, \text{ for all } s \in A\}.$

2. Pseudo PQ-injective modules

We start with the following definition.

Definition 1 Let R be a ring. A right R-module M is called Pseudo PQ-injective (or PPQ-injective for short) if every monomorphism from a principal submodule of M to M extends to an endomorphism of M .

²⁰⁰⁰ AMS Mathematics Subject Classification: 16D50, 16L30, 16P60.

Theorem 2 The following conditions are equivalent for a module M_R .

- (1) M is PPQ-injective.
- (2) $\mathbf{r}_R(m) = \mathbf{r}_R(n), m, n, \text{ in } M, \text{ implies that } Sm = Sn.$
- (3) If $m \in M$ and $\alpha, \beta : mR \to M$ are monic, then there exists $s \in S$ such that $\alpha = s\beta$.

Proof. (1) \Rightarrow (2). If $\mathbf{r}_R(m) = \mathbf{r}_R(n)$, m, n in M, then the mapping $f : mR \rightarrow M$; $mr \rightarrow nr$ is a monomorphism. Since M is PPQ-injective, there exists $s \in S$ such that s extends f, then $n = f(m) = sm$ and so $Sn \subseteq Sm$. Similarly, $Sm \subseteq Sn$, so $Sm = Sn$.

(2) \Rightarrow (3). Since α , β are monic, we have $\mathbf{r}_R(\alpha(m)) = \mathbf{r}_R(\beta(m))$. By (2), $S\alpha(m) = S\beta(m)$ which shows that $S\alpha = S\beta$, and so there exists $s \in S$ such that $\alpha = s\beta$.

 $(3) \Rightarrow (1)$. Take $\beta : mR \rightarrow M$ to be the inclusion mapping in (3).

Example 3 Let M be one of the following two examples of Pseudo-injective modules which are not quasiinjective: either the Hallet's example or the Teply's example (see $\{4, p.364\}$). Since M has five submodules 0, M, N_1 , N_2 and $N_1 \oplus N_2$ which are all cyclic, it follows that M is PPQ-injective but not PQ-injective.

Let M be a right R-module. Following [6], we write $W(S) = \{w \in S \mid ker(w) \subseteq^{ess} M\}$. Note that $W(S)$ is an ideal of S. Recall that a ring R is called semipotent [7] if every right ideal of R not contained in $J(R)$ contains a nonzero idempotent. In order to facilitate, we call a module M_R a principal annihilator module if for every principal submodule K of M_R , there exists a subset A of $End(M_R)$ such that $K = \mathbf{r}_M(A)$. Clearly, M_R is a principal annihilator module if and only if $\mathbf{r}_M(\mathbf{l}_S(K)) = K$ for every principal submodule K of M_R .

Theorem 4 Let M_R be PPQ-injective. Then

 (1) $J(S) \subseteq W(S)$.

(2) If S is also semipotent, then $J(S) = W(S)$.

- (3) If $mR \subseteq M$ is simple, then Sm is simple.
- (4) $Soc(M_R) \subseteq Soc(sM)$.
- (5) If M_R is also a principal annihilator module, then $Soc(M_R) = Soc({}_S M)$.

Proof. (1). Let $a \in J(S)$. If $a \notin W(S)$, then $\ker(a) \cap K = 0$ for some $0 \neq K \leq M_R$. Take $k \in K$ such that $ak \neq 0$, then $\mathbf{r}_R(k) = \mathbf{r}_R(ak)$. Since M_R is PPQ-injective, $Sk = Sak$. Write $k = bak$, where $b \in S$, then $(1 - ba)k = 0$, and so $k = 0$, a contradiction. Therefore, $J(S) \subseteq W(S)$.

(2). By (1), we need only to prove that $W(S) \subseteq J(S)$. If not, then $W(S)$ contains a nonzero idempotent e because S is semipotent. But $Ker(e) = (1-e)M$ is not essential in M_R , a contradiction.

(3). Let $mR \subseteq M$ be simple. Then $\mathbf{r}_R(am) = \mathbf{r}_R(m)$ for each $a \in S$ such that $am \neq 0$, so the PPQ-injectivity of M_R implies that $S(am) = Sm$. Which shows that Sm is simple.

(4). Follows from (3).

(5). Suppose that M_R is a principal annihilator module. If Sm is simple, then $\mathbf{l}_S(mb) = \mathbf{l}_S(m)$ for each $b \in R$ such that $mb \neq 0$, and hence $mbR = mR$. It shows that mR is also simple, so $Soc(sM) \subseteq Soc(M_R)$, and whence $Soc(sM) = Soc(M_R)$ by (4).

Recall that a ring R is called left Kasch [7] if every simple left R-module embeds in $_RR$, equivalently, $\mathbf{r}_R(T) \neq 0$ for every maximal left ideal T of R. The concept of left Kasch rings were generalized to modules in paper [1]. Following [1], a module $\overline{R}M$ is said to be Kasch provided that every simple module in $\sigma[M]$ embeds in M, where $\sigma[M]$ is the category consisting of all M-subgenerated left R-modules. Kasch modules have studied by series of authors, see [1, 6, 5]. In paper [12], a module $_R M$ is called strongly Kasch if every simple left R-module embeds in M. It is easy to see that RM is strongly Kasch if and only if $\mathbf{r}_M(T) \neq 0$ for every maximal left ideal T of R. And we also recall that a module M is called C_2 [7, p.9] if every submodule of M that is isomorphic to a direct summand of M is itself a direct summand of M. C_2 modules are also called direct injective modules [8, p.368]. Following [11], a module M is called GC_2 if every submodule of M that is isomorphic to M is itself a direct summand of M. Clearly, C_2 modules are GC_2 .

Proposition 5 Let M be a right R-module. Consider the following conditions:

- (1) S is left Kasch.
- (2) sM is strongly Kasch.
- (3) M_R is C_2 .
- (4) M_R is GC_2 .
- (5) $W(S) \subseteq J(S)$.

Then we always have $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5)$.

Proof. (1) \Rightarrow (2). Let K be any maximal left ideal of S. Since S is left Kasch, $\mathbf{r}_S(K) \neq 0$. Choose $0 \neq s \in \mathbf{r}_S(K)$, then $0 \neq sM \subseteq \mathbf{r}_M(K)$ for sM is faithful. So $\mathbf{r}_M(K) \neq 0$, and then sM is strongly Kasch.

 $(2) \Rightarrow (3)$. Let K be a submodule of M_R and $\sigma : eM \to K$ be an isomorphism, where $e^2 = e \in S$. Then there exists $s \in S$ such that $se = \sigma e$ and $K = seM$. Let $a = se$, then $ae = a$ and $K = aM$. We claim that $Sa = Se$. If not let $Sa \subseteq L \subseteq^{max} Se$. By the strongly Kasch hypothesis of sM , there exists a monomorphism $\alpha : Se/L \to sM$. Write $m = \alpha(e+L)$, then $em = e\alpha(e+L) = \alpha(e+L) = m$ and $am = a\alpha(e+L) = \alpha(ae+L) = \alpha(a+L) = \alpha(0) = 0$. Noting that $Ker(a) = Ker(e)$, we have $m = em = 0$, and hence $e \in L$. This contradiction shows that $Sa = Se$. Write $e = ba$, then $a = aba$, and hence K is a direct summand of M_R .

- $(3) \Rightarrow (4)$. Obvious.
- $(4) \Rightarrow (5)$. See [14, Corollary 6].

Theorem 6 Let M_R be a finitely cogenerated PPQ-injective module. Then the following statements are equivalent:

- (1) sM is strongly Kasch.
- (2) M_R is C_2 .
- (3) M_R is GC_2 .
- (4) $W(S) = J(S)$.

Proof. (1) \Rightarrow (2) \Rightarrow (3) by Proposition 5. (3) \Rightarrow (4) by Theorem 4(1) and Proposition 5.

 $(4) \Rightarrow (1)$. Since M_R is finitely cogenerated, $Soc(M_R)$ is finitely generated and essential in M_R . Assume that (4) holds. Observe first that $J(S) \subseteq 1_S(Soc(M_R))$ because $Soc(M_R) \subseteq Soc(SM)$ by Theorem 4(4); and $\mathbf{l}_S(Soc(M_R)) \subseteq W(S)$ because $Soc(M_R) \subseteq^{ess} M_R$. Using (4), it follows that $J(S) = \mathbf{l}_S(Soc(M_R))$. Let $Soc(M_R) = x_1R \oplus \cdots \oplus x_nR$, where each x_iR is simple, then

$$
J(S) = I_S(\operatorname{Soc}(M_R)) = \cap_{i=1}^n I_S(x_i).
$$

Since Sx_i is simple by Theorem 4(3), each $\mathbf{1}_{S}(x_i)$ is a maximal left ideal of S. Therefore S is semilocal. Noting that the map $S \to M^n$ given by $s \mapsto (sx_1, sx_2, \dots, sx_n)$ is a left S-homomorphism with kernel $J(S)$, $S/J(S)$ embeds in sM^n . Note that the ring $S/J(S)$ is semisimple and hence left Kasch, and every simple left S-module K, regarded as a left $S/J(S)$ -module, is simple, so as a left $S/J(S)$ -module, K embeds in the left $S/J(S)$ -module $S/J(S)$, which follows that K embeds in $S/J(S)$ as left S-modules. Therefore, S_SK embeds in the left S-module sM^n and hence embeds in sM .

Let M and N be two right R-modules, then we call M pseudo principally N-injective (or $PP-N$ injective for short) if every monomorphism from a principal submodule of N to M extends to an homomorphism of N to M. Clearly, M is PPQ -injective if and only if M is $PP-M$ -injective.

Proposition 7 Let M, N be two right R-modules and N' be a submodule of N. If M is PP-N-injective, then

- (1) Every direct summand of M is PP-N-injective.
- (2) *M* is *PP-N'* -injective.

Proof. (1). Let $M = M_1 \oplus M_2$. Then for every principal submodule K of N and every monomorphism f of K to M_1 , since M is PP-N-injective, f extends to a homomorphism of N to M. Which follows that f extends to a homomorphism of N to M_1 because M_1 is a direct summand of M .

(2) It is obvious. \square

By Proposition 7, we have immediately the following corollary.

Corollary 8 Every direct summand of a PPQ-injective module is PPQ-injective.

Following $[12]$, we call a right R-module M minimal quasi-injective if every homomorphism from a simple submodule of M to M can be extended to an endomorphism of M .

Theorem 9 The following statements are equivalent for a ring R:

- (1) R is a semisimple artinian ring.
- (2) R is a right V-ring and every minimal quasi-injective right R-module is PPQ-injective.
- (3) Every right R-module is PPQ-injective.

Proof. $(1) \Rightarrow (2)$. Obvious.

 $(2) \Rightarrow (3)$. Since R is a right V-ring, every simple right R-module is injective and hence is a direct summand of each module containing it. So every right R-module is minimal quasi-injective, and then (3) follows from (2).

 $(3) \Rightarrow (1)$. Let K be any principal right R-module. Since $K \oplus E(K)$ is PPQ-injective, by proposition 7(1), K is PP-K $\oplus E(K)$ -injective, and hence K is PP- $E(K)$ -injective by proposition 7(2). Therefore, $K = E(K)$ is injective. This proves the theorem.

A module M is called C_3 [7] if, whenever N and K are direct summands of M with $N \cap K = 0$ then $N \oplus K$ is also a direct summand of M. We call a module M PC_2 if every principal submodule of M that is isomorphic to a direct summand of M is itself a direct summand of M. And we call a module M PC_3 if, whenever N and K are direct summands of M with $N \cap K = 0$ and K is principal, then $N \oplus K$ is also a direct summand of M.

Theorem 10 Every PPQ-injective module is PC_2 and PC_3 .

Proof. Let M_R be PPQ-injective with $S = End(M_R)$. If K is a principal submodule of M and $K \cong eM$, where $e^2 = e \in S$, then eM is PP-M-injective by proposition 7 and hence K is also PP-M-injective, which follows that K is a direct summand of M because K is principal. This proves PC_2 . Now let N and K be direct summands of M with $N \cap K = 0$ and K principal. Write $N = eM$ and $K = fM$, where e, f are idempotents in S, then $eM \oplus fM = eM \oplus (1-e)fM$. Since $(1-e)fM \cong fM$ is principal, $(1-e)fM = hM$ for some $h^2 = h \in S$ by PC_2 . Let $g = e + h - he$, then $g^2 = g$ and $eM \oplus fM = gM$, as required.

Recall that a right R -module M is said to be weakly injective [3] if for every finitely generated submodule $N_R \subseteq E(M)$, we have $N \subseteq X_R \subseteq E(M)$ for some $X_R \cong M$.

Corollary 11 Let M_R be a cyclic module. Then M is injective if and only if it is weakly injective and PPQ-injective.

Proof. We need only to prove the sufficiency. Let $x \in E(M)$, then there exists $X \subseteq E(M)$ such that $M + xR \subseteq X \cong M$. Since M is PPQ-injective, X is PPQ-injective too. By Theorem 10, X is PC₂ and hence M is a direct summand of X because M is a cyclic submodule of X. But $M \subseteq^{ess} E(M)$, so $M \subseteq^{ess} X$. Thus $M = X$, and then $x \in M$. Therefore, $M = E(M)$ is injective.

Recall that a module M_R is regular [10] if for every $m \in M$, mR is projective and is a direct summand of M. Clearly, a ring R is regular if and only if the module R_R is regular.

Proposition 12 Let M_R be a projective module whose cyclic submodules are its images. Then M is regular if and only if M is PC_2 and mR is M-projective for every $m \in M$.

Proof. \Rightarrow . If M is regular. Then every cyclic submodule of M is projective and is a direct summand of M , so the necessity is obvious.

 \Leftarrow . Since mR is M-projective and is an image of M for every $m \in M$, mR is isomorphic to a direct summand of M. But M is PC_2 , mR is a direct summand of M. Observing that M is projective, mR is also \Box

A ring R is a right PP ring if every principal right ideal of R is projective. The next result extends [9, Theorem 3 from a right P-injective ring to a right C_2 ring.

ZHU

Corollary 13 A ring R is regular if and only if R is a right C_2 and right PP ring.

Corollary 14 Let M_R be a PPQ-injective cyclic module, then

- (1) M_R is a C_2 module.
- (2) $J(S) = W(S)$.
- (3) If M_R has finite Goldie dimension then S is semilocal.
- (4) If M_R is uniform, then S is local.

Proof. (1) Since M_R is cyclic, each direct summand of M_R is also cyclic, so (1) follows because M_R is PC_2 by Theorem 10.

(2) By Theorem 4(1), $J(S) \subseteq W(S)$. But M_R is C_2 by (1), so $W(S) \subseteq J(S)$ by [8, 41.22]. Therefore, $J(S) = W(S)$.

(3) Let s be any injective endomorphism of M. Then $s^kM \cong M$ for each positive integer k, and so s^kM is a direct summand of M_R for M_R is a C_2 module by (1). Since M_R has finite Goldie dimension, it contains no infinite direct sum of its submodules, and thus it satisfies the descending conditions on direct summands. Hence $s^n M = s^{n+1} M$ for some positive integer n. This follows that s is bijective. Therefore, S is semilocal by [2, Theorem 3].

(4) Let $s \in S$ and $S \neq S_s$. Then $Ker(s) \neq 0$ by [14, Theorem 4] since M_R is GC_2 . So, since M is uniform, $Ker(s) \subseteq^{ess} M$. Thus $s \in W(S) = J(S)$. This means that S is local.

Theorem 15 Let M_1 be a cyclic module, and let $M_1 \oplus M_2$ be a PPQ-injective module and $\sigma : M_1 \to M_2$ be a monomorphism. Then σ splits and M_1 is PQ-injective.

Proof. Since $\alpha : \sigma(M_1) \to M_1 \oplus M_2$ given by $\alpha(\sigma(x)) = (x, 0), x \in M_1$, is a monomorphism, it can be extended to an endomorphism α^* of $M_1 \oplus M_2$. If $\iota : M_2 \to M_1 \oplus M_2$ and $\pi : M_1 \oplus M_2 \to M_1$ are natural injection and projection, respectively, then $\tau = \pi \alpha^* \iota$ is such that $\tau \sigma = 1_{M_1}$. Hence σ splits. Let $M_2 = \sigma(M_1) \oplus N_1$. Then $M_1 \oplus M_2 = M_1 \oplus \sigma(M_1) \oplus N_1$, and so $N = M_1 \oplus \sigma(M_1)$ is PPQ-injective by Corollary 8. Let K be any principal submodule of M_1 and $f : K \to M_1$ be an R-homomorphism, then the mapping $\beta : K \to M_1 \oplus \sigma(M_1)$ given by $\beta(x)=(x, \sigma f(x)), x \in K$, is a monomorphism. Hence it can be extended to an endomorphism γ of N. Let $q : M_1 \to N$ and $p : N \to \sigma(M_1)$ are natural injective and projection respectively, then $\mu = \tau p \gamma q$ is an endomorphism of M_1 which extend f. Hence M_1 is PQ-injective.

Corollary 16 If M is a cyclic right R-module such that $M \oplus M$ is PPQ-injective, then M is PQ-injective.

The proofs of the following theorems, Theorems 17 and 18 are similar to the proofs of Propositions 1.2 and 1.5 in [6] respectively, here we omit them.

Theorem 17 Let M_R be PPQ-injective and let $m, n \in M$.

- (1) If nR embeds in mR , then Sn is an image of Sm.
- (2) If $nR \cong mR$, then $Sn \cong Sm$.

Theorem 18 Let M_R be PPQ-injective with $S = End(M_R)$, and assume that the sum $\sum_{i=1}^n Sm_i$ is direct, $m_i \in M$. Then any monomorphism $\alpha : \sum_{i=1}^n m_i R \to M$ can be extended to M.

By using the same way as the proof of [13, Theorem 2.9], we have the following proposition.

Proposition 19 Let M be a right R-module which has the following two properties:

- (a) $J(S) \subseteq W(S)$.
- (b) If $s \notin W(S)$, then the inclusion $ker(s) \subset ker(s sts)$ is strict for some $t \in S$.

Then the following conditions are equivalent:

- (1) S is right perfect.
- (2) For any sequence $\{s_1, s_2, \ldots\} \subseteq S$, the chain $\ker(s_1) \subseteq \ker(s_2s_1) \subseteq \cdots$ terminates.

Lemma 20 Let M_R be PPQ-injective. If $s \notin W(S)$, then the inclusion ker(s) ⊂ ker(s – sts) is strict for some $t \in S$.

Proof. If $s \notin W(S)$, then $ker(s) \cap mR = 0$ for some $0 \neq m \in M$. Thus $r_R(m) = r_R(sm)$, and so $Sm = S(sm)$ as left S-modules because M_R is PPQ-injective. Write $m = t(sm)$, where $t \in S$, then $(s - sts)m = 0$. Therefore, the inclusion $ker(s) \subset ker(s - sts)$ is strict.

By Theorem 4, Proposition 19 and Lemma 20, we have immediately the following theorem.

Theorem 21 Let M_R be a PPQ-injective module, then the following conditions are equivalent:

- (1) S is right perfect.
- (2) For any sequence $\{s_1, s_2, \ldots\} \subseteq S$, the chain $\ker(s_1) \subseteq \ker(s_2s_1) \subseteq \cdots$ terminates.

Following [13], for a module M_R , we call a submodule K of M a kernel submodule if $K = ker(f)$ for some $f \in End(M_R)$, and we call a submodule K of M an annihilator submodule if $K = \mathbf{r}_M(A)$ for some subset A of $End(M_R)$.

Lemma 22 Let M be a right R-module. If M has ACC on annihilator submodules, then $W(S)$ is nilpotent. **Proof.** As $W(S) \supseteq W^2(S) \supseteq \cdots$, we get $\mathbf{r}_M(W(S)) \subseteq \mathbf{r}_M(W^2(S)) \subseteq \cdots$, so let $\mathbf{r}_M(W^n(S)) =$ $\mathbf{r}_M(W^{n+1}(S))$, we show that $W^n(S) = 0$. Suppose that $W^n(S) \neq 0$, then $W^{n+1}(S) \neq 0$. Let $W^n(S)a \neq 0$ for some $a \in S$, and choose $Ker(b)$ maximal in $\{Ker(b) | W^n(S)b \neq 0\}$. If $z \in W(S)$ then $Ker(z) \subseteq^{ess} M_R$, so $Ker(z) \cap bM \neq 0$, say $0 \neq bm$ with $zbm = 0$. Thus $Ker(b) \subsetneq Ker(zb)$, so, by the choice of b, $W^{n}(S)zb = 0$. As $z \in W(S)$ is arbitrary, this shows that $W^{n+1}(S)b = 0$, whence $bM \subseteq \mathbf{r}_M(W^{n+1}(S)) = \mathbf{r}_M(W^n(S))$. It follows that $W^n(S)b = 0$, a contradiction. \square

Corollary 23 Let M_R be a PPQ-injective module. Then

- (1) If M_R satisfies ACC on kernel submodules, then S is right perfect.
- (2) If M_R satisfies ACC on annihilator submodules, then S is semiprimary.

Proof. (1) follows from Theorem 21. (2) follows from (1), Theorem 4(1) and Lemma 22.

Acknowledgment

The author are very grateful to the referees for their helpful comments.

References

- [1] Albu, T., and Wisbauer, R.: Kasch modules. In: Advances in Ring Theory (Eds.: S.K. Jain and S.T. Rizvi) 1-16. Birkhäuser(1997).
- [2] Herbera, D., and Shamsuddin, A.: Modules with semi-local endomorphism rings. Proc. Amer. Math. Soc. 123, 3593-3600 (1995).
- [3] Jain, S.K., and López-permouth, S.R.: Rings whose cyclics are essentially embeddable in projectives. J. Algebra 128, 257-269 (1990).
- [4] Jain, S.K., and Singh, S.: Quasi-injective and Pseudo-injective modules. Canad. Math. Bull. 18, 359-366 (1975)
- [5] Kosan, M.T.: Quasi-Dual Modules. Turkish J. Math. 30, 177-185 (2006).
- [6] Nicholson, W.K., Park, J.K., and Yousif, M.F.: Principally quasi-injective modules. Comm. Algebra 27, 1683-1693 (1999).
- [7] Nicholson, W.K., and Yousif, M.F.: Quasi-Frobenius Rings, Cambridge Tracts in Math., Cambridge University Press, 2003.
- [8] Wisbauer, R.: Foundations of Module and Ring Theory. Pennsylvania. Gordon and Breach Science 1991.
- [9] Xue, W. M.: On PP rings. Kobe J. Math. 7, 77-80 (1990).
- [10] Zelmanowitz, J.: Regular modules. Trans. Amer. Math. Soc. 163, 341-355 (1972).
- [11] Zhou, Y. Q.: Rings in which certain ideals are direct summands of annihilators. J. Aust. Math. Soc. 73, 335-346 (2002).
- [12] Zhu, Z. M. and Tan, Z. S.: Minimal quasi-injective modules. Sci. Math. Jpn. 62, 465-469 (2005).
- [13] Zhu, Z. M., Xia, Z. S., and Tan, Z. S.: Generalizations of principally quasi-injective modules and quasiprincipally injective modules. Int. J. Math. Math. Sci., 1853-1860 (2005).
- [14] Zhu, Z. M., Yu, J. X.: On GC² modules and their endomorphism rings. Linear and Multilinear Algebra 56, 511-515 (2008).

Zhanmin ZHU Department of Mathematics, Jiaxing University, Jiaxing, Zhejiang Province, 314001, P.R. CHINA e-mail: zhanmin zhu@hotmail.com

Received: 12.11.2009