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Pseudo PQ-injective modules

Zhanmin Zhu

Abstract

A module MR is called Pseudo PQ-injective (or PPQ-injective for short) if every monomorphism from a

principal submodule of M to M extends to an endomorphism of M . Some characterizations and properties

of this class of modules are investigated, PPQ-injective modules with some additional conditions are studied,

semisimple artinian rings are characterized by PPQ-injective modules.

Key Words: PPQ- injective modules; Endomorphism rings; Strongly Kasch modules; semisimple artinian

rings; perfect rings.

1. Introduction

Throughout R is an associative ring with identity and all modules are unitary. Following [6], a right

R -module M is called principally quasi-injective (or PQ-injective for short) if every homomorphism from a

principal submodule of M to M extends to an endomorphism of M , or equivalently, lM (rR(m)) = Sm for

every m ∈ M , where S = End(MR). In this paper, we generalized the concept of PQ-injective modules to
PPQ-injective modules and give some interesting results on these modules.

As usual, we denote the Jacobson radical of a ring R by J(R) and denote the injective hull of a module

M by E(M). Let M be a right R -module, then we denote S = End(MR). Let X ⊆ M , Y ⊆ M and A ⊆ S ,

then we write rR(X) = {r ∈ R | xr = 0, for all x ∈ X} , lS(Y ) = {s ∈ S | sy = 0, for all y ∈ Y } , and

rM (A) = {m ∈ M | sm = 0, for all s ∈ A} .

2. Pseudo PQ-injective modules

We start with the following definition.

Definition 1 Let R be a ring. A right R -module M is called Pseudo PQ-injective (or PPQ-injective for

short) if every monomorphism from a principal submodule of M to M extends to an endomorphism of M .

2000 AMS Mathematics Subject Classification: 16D50, 16L30, 16P60.
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Theorem 2 The following conditions are equivalent for a module MR .

(1) M is PPQ-injective.

(2) rR(m) = rR(n), m, n , in M , implies that Sm = Sn .

(3) If m ∈ M and α, β : mR → M are monic, then there exists s ∈ S such that α = sβ .

Proof. (1) ⇒ (2). If rR(m) = rR(n), m, n in M , then the mapping f : mR → M ; mr �→ nr is a

monomorphism. Since M is PPQ-injective, there exists s ∈ S such that s extends f , then n = f(m) = sm

and so Sn ⊆ Sm . Similarly, Sm ⊆ Sn , so Sm = Sn .

(2) ⇒ (3). Since α, β are monic, we have rR(α(m)) = rR(β(m)). By (2), Sα(m) = Sβ(m) which shows
that Sα = Sβ , and so there exists s ∈ S such that α = sβ .

(3) ⇒ (1). Take β : mR → M to be the inclusion mapping in (3). �

Example 3 Let M be one of the following two examples of Pseudo-injective modules which are not quasi-
injective: either the Hallet’s example or the Teply’s example (see [4, p.364]). Since M has five submodules 0,
M, N1 , N2 and N1 ⊕ N2 which are all cyclic, it follows that M is PPQ-injective but not PQ-injective.

Let M be a right R -module. Following [6], we write W (S) = {w ∈ S | ker(w) ⊆ess M} . Note that

W (S) is an ideal of S . Recall that a ring R is called semipotent [7] if every right ideal of R not contained

in J(R) contains a nonzero idempotent. In order to facilitate, we call a module MR a principal annihilator

module if for every principal submodule K of MR , there exists a subset A of End(MR) such that K = rM(A).

Clearly, MR is a principal annihilator module if and only if rM (lS(K)) = K for every principal submodule K

of MR .

Theorem 4 Let MR be PPQ-injective. Then

(1) J(S) ⊆ W (S) .

(2) If S is also semipotent, then J(S) = W (S) .

(3) If mR ⊆ M is simple, then Sm is simple.

(4) Soc(MR) ⊆ Soc(SM) .

(5) If MR is also a principal annihilator module, then Soc(MR) = Soc(SM) .

Proof. (1). Let a ∈ J(S). If a /∈ W (S), then ker(a) ∩ K = 0 for some 0 	= K ≤ MR . Take k ∈ K such

that ak 	= 0, then rR(k) = rR(ak). Since MR is PPQ-injective, Sk = Sak . Write k = bak , where b ∈ S , then

(1 − ba)k = 0, and so k = 0, a contradiction. Therefore, J(S) ⊆ W (S).

(2). By (1), we need only to prove that W (S) ⊆ J(S). If not, then W (S) contains a nonzero idempotent

e because S is semipotent. But Ker(e) = (1 − e)M is not essential in MR , a contradiction.

(3). Let mR ⊆ M be simple. Then rR(am) = rR(m) for each a ∈ S such that am 	= 0, so the

PPQ-injectivity of MR implies that S(am) = Sm . Which shows that Sm is simple.

(4). Follows from (3).

(5). Suppose that MR is a principal annihilator module. If Sm is simple, then lS(mb) = lS(m) for each

b ∈ R such that mb 	= 0, and hence mbR = mR . It shows that mR is also simple, so Soc(SM) ⊆ Soc(MR),

and whence Soc(SM) = Soc(MR) by (4). �
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Recall that a ring R is called left Kasch [7] if every simple left R -module embeds in RR , equivalently,

rR(T ) 	= 0 for every maximal left ideal T of R . The concept of left Kasch rings were generalized to modules

in paper [1]. Following [1], a module RM is said to be Kasch provided that every simple module in σ[M ]

embeds in M , where σ[M ] is the category consisting of all M -subgenerated left R -modules. Kasch modules

have studied by series of authors, see [1, 6, 5]. In paper [12], a module RM is called strongly Kasch if every

simple left R -module embeds in M . It is easy to see that RM is strongly Kasch if and only if rM(T ) 	= 0 for

every maximal left ideal T of R . And we also recall that a module M is called C2 [7, p.9] if every submodule
of M that is isomorphic to a direct summand of M is itself a direct summand of M . C2 modules are also
called direct injective modules [8, p.368 ]. Following [11], a module M is called GC2 if every submodule of M

that is isomorphic to M is itself a direct summand of M . Clearly, C2 modules are GC2 .

Proposition 5 Let M be a right R -module. Consider the following conditions:

(1) S is left Kasch.

(2) SM is strongly Kasch.

(3) MR is C2 .

(4) MR is GC2 .

(5) W (S) ⊆ J(S) .

Then we always have (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5).

Proof. (1) ⇒ (2). Let K be any maximal left ideal of S . Since S is left Kasch, rS(K) 	= 0. Choose

0 	= s ∈ rS(K), then 0 	= sM ⊆ rM(K) for SM is faithful. So rM (K) 	= 0, and then SM is strongly Kasch.

(2) ⇒ (3). Let K be a submodule of MR and σ : eM → K be an isomorphism, where e2 = e ∈ S .
Then there exists s ∈ S such that se = σe and K = seM . Let a = se , then ae = a and K = aM . We
claim that Sa = Se . If not let Sa ⊆ L ⊆max Se . By the strongly Kasch hypothesis of SM , there exists
a monomorphism α : Se/L → SM . Write m = α(e + L), then em = eα(e + L) = α(e + L) = m and

am = aα(e + L) = α(ae + L) = α(a + L) = α(0) = 0. Noting that Ker(a) = Ker(e), we have m = em = 0,
and hence e ∈ L . This contradiction shows that Sa = Se . Write e = ba , then a = aba , and hence K is a
direct summand of MR .

(3) ⇒ (4). Obvious.

(4) ⇒ (5). See [14, Corollary 6]. �

Theorem 6 Let MR be a finitely cogenerated PPQ-injective module. Then the following statements are
equivalent:

(1) SM is strongly Kasch.

(2) MR is C2 .

(3) MR is GC2 .

(4) W (S) = J(S) .

Proof. (1) ⇒ (2) ⇒ (3) by Proposition 5. (3) ⇒ (4) by Theorem 4(1) and Proposition 5.
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(4) ⇒ (1). Since MR is finitely cogenerated, Soc(MR) is finitely generated and essential in MR . Assume

that (4) holds. Observe first that J(S) ⊆ lS(Soc(MR)) because Soc(MR) ⊆ Soc(SM) by Theorem 4(4); and

lS(Soc(MR)) ⊆ W (S) because Soc(MR) ⊆ess MR . Using (4), it follows that J(S) = lS(Soc(MR)). Let

Soc(MR) = x1R ⊕ · · · ⊕ xnR , where each xiR is simple, then

J(S) = lS(Soc(MR)) = ∩n
i=1lS(xi).

Since Sxi is simple by Theorem 4(3), each lS(xi) is a maximal left ideal of S . Therefore S is semilocal.

Noting that the map S → Mn given by s �→ (sx1, sx2, · · · , sxn) is a left S -homomorphism with kernel J(S),

S/J(S) embeds in SMn . Note that the ring S/J(S) is semisimple and hence left Kasch, and every simple left

S -module K , regarded as a left S/J(S)-module, is simple, so as a left S/J(S)-module, K embeds in the left

S/J(S)-module S/J(S), which follows that K embeds in S/J(S) as left S -modules. Therefore, SK embeds
in the left S -module SMn and hence embeds in SM . �

Let M and N be two right R -modules, then we call M pseudo principally N -injective (or PP -N -

injective for short) if every monomorphism from a principal submodule of N to M extends to an homomorphism
of N to M . Clearly, M is PPQ -injective if and only if M is PP -M -injective.

Proposition 7 Let M, N be two right R-modules and N ′ be a submodule of N. If M is PP-N-injective, then

(1) Every direct summand of M is PP-N-injective.

(2) M is PP-N ′ -injective.

Proof. (1). Let M = M1 ⊕ M2 . Then for every principal submodule K of N and every monomorphism f

of K to M1 , since M is PP-N -injective, f extends to a homomorphism of N to M . Which follows that f

extends to a homomorphism of N to M1 because M1 is a direct summand of M .

(2) It is obvious. �

By Proposition 7, we have immediately the following corollary.

Corollary 8 Every direct summand of a PPQ-injective module is PPQ-injective.

Following [12], we call a right R -module M minimal quasi-injective if every homomorphism from a simple
submodule of M to M can be extended to an endomorphism of M .

Theorem 9 The following statements are equivalent for a ring R:

(1) R is a semisimple artinian ring.

(2) R is a right V-ring and every minimal quasi-injective right R-module is PPQ-injective.

(3) Every right R -module is PPQ-injective.

Proof. (1) ⇒ (2). Obvious.

(2) ⇒ (3). Since R is a right V -ring, every simple right R -module is injective and hence is a direct

summand of each module containing it. So every right R -module is minimal quasi-injective, and then (3) follows

from (2).
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(3) ⇒ (1). Let K be any principal right R -module. Since K ⊕ E(K) is PPQ-injective, by proposi-

tion 7(1), K is PP-K ⊕ E(K)-injective, and hence K is PP-E(K)-injective by proposition 7(2). Therefore,

K = E(K) is injective. This proves the theorem. �

A module M is called C3 [7] if, whenever N and K are direct summands of M with N ∩ K = 0 then
N ⊕ K is also a direct summand of M . We call a module M PC2 if every principal submodule of M that
is isomorphic to a direct summand of M is itself a direct summand of M . And we call a module M PC3 if,
whenever N and K are direct summands of M with N ∩ K = 0 and K is principal, then N ⊕ K is also a
direct summand of M .

Theorem 10 Every PPQ-injective module is PC2 and PC3 .

Proof. Let MR be PPQ-injective with S = End(MR). If K is a principal submodule of M and K ∼= eM ,

where e2 = e ∈ S , then eM is PP-M -injective by proposition 7 and hence K is also PP-M -injective, which
follows that K is a direct summand of M because K is principal. This proves PC2 . Now let N and K be
direct summands of M with N ∩ K = 0 and K principal. Write N = eM and K = fM , where e, f are
idempotents in S , then eM ⊕ fM = eM ⊕ (1− e)fM . Since (1 − e)fM ∼= fM is principal, (1 − e)fM = hM

for some h2 = h ∈ S by PC2 . Let g = e + h − he , then g2 = g and eM ⊕ fM = gM , as required. �

Recall that a right R -module M is said to be weakly injective [3] if for every finitely generated submodule

NR ⊆ E(M), we have N ⊆ XR ⊆ E(M) for some XR
∼= M .

Corollary 11 Let MR be a cyclic module. Then M is injective if and only if it is weakly injective and
PPQ-injective.

Proof. We need only to prove the sufficiency. Let x ∈ E(M), then there exists X ⊆ E(M) such that
M + xR ⊆ X ∼= M . Since M is PPQ-injective, X is PPQ-injective too. By Theorem 10, X is PC2 and hence
M is a direct summand of X because M is a cyclic submodule of X . But M ⊆ess E(M), so M ⊆ess X . Thus

M = X , and then x ∈ M . Therefore, M = E(M) is injective. �

Recall that a module MR is regular [10] if for every m ∈ M , mR is projective and is a direct summand
of M . Clearly, a ring R is regular if and only if the module RR is regular.

Proposition 12 Let MR be a projective module whose cyclic submodules are its images. Then M is regular
if and only if M is PC2 and mR is M -projective for every m ∈ M .

Proof. ⇒ . If M is regular. Then every cyclic submodule of M is projective and is a direct summand of
M , so the necessity is obvious.

⇐ . Since mR is M -projective and is an image of M for every m ∈ M , mR is isomorphic to a direct
summand of M . But M is PC2 , mR is a direct summand of M . Observing that M is projective, mR is also
projective. �

A ring R is a right PP ring if every principal right ideal of R is projective. The next result extends [9,

Theorem 3] from a right P-injective ring to a right C2 ring.
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Corollary 13 A ring R is regular if and only if R is a right C2 and right PP ring.

Corollary 14 Let MR be a PPQ-injective cyclic module, then

(1) MR is a C2 module.

(2) J(S) = W (S) .

(3) If MR has finite Goldie dimension then S is semilocal.

(4) If MR is uniform, then S is local.

Proof. (1) Since MR is cyclic, each direct summand of MR is also cyclic, so (1) follows because MR is PC2

by Theorem 10.

(2) By Theorem 4(1), J(S) ⊆ W (S). But MR is C2 by (1), so W (S) ⊆ J(S) by [8, 41.22]. Therefore,

J(S) = W (S).

(3) Let s be any injective endomorphism of M . Then skM ∼= M for each positive integer k , and so skM

is a direct summand of MR for MR is a C2 module by (1). Since MR has finite Goldie dimension, it contains
no infinite direct sum of its submodules, and thus it satisfies the descending conditions on direct summands.

Hence snM = sn+1M for some positive integer n . This follows that s is bijective. Therefore, S is semilocal
by [2, Theorem 3].

(4) Let s ∈ S and S 	= Ss . Then Ker(s) 	= 0 by [14, Theorem 4] since MR is GC2 . So, since M is

uniform, Ker(s) ⊆ess M . Thus s ∈ W (S) = J(S). This means that S is local. �

Theorem 15 Let M1 be a cyclic module, and let M1 ⊕ M2 be a PPQ-injective module and σ : M1 → M2 be
a monomorphism. Then σ splits and M1 is PQ-injective.

Proof. Since α : σ(M1) → M1 ⊕ M2 given by α(σ(x)) = (x, 0), x ∈ M1 , is a monomorphism, it can be ex-
tended to an endomorphism α∗ of M1⊕M2 . If ι : M2 → M1⊕M2 and π : M1⊕M2 → M1 are natural injection
and projection, respectively, then τ = πα∗ι is such that τσ = 1M1 . Hence σ splits. Let M2 = σ(M1) ⊕ N1 .

Then M1 ⊕ M2 = M1 ⊕ σ(M1)⊕ N1 , and so N = M1 ⊕ σ(M1) is PPQ-injective by Corollary 8. Let K be any

principal submodule of M1 and f : K → M1 be an R -homomorphism, then the mapping β : K → M1⊕σ(M1)

given by β(x) = (x, σf(x)), x ∈ K , is a monomorphism. Hence it can be extended to an endomorphism γ of

N . Let q : M1 → N and p : N → σ(M1) are natural injective and projection respectively, then μ = τpγq is
an endomorphism of M1 which extend f . Hence M1 is PQ-injective. �

Corollary 16 If M is a cyclic right R-module such that M ⊕ M is PPQ-injective, then M is PQ-injective.

The proofs of the following theorems, Theorems 17 and 18 are similar to the proofs of Propositions 1.2
and 1.5 in [6] respectively, here we omit them.

Theorem 17 Let MR be PPQ-injective and let m, n ∈ M .

(1) If nR embeds in mR , then Sn is an image of Sm.

(2) If nR ∼= mR , then Sn ∼= Sm.
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Theorem 18 Let MR be PPQ-injective with S = End(MR) , and assume that the sum
∑n

i=1 Smi is direct,

mi ∈ M . Then any monomorphism α :
∑n

i=1 miR → M can be extended to M .

By using the same way as the proof of [13, Theorem 2.9], we have the following proposition.

Proposition 19 Let M be a right R -module which has the following two properties:

(a) J(S) ⊆ W (S) .

(b) If s /∈ W (S) , then the inclusion ker(s) ⊂ ker(s − sts) is strict for some t ∈ S .

Then the following conditions are equivalent:

(1) S is right perfect.

(2) For any sequence {s1, s2, . . .} ⊆ S , the chain ker(s1) ⊆ ker(s2s1) ⊆ · · · terminates.

Lemma 20 Let MR be PPQ-injective. If s /∈ W (S) , then the inclusion ker(s) ⊂ ker(s − sts) is strict for
some t ∈ S .

Proof. If s /∈ W (S), then ker(s) ∩ mR = 0 for some 0 	= m ∈ M . Thus rR(m) = rR(sm), and so

Sm = S(sm) as left S -modules because MR is PPQ -injective. Write m = t(sm), where t ∈ S , then

(s − sts)m = 0. Therefore, the inclusion ker(s) ⊂ ker(s − sts) is strict. �

By Theorem 4, Proposition 19 and Lemma 20, we have immediately the following theorem.

Theorem 21 Let MR be a PPQ-injective module, then the following conditions are equivalent:

(1) S is right perfect.

(2) For any sequence {s1, s2, . . .} ⊆ S , the chain ker(s1) ⊆ ker(s2s1) ⊆ · · · terminates.

Following [13], for a module MR , we call a submodule K of M a kernel submodule if K = ker(f) for

some f ∈ End(MR), and we call a submodule K of M an annihilator submodule if K = rM (A) for some

subset A of End(MR).

Lemma 22 Let M be a right R -module. If M has ACC on annihilator submodules, then W (S) is nilpotent.

Proof. As W (S) ⊇ W 2(S) ⊇ · · · , we get rM (W (S)) ⊆ rM(W 2(S)) ⊆ · · · , so let rM(Wn(S)) =

rM (Wn+1(S)), we show that Wn(S) = 0. Suppose that Wn(S) 	= 0, then Wn+1(S) 	= 0. Let Wn(S)a 	= 0 for

some a ∈ S , and choose Ker(b) maximal in {Ker(b) | Wn(S)b 	= 0} . If z ∈ W (S) then Ker(z) ⊆ess MR , so

Ker(z) ∩ bM 	= 0, say 0 	= bm with zbm = 0. Thus Ker(b) � Ker(zb), so, by the choice of b , Wn(S)zb = 0.

As z ∈ W (S) is arbitrary, this shows that Wn+1(S)b = 0, whence bM ⊆ rM (Wn+1(S)) = rM (Wn(S)). It

follows that Wn(S)b = 0, a contradiction. �

Corollary 23 Let MR be a PPQ-injective module. Then

(1) If MR satisfies ACC on kernel submodules, then S is right perfect.

(2) If MR satisfies ACC on annihilator submodules, then S is semiprimary.

Proof. (1) follows from Theorem 21. (2) follows from (1), Theorem 4(1) and Lemma 22. �
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