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Domination polynomials of cubic graphs of order 10

Saeid Alikhani, Yee-Hock Peng

Abstract

Let G be a simple graph of order n . The domination polynomial of G is the polynomial D(G, x) =
�n

i=γ(G) d(G, i)xi , where d(G, i) is the number of dominating sets of G of size i , and γ(G) is the domination

number of G . In this paper we study the domination polynomials of cubic graphs of order 10. As a

consequence, we show that the Petersen graph is determined uniquely by its domination polynomial.

Key Words: Domination polynomial, equivalence class, petersen graph, cubic graphs

1. Introduction

Let G = (V, E) be a simple graph. The order of G is the number of vertices of G . For any vertex

v ∈ V , the open neighborhood of v is the set N(v) = {u ∈ V |uv ∈ E} and the closed neighborhood of v is the

set N [v] = N(v) ∪ {v} . For a set S ⊆ V , the open neighborhood of S is N(S) =
⋃

v∈S N(v) and the closed

neighborhood of S is N [S] = N(S) ∪ S . A set S ⊆ V is a dominating set if N [S] = V , or equivalently, every

vertex in V \S is adjacent to at least one vertex in S . The domination number γ(G) is the minimum cardinality

of a dominating set in G . A dominating set with cardinality γ(G) is called a γ -set. The family of all γ -sets of

a graph G is denoted by Γ(G). For a detailed treatment of these parameters, the reader is referred to [9].

An i-subset of V (G) is a subset of V (G) of size i . Let D(G, i) be the family of dominating sets of a

graph G with cardinality i and let d(G, i) = |D(G, i)| . The domination polynomial D(G, x) of G is defined as

D(G, x) =
∑|V (G)|

i=γ(G) d(G, i)xi , where γ(G) is the domination number of G (see [7]). For more information on

this polynomial, refer to [2, 4, 5, 6, 7].

We denote the family of all dominating sets of G with cardinality i and contain a vertex v by Dv(G, i),

and dv(G, i) = |Dv(G, i)| . Two graphs G and H are said to be dominating equivalent, or simply D -equivalent,

written G ∼ H , if D(G, x) = D(H, x). It is evident that the relation ∼ of D -equivalent is an equivalence
relation on the family G of graphs, and thus G is partitioned into equivalence classes, called the D -equivalence
classes. Given G ∈ G , let

[G] = {H ∈ G : H ∼ G}.

2000 AMS Mathematics Subject Classification: 05C60.
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We call [G] the equivalence class determined by G . A graph G is said to be dominating unique, or simply

D -unique, if [G] = {G} . Similarly to chromatic polynomial and chromaticity of graphs (see [8]), there are two
interesting problems on equivalence classes:

(i) Which graphs are D -unique?

(ii) Determine the D -equivalence classes for some families of graphs.

Recently, study of the two above problems have been considered and the D -equivalence classes of some
specific graphs, as paths ([2]), cycles ([2, 3]) and complete bipartite graphs ([1]) are determined.

The minimum degree of G is denoted by δ(G). A graph G is called k -regular if all vertices have the
same degree k . A vertex-transitive graph is a graph G such that for every pair of vertices v and w of G , there
exists an automorphism θ such that θ(v) = w . One famous graphs is the Petersen graph which is a symmetric
non-planar cubic graph. In the study of domination polynomials, it is interesting to investigate the dominating
sets and associated domination polynomial of this graph. We denote the Petersen graph by P .

In this paper, we study the dominating sets and domination polynomials of cubic graphs of order 10. In
the next section, we obtain the domination polynomial of the Petersen graph. In Section 3, we list all γ -sets
of connected cubic graphs of order 10. This list will be used to study the D -equivalence of these graphs in the
last section. In Section 4, we prove that the Petersen graph is D -unique. In the last section, we study the
D -equivalence classes of some cubic graphs of order 10.

2. Domination polynomial of the Petersen graph

In this section we shall investigate the domination polynomial of the Petersen graph. First, we state and
prove the following lemma.

Lemma 1 Let G be a vertex transitive graph of order n and v ∈ V (G) . For any 1 ≤ i ≤ n , d(G, i) =
n
i dv(G, i) .

Proof. Clearly, if D is a dominating set of G with size i , and θ ∈ Aut(G), then θ(D) is also a dominating set

of G with size i . Since G is a vertex transitive graph, then for every two vertices v and w , dv(G, i) = dw(G, i).

If D is a dominating set of size i , then there are exactly i vertices vj1 , . . . , vji such that D counted in dvjr
(G, i),

for each 1 ≤ r ≤ i . Hence d(G, i) = n
i dv(G, i), and the proof is complete. �

Theorem 1 ([9], p.48) If G is a connected graph of order n with δ(G) ≥ 3 , then γ(G) ≤ 3n
8 .

We need the following theorem for finding the domination polynomial of the Petersen graph.

Theorem 2 ([2]) Let G be a graph of order n with domination polynomial D(G, x) =
∑n

i=1 d(G, i)xi . If

d(G, j) =
(
n
j

)
for some j , then δ(G) ≥ n− j . More precisely, δ(G) = n− l , where l = min

{
j|d(G, j) =

(
n
j

)}
,

and there are at least
(

n
l−1

)
− d(G, l − 1) vertices of degree δ(G) in G . Furthermore, if for every two vertices
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of degree δ(G) , say u and v we have N [u] �= N [v] , then there are exactly
(

n
l−1

)
− d(G, l− 1) vertices of degree

δ(G) .
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Figure 1. Cubic graphs of order 10.

Indeed, by Theorem 2, we have the following theorem which relates the domination polynomial and the
regularity of a graph G .

Theorem 3 Let H be a k -regular graph, where for every two vertices u, v ∈ V (H) , N [u] �= N [v] . If

D(G, x) = D(H, x) , then G is also a k -regular graph.
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Figure 2. Graph G with N [u] = N [v] for some u, v ∈ V (G) .

Remark. The condition N [u] �= N [v] in Theorems 2 and 3 is necessary. For example, consider graph in the

Figure 2. The domination polynomial of this graph is x6 + 6x5 + 15x4 + 18x3 + 9x2 . For this graph l = 4,

δ(G) = 2, and we have 3 vertices of degree δ(G), but by Theorem 2, we must have
(
6
3

)
− d(G, 3) = 2 vertices

of degree δ(G).

There are exactly 21 cubic graphs of order 10 given in Figure 1 (see [10]). Using Theorem 1, the
domination number of a connected cubic graph of order 10 is 3. Three are just two non-connected cubic graphs
of order 10. Clearly, for these graphs, the domination number is also 3. Note that the graph G17 is the Petersen
graph. For the labeled graph G17 in Figure 1, we obtain all dominating sets of size 3 and 4 in the following
lemma.

Lemma 2 For the Petersen graph P , d(P, 3) = 10 and d(P, 4) = 75 .

Proof. First, we list all dominating sets of P of cardinality 3, which are the γ -sets of the labeled Petersen
graph (graph G17 ) given in Figure 1.

D(P, 3) =
{
{1, 3, 7}, {1, 4, 10}, {1, 8, 9}, {2, 4, 8}, {2, 5, 6}, {2, 9, 10}, {3, 5, 9}, {3, 6, 10},

{4, 6, 7}, {5, 7, 8}
}
. Now, we shall compute d(P, 4). By Lemma 1, it suffices to obtain the dominating sets of

cardinality 4 containing one vertex, say the vertex labeled 1. These dominating sets are listed below:

D1(P, 4) =
{
{1, 2, 3, 7}, {1, 2, 4, 8}, {1, 2, 4, 10}, {1, 2, 5, 6}, {1, 2, 8, 9}, {1, 2, 9, 10},

{1, 3, 4, 7}, {1, 3, 4, 10}, {1, 3, 5, 7}, {1, 3, 5, 9}, {1, 3, 6, 7}, {1, 3, 6, 10}, {1, 3, 7, 8}, {1, 3, 7, 9},
{1, 3, 7, 10}, {1, 3, 8, 9}, {1, 3, 9, 10}, {1, 4, 5, 10}, {1, 4, 6, 7}, {1, 4, 6, 10}, {1, 4, 7, 8},
{1, 4, 7, 10}, {1, 4, 8, 9}, {1, 4, 8, 10}, {1, 4, 9, 10}, {1, 5, 7, 8}, {1, 5, 8, 9}, {1, 6, 8, 9},

{1, 7, 8, 9}, {1, 8, 9, 10}
}

.

Therefore by Lemma 1, d(P, 4) = 10×30
4 = 75. �

We need the following lemma.

Lemma 3 Let G be a cubic graph of order 10 . Then the following hold:

(i) d(G, i) =
(
n
i

)
, for i = 7, 8, 9, 10 .

(ii) if t and s are the number of subgraphs isomorphic to K4\{e}(e is an edge) and K4 in G , respectively,

then d(G, 6) =
(
10
6

)
− (10− t − 3s) .

(iii) if G has no subgraph isomorphic to graphs given in Figure 3, then d(G, 5) =
(
10
5

)
− 60 .
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Figure 3. Graphs illustrated in Lemma 3.

Proof. (i) This follows from Theorem 2.

(ii) If G is a cubic graph of order 10, then for every v ∈ V (G), V (G)\N [v] is not a dominating set.

Also, if S ⊂ V (G), |S| = 6 and S is not a dominating set, then S = V (G)\N [v] , for some v ∈ V (G). Note

that if G has K4\{e} as a subgraph, then there are two vertices u1 and u2 such that G\N [u1] = G\N [u2] .

Also if G has K4 as its subgraph, then there are four vertices ui , 1 ≤ i ≤ 4 such that G\N [ui] = G\N [uj] ,

for 1 ≤ i �= j ≤ 4. Hence we have d(G, 6) =
(
10
6

)
− (10 − t − 3s).

(iii) It suffices to determine the number of 5-subsets which are not dominating set. Suppose that

S ⊆ V (G), |S| = 5, and S is not a dominating set for G . Thus there exists v ∈ V (G) such that N [v]∩S = ∅ .

Now, note that for every x ∈ V (G), V (G)\(N [x] ∪ {y}), where y ∈ V (G)\N [x] is a 5-subset which is not
a dominating set for G . Also since none of the graphs given in Figure 3 is a subgraph of G , for every two
distinct vertices x and x′ and any two arbitrary vertices y ∈ V (G)\N [x] and y′ ∈ V (G)\N [x′] , we have

V (G)\(N [x] ∪ {y}) �= V (G)\(N [x′] ∪ {y′}). This implies that the number of 5-subsets of V (G) which are not

dominating sets is 10× 6 = 60. So we have d(G, 5) =
(
10
5

)
− 60. �

Corollary 1 For cubic graphs of order 10 , the following hold:

(i) If G ∈ {G20, G21}, then d(G, 6) =
(
10
6

)
− 7 .

(ii) If G ∈ {G1, G18} , then d(G, 6) =
(
10
6

)
− 8 .

(iii) If G ∈ {G3, G5} , then d(G, 6) =
(
10
6

)
− 9 .

(iv) For each i, 1 ≤ i ≤ 21 , if i �∈ {1, 3, 5, 18, 20, 21} , then d(Gi, 6) =
(
10
6

)
− 10 .

(v) If G ∈ {G6, G7, G8, G10, G17}, then d(G, 5) =
(
10
5

)
− 60 .

Theorem 4 The domination polynomial of the Petersen graph P is

D(P, x) = x10 +
(

10
9

)
x9 +

(
10
8

)
x8 +

(
10
7

)
x7 +

[(10
6

)
− 10

]
x6 +

[(10
5

)
− 60

]
x5 + 75x4 + 10x3.

Proof. The result follows from Lemma 2 and Corollary 1. �
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3. γ -Sets of cubic graphs of order 10 .

In this section, we present all γ -sets of connected cubic graphs G1, G2, . . . , G18, G19 shown in Figure 1.
The results here will be useful in studying the D -equivalent of these graphs in the last section.

Γ(G1) =
{
{1, 3, 7}, {1, 3, 8}, {1, 3, 9}, {1, 4, 7}, {1, 4, 8}, {1, 4, 9}, {1, 5, 7}, {1, 5, 8},

{1, 5, 9}, {2, 5, 8}, {2, 5, 9}, {2, 6, 8}, {2, 6, 9}, {2, 6, 10}, {3, 6, 8}, {3, 6, 9}, {3, 6, 10},

{3, 7, 10}, {4, 6, 8}, {4, 6, 9}, {4, 6, 10}, {4, 7, 10}
}

. Therefore, d(G1, 3) =
∣∣Γ(G1)

∣∣ = 22.

Γ(G2) =
{
{1, 3, 8}, {1, 4, 8}, {1, 4, 9}, {1, 4, 10}, {1, 5, 8}, {2, 5, 8}, {3, 6, 8}, {3, 6, 9},

{3, 6, 10}, {3, 7, 10}, {4, 6, 9}, {5, 6, 9}
}
. Therefore d(G2, 3) =

∣∣Γ(G2)
∣∣ = 12.

Γ(G3) =
{
{1, 3, 6}, {1, 3, 7}, {1, 4, 8}, {1, 5, 9}, {1, 6, 9}, {1, 7, 9}, {2, 3, 6}, {2, 3, 7},

{2, 4, 8}, {2, 5, 8}, {2, 5, 9}, {3, 6, 10}, {3, 7, 10}, {4, 6, 10}, {4, 7, 10}, {4, 8, 10}, {5, 9, 10}
}
.

Therefore d(G3, 3) =
∣∣Γ(G3)

∣∣ = 17.

Γ(G4) =
{
{1, 5, 6}, {1, 5, 8}, {1, 6, 7}, {1, 7, 8}, {2, 4, 9}, {2, 5, 6}, {2, 5, 8}, {2, 6, 7},

{2, 7, 8}, {3, 4, 9}, {3, 6, 9}, {3, 8, 9}, {4, 5, 10}, {4, 7, 10}, {4, 9, 10}
}
. Therefore d(G4, 3) =

∣∣Γ(G4)
∣∣ = 15.

Γ(G5) =
{
{1, 4, 7}, {1, 4, 8}, {1, 4, 9}, {1, 5, 7}, {1, 5, 8}, {1, 5, 9}, {1, 6, 7}, {1, 6, 8},

{1, 6, 9}, {2, 4, 7}, {2, 4, 8}, {2, 4, 9}, {2, 5, 7}, {2, 5, 8}, {2, 5, 9}, {2, 6, 7}, {2, 6, 8}, {2, 6, 9},

{3, 4, 9}, {3, 5, 9}, {3, 6, 9}, {4, 7, 10}, {4, 8, 10}, {4, 9, 10}
}
. Therefore d(G5, 3) =

∣∣Γ(G5)
∣∣ = 24.

Γ(G6) =
{
{1, 4, 7}, {1, 4, 8}, {1, 5, 8}, {2, 5, 8}, {2, 5, 9}, {2, 6, 9}, {3, 6, 9}, {3, 6, 10},

{3, 7, 10}, {4, 7, 10}
}
. Therefore d(G6, 3) =

∣∣Γ(G6)
∣∣ = 10.

Γ(G7) =
{
{1, 4, 8}, {2, 5, 8}, {2, 5, 9}, {3, 6, 9}, {3, 7, 10}, {4, 7, 10}

}
.

Therefore d(G7, 3) =
∣∣Γ(G7)

∣∣ = 6

Γ(G8) =
{
{1, 3, 9}, {1, 4, 8}, {1, 5, 7}, {2, 6, 10}, {3, 6, 9}, {4, 6, 8}

}
.

Therefore d(G8, 3) =
∣∣Γ(G8)

∣∣ = 6.

Γ(G9) =
{
{1, 3, 9}, {1, 4, 8}, {1, 5, 7}, {2, 5, 7}, {2, 5, 8}, {2, 6, 8}, {3, 6, 9}, {4, 6, 10},

{4, 7, 10}, {5, 7, 10}
}

. Therefore d(G9, 3) =
∣∣Γ(G9)

∣∣ = 10.

Γ(G10) =
{
{1, 2, 9}, {1, 5, 8}, {1, 8, 9}, {2, 3, 10}, {2, 9, 10}, {3, 4, 6}, {3, 6, 10}, {4, 5, 7},

{5, 7, 8}, {4, 6, 7}
}

. Therefore d(G10, 3) =
∣∣Γ(G10)

∣∣ = 10.
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Γ(G11) =
{
{1, 3, 7}, {1, 5, 9}, {2, 3, 7}, {2, 5, 8}, {2, 5, 9}, {2, 6, 8}, {2, 7, 8}, {3, 6, 9},

{3, 7, 10}, {4, 5, 10}, {4, 6, 10}, {4, 7, 10}
}

. Therefore d(G11, 3) =
∣∣Γ(G11)

∣∣ = 12.

Γ(G12) =
{
{1, 3, 9}, {1, 4, 8}, {1, 5, 7}, {2, 5, 8}, {2, 6, 8}, {2, 6, 9}, {2, 6, 10}, {2, 7, 9},

{3, 5, 10}, {3, 6, 8}, {3, 6, 9}, {4, 6, 8}, {4, 6, 9}, {4, 6, 10}, {4, 7, 10}
}
. Therefore d(G12, 3) =

∣∣Γ(G12)
∣∣ = 15.

Γ(G13) =
{
{1, 3, 8}, {1, 4, 8}, {1, 4, 9}, {2, 5, 8}, {2, 7, 8}, {3, 6, 9}, {4, 5, 10}, {4, 7, 10}

}
.

Therefore d(G13, 3) =
∣∣Γ(G13)

∣∣ = 8.

Γ(G14) =
{
{1, 3, 7}, {1, 3, 8}, {1, 3, 9}, {1, 4, 7}, {1, 4, 8}, {1, 4, 9}, {1, 5, 7}, {1, 5, 8},

{1, 5, 9}, {2, 3, 7}, {2, 4, 7}, {2, 5, 7}, {2, 5, 8}, {2, 5, 9}, {2, 6, 8}, {3, 6, 9}, {3, 7, 10},

{4, 6, 10}, {4, 7, 10}, {5, 7, 10}, {5, 8, 10}, {5, 9, 10}
}

. Therefore d(G14, 3) =
∣∣Γ(G14)

∣∣ = 22.

Γ(G15) =
{
{1, 2, 8}, {1, 3, 8}, {1, 4, 8}, {2, 5, 10}, {2, 6, 9}, {2, 7, 8}, {3, 5, 10}, {3, 6, 7},

{3, 6, 9}, {4, 5, 10}, {4, 6, 9}, {4, 7, 10}
}

. Therefore
∣∣Γ(G15)

∣∣ = 12.

Γ(G16) =
{
{1, 3, 8}, {1, 4, 8}, {1, 4, 9}, {3, 6, 8}, {3, 6, 9}, {4, 6, 9}

}
. Therefore d(G16, 3) = 6.

Γ(G17) =
{
{1, 3, 7}, {1, 4, 10}, {1, 8, 9}, {2, 4, 8}, {2, 5, 6}, {2, 9, 10}, {3, 5, 9}, {3, 6, 10},

{4, 6, 7}, {5, 7, 8}
}
. Therefore, d(G17, 3) = 10.

Γ(G18) =
{
{1, 5, 8}, {1, 5, 9}, {2, 5, 8}, {2, 5, 9}, {2, 6, 7}, {2, 6, 8}, {2, 6, 9}, {2, 6, 10},

{3, 5, 8}, {3, 5, 9}, {3, 6, 7}, {3, 6, 8}, {3, 6, 9}, {3, 6, 10}, {4, 5, 8}, {4, 5, 9}
}
. Therefore, d(G18, 3) = 16.

Γ(G19) =
{
{1, 4, 8}, {1, 5, 8}, {2, 4, 7}, {2, 5, 8}, {2, 5, 9}, {2, 6, 9}, {2, 7, 9},

{3, 5, 10}, {3, 6, 9}, {3, 6, 10}, {3, 7, 10}, {4, 7, 10}, {5, 8, 10}
}

. Therefore
∣∣Γ(G19)

∣∣ = 13.

4. D -equivalence class of the Petersen graph

In this section we show that the Petersen graph is D -unique.

Theorem 5 The Petersen graph P is D -unique.

Proof. Assume that G is a graph such that D(G, x) = D(P, x). Since for every two vertices x, y ∈ V (P ),

N [x] �= N [y] , by Theorem 3, G is a 3-regular graph of order 10. Using the
∣∣∣Γ(Gi)

∣∣∣ for i = 1, . . . , 21 in Section

3 we reject some graphs from [P ] . Since d(G6, 3) = d(G9, 3) = d(G10, 3) = d(G17, 3) = 10, we compare the
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cardinality of the families of dominating sets of these four graphs of size 4.

D1(G6, 4) =
{
{1, 2, 3, 4}, {1, 2, 3, 10}, {1, 2, 4, 7}, {1, 2, 4, 8}, {1, 2, 4, 9}, {1, 2, 5, 8},

{1, 2, 5, 9}, {1, 2, 6, 9}, {1, 2, 9, 10}, {1, 3, 4, 6}, {1, 3, 4, 7}, {1, 3, 4, 8}, {1, 3, 5, 8}, {1, 3, 6, 8},
{1, 3, 6, 9}, {1, 3, 6, 10}, {1, 3, 7, 10}, {1, 3, 8, 10}, {1, 4, 5, 7}, {1, 4, 5, 8}, {1, 4, 6, 7},
{1, 4, 6, 8}, {1, 4, 6, 9}, {1, 4, 7, 8}, {1, 4, 7, 9}, {1, 4, 7, 10}, {1, 4, 8, 9}, {1, 4, 8, 10}, {1, 5, 6, 8},

{1, 5, 7, 8}, {1, 5, 8, 9}, {1, 5, 8, 10}, {1, 6, 8, 9}, {1, 8, 9, 10}
}
.

Therefore, by Lemma 1, d(G6, 4) = 34×10
4 = 85 > d(P, 4) = 75.

Now, we obtain the family of all dominating sets of G10 of size 4.

D1(G10, 4) =
{
{1, 2, 3, 9}, {1, 2, 3, 10}, {1, 2, 4, 9}, {1, 2, 5, 8}, {1, 2, 5, 9}, {1, 2, 6, 9},

{1, 2, 7, 9}, {1, 2, 8, 9}, {1, 2, 9, 10}, {1, 3, 4, 6}, {1, 3, 5, 8}, {1, 3, 6, 8}, {1, 3, 6, 9},
{1, 3, 6, 10}, {1, 3, 7, 9}, {1, 3, 7, 10}, {1, 3, 8, 9}, {1, 3, 8, 10}, {1, 4, 5, 7}, {1, 4, 5, 8}, {1, 4, 6, 7},
{1, 4, 6, 8}, {1, 4, 6, 9}, {1, 4, 7, 9}, {1, 4, 7, 10}, {1, 4, 8, 9}, {1, 4, 8, 10}, {1, 5, 6, 8}, {1, 5, 7, 8},

{1, 5, 8, 9}, {1, 5, 8, 10}, {1, 6, 8, 9}, {1, 7, 8, 9}, {1, 8, 9, 10}
}

.

Therefore, by Lemma 1, d(G10, 4) = 34×10
4 = 85 > d(P, 4) = 75.

Now, for graph G9 we have, D(G9, 4) ={
{1, 2, 3, 9}, {1, 2, 4, 8}, {1, 2, 5, 7}, {1, 2, 5, 8}, {1, 2, 6, 8}, {1, 2, 8, 9}, {1, 3, 4, 5}, {1, 3, 4, 8},

{1, 3, 4, 9}, {1, 3, 4, 10}, {1, 3, 5, 7}, {1, 3, 5, 8}, {1, 3, 5, 9}, {1, 3, 6, 8}, {1, 3, 6, 9}, {1, 3, 7, 9},
{1, 3, 8, 9}, {1, 3, 9, 10}, {1, 4, 5, 6}, {1, 4, 5, 7}, {1, 4, 5, 8}, {1, 4, 6, 8}, {1, 4, 6, 9}, {1, 4, 6, 10},
{1, 4, 7, 8}, {1, 4, 7, 9}, {1, 4, 7, 10}, {1, 4, 8, 9}, {1, 4, 8, 10}, {1, 5, 6, 7}, {1, 5, 7, 8}, {1, 5, 7, 9},
{1, 5, 7, 10}, {1, 6, 7, 8}, {1, 7, 8, 9}{2, 3, 4, 5}, {2, 3, 5, 7}, {2, 3, 5, 8}, {2, 3, 5, 9}, {2, 3, 6, 8},
{2, 3, 6, 9}, {2, 3, 7, 9}, {2, 4, 5, 6}, {2, 4, 5, 7}, {2, 4, 5, 8}, {2, 4, 6, 8}, {2, 4, 6, 9}, {2, 4, 6, 10},
{2, 4, 7, 8}, {2, 4, 7, 9}, {2, 4, 7, 10}, {2, 5, 6, 7}, {2, 5, 6, 8}, {2, 5, 6, 9}, {2, 5, 7, 8}, {2, 5, 7, 9},
{2, 5, 7, 10}, {2, 5, 8, 9}, {2, 5, 8, 10}, {2, 6, 7, 8}, {2, 6, 8, 9}, {2, 6, 8, 10}, {2, 7, 8, 9},
{3, 4, 5, 10}, {3, 4, 6, 10}, {3, 4, 6, 10}, {3, 4, 7, 10}, {3, 5, 6, 9}, {3, 5, 7, 10}, {3, 5, 8, 10},
{3, 5, 9, 10}, {3, 6, 7, 10}, {3, 6, 8, 10}, {3, 6, 7, 9}, {3, 6, 8, 9}, {3, 6, 9, 10}, {3, 7, 9, 10},
{4, 5, 6, 10}, {4, 5, 7, 10}, {4, 5, 8, 10}, {4, 6, 7, 10}, {4, 6, 8, 10}, {4, 6, 9, 10}, {4, 7, 8, 10},

{4, 7, 9, 10}, {5, 6, 7, 10}, {5, 7, 8, 10}, {5, 7, 9, 10}, {6, 7, 8, 10}, {7, 8, 9, 10}
}

.

Therefore d(G9, 4) = 90 > d(P, 4).

Hence [P ] = {P } , and so the Petersen graph is D -unique. �

By the arguments in the proof of Theorem 5, we have the following corollary.

Corollary 2 (i) The graph G9 is D -unique,
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(ii) [G6] =
{

G6, G10

}
with the following domination polynomial:

x10 +
(

10
9

)
x9 +

(
10
8

)
x8 +

(
10
7

)
x7 + (

(
10
6

)
− 10)x6 + (

(
10
5

)
− 60)x5 + 85x4 + 10x3.

5. D -equivalence class of cubic graphs of order 10

In this section, we shall study the D -equivalence classes of other cubic graphs of order 10.

We need the following theorem.

Theorem 6 ([7]) If a graph G has m components G1, . . . , Gm , then D(G, x) = D(G1, x) · · ·D(Gm, x) .

Corollary 3 Two graphs G20 and G21 are D -equivalent, with the following domination polynomial:

D(G20, x) = D(G21, x) = x10 + 10x9 + 45x8 + 120x7 + 203x6 + 216x5 + 134x4 + 36x3.

Proof. Two graphs G20 and G21 are disconnected with two components. In other words, G20 = H ∪ K4

and G21 = H ′ ∪ K4 , where H and H ′ are graphs with 6 vertices. It is not hard to see that

D(H, x) = D(H ′, x) = x6 + 6x5 + 15x4 + 20x3 + 9x2.

On the other hand, D(K4 , x) = x4 + 4x3 + 6x2 + 4x . By Theorem 6, we have the result. �

Theorem 7 The graphs G12 ,G13 ,G14 ,G16 , and G19 in Figure 1 are D -unique.

Proof. Using γ -sets in Section 3,
∣∣Γ(G12)

∣∣ = 15,
∣∣Γ(G13)

∣∣ = 7,
∣∣Γ(G14)

∣∣ = 22, and
∣∣Γ(G19)

∣∣ = 13. By

comparing these numbers with the cardinality of γ -sets of other 3-regular graphs, we have the result. Now, we
consider graph G16 . Since d(G7, 3) = d(G8, 3) = d(G16, 3) = 6, we shall obtain d(Gi, 4) for i = 7, 8, 16.

D1(G7, 4) =
{
{1, 2, 3, 4}, {1, 2, 4, 8}, {1, 2, 4, 9}, {1, 2, 4, 10}, {1, 2, 5, 8}, {1, 2, 5, 9},

{1, 2, 6, 8}, {1, 2, 8, 10}, {1, 3, 4, 6}, {1, 3, 4, 7}, {1, 3, 4, 8}, {1, 3, 5, 7}, {1, 3, 5, 8},
{1, 3, 6, 7}, {1, 3, 6, 8}, {1, 3, 6, 9}, {1, 3, 7, 10}, {1, 3, 8, 10}, {1, 4, 5, 8}, {1, 4, 6, 8}, {1, 4, 6, 9},
{1, 4, 6, 10}, {1, 4, 7, 8}, {1, 4, 7, 9}, {1, 4, 7, 10}, {1, 4, 8, 9}, {1, 4, 8, 10}, {1, 5, 6, 9}, {1, 5, 7, 9},

{1, 5, 8, 9}, {1, 6, 8, 9}, {1, 8, 9, 10}
}

. Therefore, by Lemma 1, d(G7, 4) = 32×5
2 = 80.

D1(G8, 4) =
{
{1, 2, 3, 5}, {1, 2, 3, 9}, {1, 2, 4, 8}, {1, 2, 5, 6}, {1, 2, 5, 7}, {1, 2, 5, 8},

{1, 2, 6, 10}, {1, 3, 4, 8}, {1, 3, 4, 9}, {1, 3, 5, 7}, {1, 3, 5, 8}, {1, 3, 5, 9}, {1, 3, 6, 8}, {1, 3, 6, 9},
{1, 3, 7, 9}, {1, 3, 8, 9}, {1, 3, 9, 10}, {1, 4, 5, 7}, {1, 4, 5, 8}, {1, 4, 6, 8}, {1, 4, 6, 9}, {1, 4, 7, 8},
{1, 4, 7, 9}, {1, 4, 7, 10}, {1, 4, 8, 9}, {1, 4, 8, 10}, {1, 5, 6, 7}, {1, 5, 7, 8}, {1, 5, 7, 9}, {1, 5, 7, 10},

{1, 6, 7, 10}, {1, 7, 9, 10}
}

. Therefore, by Lemma 1, d(G8, 4) = 32×5
2 = 80.

Now, we obtain d(G16, 4).

D1(G16, 4) =
{
{1, 2, 3, 8}, {1, 2, 4, 5}, {1, 2, 4, 7}, {1, 2, 4, 8}, {1, 2, 4, 9}, {1, 2, 5, 6},

363



ALIKHANI, PENG

G6 G10

G7 G8

D(G7, x) = D(G8, x) = x10 + 10x9 + 45x8 + 120x7 + 200x6 + 192x5 + 80x4 + 6x3

G20 G21

D(G20, x) = D(G21 , x) = x10 + 10x9 + 45x8 + 120x7 + 203x6 + 216x5 + 134x4 + 36x3

D(G6, x) = D(G10, x) = x10 + 10x9 + 45x8 + 120x7 + 200x6 + 192x5 + 85x4 + 10x3

Figure 4. Cubic graphs of order 10 with identical domination polynomial.

{1, 2, 5, 7}, {1, 2, 5, 8}, {1, 2, 6, 7}, {1, 2, 7, 8}, {1, 3, 4, 8}, {1, 3, 4, 9}, {1, 3, 5, 8}, {1, 3, 6, 8},
{1, 3, 6, 9}, {1, 3, 7, 8}, {1, 3, 8, 9}, {1, 3, 8, 10}, {1, 4, 5, 8}, {1, 4, 5, 9}, {1, 4, 5, 10}, {1, 4, 6, 8},
{1, 4, 6, 9}, {1, 4, 7, 8}, {1, 4, 7, 9}, {1, 4, 7, 10}, {1, 4, 8, 9}, {1, 4, 8, 10}, {1, 4, 9, 10}, {1, 5, 6, 10},

{1, 5, 7, 10}, {1, 5, 8, 10}, {1, 6, 7, 10}, {1, 7, 8, 10}
}

. Therefore, by Lemma 1, d(G16, 4) = 34×5
2 = 85. Hence

[G16] = {G16} . �

By the arguments in the proof of Theorem 8, we have the following corollary.

Corollary 4 Two graphs G7 and G8 are D -equivalent.

Theorem 8 The graphs G2 ,G11 , and G15 in Figure 1 are D -unique.

Proof. Using γ -sets in Section 3,
∣∣Γ(G2)

∣∣ =
∣∣Γ(G11)

∣∣ =
∣∣Γ(G15)

∣∣ = 12. So we shall obtain d(Gi, 4) for

i = 2, 11, 15.

D1(G2, 4) =
{
{1, 2, 3, 8}, {1, 2, 4, 7}, {1, 2, 4, 8}, {1, 2, 4, 9}, {1, 2, 4, 10}, {1, 2, 5, 7},
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{1, 2, 5, 8}, {1, 2, 6, 7}, {1, 3, 4, 8}, {1, 3, 4, 9}, {1, 3, 4, 10}, {1, 3, 5, 8}, {1, 3, 6, 8}, {1, 3, 6, 9},
{1, 3, 6, 10}, {1, 3, 7, 8}, {1, 3, 7, 9}, {1, 3, 7, 10}, {1, 3, 8, 9}, {1, 3, 8, 10}, {1, 4, 5, 8},
{1, 4, 5, 9}, {1, 4, 5, 10}, {1, 4, 6, 8}, {1, 4, 6, 9}, {1, 4, 6, 10}, {1, 4, 7, 8}, {1, 4, 7, 9},
{1, 4, 7, 10}, {1, 4, 8, 9}, {1, 4, 8, 10}, {1, 4, 9, 10}, {1, 5, 6, 8}, {1, 5, 6, 9}, {1, 5, 6, 10},

{1, 5, 7, 8}, {1, 5, 7, 9}, {1, 5, 7, 10}, {1, 5, 8, 9}, {1, 5, 8, 10}
}

.

Therefore, by Lemma 1, d(G2, 4) = 40×10
4 = 100, and so [G2] = {G2} .

D1(G11, 4) =
{
{1, 2, 3, 7}, {1, 2, 4, 8}, {1, 2, 5, 8}, {1, 2, 5, 9}, {1, 2, 6, 8}, {1, 2, 7, 8},

{1, 3, 4, 5}, {1, 3, 4, 6}, {1, 3, 4, 7}, {1, 3, 4, 8}, {1, 3, 5, 7}, {1, 3, 5, 8}, {1, 3, 5, 9}, {1, 3, 6, 7},
{1, 3, 6, 8}, {1, 3, 6, 9}, {1, 3, 7, 8}, {1, 3, 7, 9}, {1, 3, 7, 10}, {1, 4, 5, 8}, {1, 4, 5, 9}, {1, 4, 5, 10},
{1, 4, 6, 8}, {1, 4, 6, 9}, {1, 4, 6, 10}, {1, 4, 7, 8}, {1, 4, 7, 9}, {1, 4, 7, 10}, {1, 4, 8, 9}, {1, 4, 8, 10},

{1, 5, 6, 9}, {1, 5, 7, 9}, {1, 5, 8, 9}, {1, 5, 9, 10}, {1, 6, 8, 9}, {1, 7, 8, 9}
}

.

Therefore, by Lemma 1, d(G11, 4) = 36×10
4

= 90, and so [G11] = {G11} .

Now, for graph G15 we have, D(G15, 4) ={
{1, 2, 3, 8}, {1, 2, 4, 8}, {1, 2, 5, 8}, {1, 2, 5, 10}, {1, 2, 6, 8}, {1, 2, 6, 9}, {1, 2, 7, 8}, {1, 2, 8, 9},

{1, 2, 8, 10}, {1, 3, 4, 7}, {1, 3, 4, 8}, {1, 3, 5, 6}, {1, 3, 5, 7}, {1, 3, 5, 8}, {1, 3, 5, 10}, {1, 3, 6, 7},
{1, 3, 6, 8}, {1, 3, 6, 9}, {1, 3, 7, 8}, {1, 3, 8, 9}, {1, 3, 8, 10}, {1, 4, 5, 8}, {1, 4, 5, 10}, {1, 4, 6, 8},
{1, 4, 6, 9}, {1, 4, 7, 8}, {1, 4, 7, 9}, {1, 4, 7, 10}, {1, 4, 8, 9}, {1, 4, 8, 10}, {1, 4, 9, 10}, {1, 5, 6, 9},
{1, 5, 7, 9}, {1, 5, 8, 9}, {1, 5, 9, 10}, {2, 3, 4, 7}, {2, 3, 5, 7}, {2, 3, 5, 10}, {2, 3, 6, 7}, {2, 3, 6, 9},
{2, 3, 7, 8}, {2, 4, 6, 9}, {2, 4, 7, 8}, {2, 4, 7, 9}, {2, 4, 7, 10}, {2, 5, 6, 9}, {2, 5, 6, 10}, {2, 5, 7, 8},
{2, 5, 7, 9}, {2, 5, 7, 10}, {2, 5, 8, 9}, {2, 5, 8, 10}, {2, 5, 9, 10}, {2, 6, 7, 8}, {2, 6, 7, 9},
{2, 6, 7, 10}, {2, 6, 8, 9}, {2, 6, 8, 10}, {2, 6, 9, 10}, {2, 7, 8, 9}, {2, 7, 8, 10}, {3, 4, 6, 7},
{3, 4, 6, 9}, {3, 4, 7, 10}, {3, 5, 6, 7}, {3, 5, 6, 9}, {3, 5, 6, 10}, {3, 5, 7, 10}, {3, 5, 8, 10},
{3, 5, 9, 10}, {3, 6, 7, 8}, {3, 6, 7, 9}, {3, 6, 7, 10}, {3, 6, 8, 9}, {3, 6, 8, 10}, {3, 6, 9, 10},
{3, 7, 8, 10}, {4, 5, 6, 9}, {4, 5, 6, 10}, {4, 5, 7, 10}, {4, 5, 8, 10}, {4, 5, 9, 10}, {4, 6, 7, 8},
{4, 6, 7, 9}, {4, 6, 7, 10}, {4, 6, 8, 9}, {4, 6, 8, 10}, {4, 6, 9, 10}, {4, 7, 8, 10}, {4, 7, 9, 10},

{4, 8, 9, 10}
}

.

Therefore d(G15, 4) = 91, and so [G15] = {G15} . �

In summary, in this paper we showed that the Petersen graph is D -unique. Also, we proved that
the graphs G2, G9, G11, G12, G13, G14, G15, G16, G17 , and G19 are D -unique, and [G6] = {G6, G10} , [G7] =

{G7, G8} , [G20] = {G20, G21} (see Figure 4).

Since there are at least two vertices u and v in G1 , G3 , G4 , G5 , and G18 , with N [u] = N [v] , we are
not able to use Theorem 3. So to obtain the D -equivalence classes of these graphs, we have to consider many
other graphs with 10 vertices. Therefore the determination of the D -equivalent of G1 , G3 , G4 , G5 , and G18 ,
remain open, although we think that they are D -unique.
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