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1. Introduction
Stomach colonization by Helicobacter pylori is associated 
with gastritis, gastric ulcers, gastric adenocarcinoma, 
and mucosa-associated lymphoid tissue lymphoma (1). 
Treatment of H. pylori infections consists of combination 
therapy involving two or three antibiotics, plus a proton 
pump inhibitor (2–4). However, the rate of unsuccessful 
eradication due to the emergence of antibiotic-resistant 
strains is growing (5,6). Furthermore, in regions with 
high rates of H. pylori infection, recurrent infection is 
more frequent (7). Hence, prevention would be an ideal 
strategy to resolve the problems associated with H. pylori 
infections, especially in regions with a high incidence of 
infection (8). 

Adherence to the gastric mucosa is the first step 
in successful colonization of the stomach by H. pylori, 
and among the bacterial factors essential for specific 
attachment to gastric epithelial cells, the outer membrane 
proteins (OMPs) play an important role (9). 

OipA, with a molecular weight of 33–35 kDa, may 
be especially important in the initiation of inflammatory 
response to H. pylori via induction of proinflammatory 
cytokine interleukin (IL)-8 (10–12). Consistent with this 
important role, an association has been observed between 
the “on” status of the oipA gene conducting expression of a 
34-kDa full-length protein and duodenal ulcers as well as 
gastric cancer (13). 

In the present study, the OipA protein was selected 
as a suitable candidate for vaccine development since 
this OMP plays an important role in the first steps of H. 
pylori pathogenesis. The immunogenicity of the full-
length protein of OipA was previously examined in an 
animal model (17). Experimentation with this important 
immunogenic protein as a vaccine candidate may be 
important in protection of the host against H. pylori. 

Furthermore, utilization of natural adjuvants instead of 
the traditional chemical ones to avoid their side effects may 
be promising in the vaccination process. Among diverse 

Background/aim: Outer inflammatory protein A (OipA) is an important adhesin of Helicobacter pylori. Our goal was to assess the role 
of OipA in protection of C57BL/6 mice against H. pylori. 

Materials and methods: C57BL/6 mice were mucosally immunized with recombinant OipA protein, OipA + propolis, propolis, and 
phosphate-buffered saline. After vaccination, anti-OipA IgA was measured. Mice were challenged three times with 5 × 107 CFU of the 
H. pylori B19 strain. Two weeks later, bacterial colonization and inflammation in the stomach was analyzed using standard methods. 
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group compared to the control and OipA + propolis groups. Propolis did not play an adjuvant effect but it interfered with the efficient 
vaccine effect of OipA.
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to determine adjuvant or adverse effects of propolis toward OipA.
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natural products, the compounds that are used as food and 
demonstrate adjuvant activities towards immunogenic 
proteins might be more important in vaccination processes. 
Among them, propolis may be a suitable candidate since 
its adjuvant activities in vaccination of mice models have 
been demonstrated (11,14–16).

By experimentation with the OipA protein as a vaccine 
candidate, we evaluated its role in protection of C57BL/6 
mice against H. pylori infection by using propolis as a 
natural adjuvant. 

2. Materials and methods
2.1. Characteristics of recombinant OipA antigen 
A full-length oipA gene was obtained from a clinical H. 
pylori strain (S15) as previously described (17). This 
strain was isolated from a patient with severe gastritis and 
has demonstrated high expression for an OMP with an 
apparent MW of 33–34 kDa corresponding to the OipA 
protein. The oipA gene from the S15 strain was cloned and 
subsequently expressed in Escherichia coli BL21 (DE3), 
as previously described (17). The sequence of the oipA 
gene consisted of 924 bp (GenBank: KJ816695). The SDS-
PAGE profile of the purified recombinant OipA protein 
as well as its western blot results with a specific anti-H. 
pylori effect demonstrated a band with an apparent MW 
of 33–34 kDa (17). This purified recombinant protein was 
used as an antigen in the vaccination of the mouse model.
2.2. Adjuvant preparation and bacterial growth condition
An Iranian propolis sample, prepared by Sepahan ASAL, 
Isfahan (Iran), from colonies of honeybees located in 
Isfahan, was used as the natural adjuvant. For adjuvant 
preparation, 1 g of propolis was ground and mixed with 
50 mL of ethanol (70%), then stirred at room temperature 
for 24 h; the extract was filtered and the solvent was 
evaporated under vacuum at 50 °C until it was dried.
A clinical H. pylori isolate, B19, with status/genotype 
of cagA/vacAs1m2 associated with a moderate chronic 
gastritis, was selected for challenging the mice. Three-day 
fresh culture of H. pylori was obtained on Brucella agar 
(Biolife; Albimi, Milan, Italy) supplemented with 7% sheep 
blood and antibiotics as previously described (17). 
2.3. Mice immunization and challenge procedures
All experiments with mice were in accordance with the UK 
Animals Scientific Procedures Act of 1986 (86/609/EEC). 
Pathogen-free 5-week-old female C57BL/6 mice (Razi 
Institute, Iran) were housed in a clean environment with a 
constant temperature of 21 ± 2 °C, 55 ± 5% humidity, and 
a 12-h light/dark cycle as well as free access to food and 
water. The study was performed in an animal house from 
the Barij Essence Pharmaceutical Company, Kashan, Iran, 
in August 2014. 

For vaccination of mice with the OipA protein, a dose 
of 100 µg was selected. This antigenic dose has been used 
for successful mice immunization (18). 

Mice were divided into four groups (10 each). Mice 
respectively received the recombinant OipA (100 µg/
dose), OipA (100 µg/dose) plus propolis (10 mg/dose), 
propolis (10 mg/dose), or phosphate-buffered saline (PBS) 
as a control three times (with intervals of 1 week). In each 
case, the vaccine emulsion was orally administered in a 
total volume of 200 µL per animal by gavage. One week 
after the last immunization and before bacterial challenge, 
blood samples (100 µL) were taken from the tail vein to 
measure the antibody responses. Groups were challenged 
three times on three continuous days with 0.2 mL of live 
H. pylori 19B strain (1 × 108 CFU/mL). At the end point 
of the challenge, the mice were anesthetized by peritoneal 
injection of 1.43 mg/kg diazepam (Khemidaru, Iran) 
and 13 mg/kg ketamine 10% (Alfasan, Woerden, the 
Netherlands). The abdominal cavities of mice were opened 
and their stomachs were collected, weighed, and divided 
into two samples. One part was used for histopathological 
examination and the other was used for determining the 
CFU number of H. pylori and for measurement of urease 
activity (18).
2.4. Histopathological examination of stomach samples
A longitudinal segment including the antrum and corpus 
was fixed in 10% neutral buffered formalin and embedded 
in paraffin. Thereafter it was sectioned by standard 
methods and stained with hematoxylin and eosin (H&E) 
to score inflammation and stained with Giemsa stain 
to visualize H. pylori (19,20). The samples were graded 
according to two methods: the modified Sydney system 
protocol (protocol I) and a protocol (protocol II) adopted 
from Chen et al (21). Protocol I consisted of evaluation of 
chronic inflammatory cell infiltration density, classifying 
H. pylori-related gastritis into none (0), mild (1), moderate 
(2), and severe (3). Protocol II consisted of classifying 
the presence of inflammatory cells as follows; 0: none, 1: 
less than 10 in each high power field, 2: >10 cells/high 
power field, 3: some areas with thick cell infiltration, 4: 
diffuse and dense cell infiltration, 5: presence of dense 
chronic inflammatory cells in nearly all parts of the entire 
mucosa such that they separate the gastric glands, and 6: 
entire mucosa contains a dense chronic inflammatory cell 
infiltrate.
2.5. Measurement of the anti-OipA IgA response
A 96-microwell plate (Nunc GmbH, Germany) was coated 
with 100 µL of recombinant OipA (50 µg/mL in 0.05 M 
carbonate buffer, pH 9.6) by incubation at 4 °C overnight. 
The wells were washed 3 times with PBS + Tween 20 (0.05 
v/v). A blocking solution (200 µL) containing 1% w/v 
bovine serum albumin (BSA) was added and incubated 
at 37 °C for 1 h. After washing, 50 µL of serially diluted 
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mouse serum (1:100 in PBS + BSA) was added to the 
wells and incubated at 37 °C for 1 h. Wells were washed 
5 times and then diluted (1/4000) peroxidase-conjugated 
goat antimouse IgA (Sigma-Aldrich) was added to the 
wells and they were incubated at room temperature for 
1.5 h. After washing, 100 µL of OPD hydrogen peroxidase 
substrate (Sigma-Aldrich) was added to the wells and they 
were incubated in the dark. After 15 min of incubation, 
the reaction was stopped by sulfuric acid (2.5 N) and the 
absorbance was measured at 490 nm.
2.6. Statistics
The significance of difference between the number of 
bacteria (enumerated by CFU/g) as well as the score of 
inflammation obtained for the four groups of challenged 
mice were analyzed by SPSS 17 (Chicago, IL, USA). The 
Student t-test was used to compare the differences between 
mouse groups and the P-values were calculated. The graphs 
were drawn with GraphPad software (GraphPad Prism 6).

3. Results 
3.1. Bacterial load in mouse stomachs
Bacterial loads in the stomach of mice vaccinated with 
OipA, propolis alone, or OipA + propolis and the 
nonvaccinated mice were determined by CFU enumeration 
(Table 1).

Comparison of bacterial loads in the stomachs of 
vaccinated mice with those of the controls (nonvaccinated) 
showed protection against H. pylori colonization. Highest 
protection was observed for the OipA group, followed by 
propolis. The least protection was observed for the mice 
vaccinated with propolis + OipA. 

The statistical comparison of various groups (Figure 1) 
confirmed the protective effect of vaccination with OipA 
against H. pylori colonization. While propolis had a partial 
protective effect on H. pylori colonization, its combination 
with OipA decreased the effective vaccine effect of OipA. 
3.2. Inflammation scores in mouse stomachs
The level of chronic inflammatory infiltrates in 
histopathological sections of gastric mucosa was scored 

using two protocols (Table 2). A correlation was observed 
between the results of the two protocols for evaluation 
of inflammation. Statistical comparison of inflammation 
scores among the four groups is demonstrated in Figure 
2. This comparison confirms the protective effect 
of vaccination with OipA against H. pylori-related 
inflammation. A significant difference (P < 0.05) was also 
observed between the score of the control (nonvaccinated) 
group and the propolis as well as the propolis + OipA 
groups. Consistent with the results of bacterial load, 
vaccination of mice with OipA + propolis reduced the most 
efficient effect of OipA in diminishing the inflammation.
3.3. Measurement of IgA amount in mice groups
A significant (P < 0.0001) difference was observed between 
the anti-OipA IgA titers produced in mice vaccinated with 
OipA and the control. A significant difference was also 
observed between the anti-OipA IgA titers produced in 

Table 1. Bacterial load in three groups of mice compared to the 
control group.

Antigen Mean CFU/g

Propolis 6.8 × 105 ± 432232

Propolis + OipA 6.4 × 106  ± 4.257e+006

OipA 2.6 × 103 ± 1941

Control 7.7 × 107 ± 2.680e+007

Mean results were obtained for four groups (each = 10) with 
standard errors.

Figure 1. Statistical comparison of bacterial load in stomachs of 
infected mice among four groups. *: Reduction in bacterial load 
(CFU/g) was significant (P < 0.05).

Table 2. Inflammation scores determined by two protocols (I and 
II).

Groups Protocol II Protocol I

Propolis 1.6 ± 0.6 0.6 ± 0.2

Propolis+OipA 2.0 ± 0.36 1.3 ± 0.3

OipA 1.1 ± 0.3 0.5 ± 0.18

Control 3.7 ± 0.6 1.5 ± 0.2

Mean results were obtained for four groups (each = 10) with 
standard errors.
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the mice vaccinated with OipA + propolis and the control 
(Figure 3). No significant difference was observed between 
the titers of anti-OipA IgA between either the propolis + 
OipA and propolis groups or between the propolis and 
control groups (P > 0.05).
3.4. Microscopic observation of stained sections
Microscopic evaluation of H&E-stained and Giemsa-
stained sections (Figure 4) showed a correlation between 
the rates of H. pylori colonization and inflammation 
scores. Higher colonization of H. pylori was associated 

with higher inflammation and vice versa. Densities of 
bacteria were evaluated microscopically in the stomach 
sections stained with Giemsa stain and were correlated 
with CFU enumeration.

4. Discussion
The first consequence of interaction between H. pylori and 
the host’s natural immune system is chronic inflammation 
of the gastric mucosa. Both cellular and humoral adaptive 
immune responses may be developed against H. pylori 
infection (22). It was proposed that efficient protection 
against H. pylori infection following immunization 
is mediated by Th1 effector cells via production of 
proinflammatory cytokines: interferon gamma (IFN-γ) 
and tumor necrosis factor (TNF)-α and -β (23,24). 

Multiple efforts have been performed for obtaining an 
efficient vaccine candidate against H. pylori infection. They 
include whole cells or antigens such as urease, catalase, 
VacA, CagA, NapA, GroES, AlpA, BabA, and HpaA (25–
31). Vaccination of mice with VacA induced erosions and 
it may not be an ideal vaccine candidate. Furthermore, 
there is concern about CagA, since it can affect a 
multitude of host cellular pathways, which may activate 
nondesirable host cell signaling cascades (32–34). Urease 
alone as a vaccine candidate may not be favorable, since 
H. pylori possesses other ammonia-producing enzymes, 
including two aliphatic amidases, AmiE and AmiF (35). 
Furthermore, nonurease-producing Helicobacter pylori 
strains have been isolated from chronic gastritis cases (36). 
Moreover, immunization of human volunteers with urease 
has shown that oral administration of urease alone did not 
modify H. pylori-mediated gastric mucosal inflammation 
(37). 

In accordance with our results concerning the protective 
effects of OipA, three studies evaluated its vaccine potency 
in a mouse model under DNA vaccine (38–40). In the first 
study, the investigators used an oipA gene encoded DNA 
construct for vaccination of C57BL/6 mice and observed 
efficient results including less bacterial colonization of H. 
pylori after vaccination (38). They also examined the effects 
of IL-2 and the B subunit heat-labile toxin Escherichia 
coli gene encoded DNA constructs as adjuvants plus the 
oipA gene and observed a positive modulation of immune 
response to the Th1 effector immune response in mice. The 
second study, investigating the effect of OipA as a vaccine 
in mice, described usage of Salmonella typhimurium for 
expressing an optimized oipA gene for vaccination (39). In 
the last study by the same group, they studied the efficiency 
of a novel DNA vaccine based on an attenuated Salmonella 
typhimurium bacterial ghost (SL7207-BG) delivering H. 
pylori oipA DNA. They observed that oral administration 
of the oipA DNA vaccine to mice caused significantly 
higher levels of IgG2a/IgG1 antibodies and IFN-γ/IL-4 

Figure 2. Statistical comparison of inflammation score among 
four groups by protocol I. *: The reduction in inflammation score 
was significant (P < 0.05).

Figure 3. Quantitative evaluation of anti-OipA IgA in serum of 
vaccinated mice by ELISA method. ***: Significant at a level of 
0.0001.
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Figure 4. Microscopic evaluation of H&E- and Giemsa-stained sections. A) Mild infiltration of lymphoplasmocytes 
(propolis + OipA); B and C) no inflammation (mice vaccinated with OipA, propolis); D and E) bacterial colonization 
and infiltration of lymphoplasmocytes in nonvaccinated mice (control), respectively; F) normal mucosa observed 
in the mice vaccinated with OipA.



331

MAHBOUBI et al. / Turk J Med Sci

cytokines, indicating a mixed Th1/Th2 immune response 
and decreased bacterial colonization in the vaccinated 
mice (40). Although their results showed some protection 
against H. pylori in vaccinated mice, there may be some 
concerns related to the use of pathogenic bacteria such as 
S. typhimurium. 

We observed that vaccination of mice with OipA 
significantly diminished the number of colonized bacteria 
in C57BL/6 mice and also diminished the H. pylori-related 
inflammation. Reduction of the bacterial load in mouse 
stomachs correlated with a significant difference (P < 
0.0001) in the amount of anti-OipA IgA titers between the 
OipA-vaccinated and control groups. However, a lower 
difference was observed between the anti-OipA IgA titers 
in mice vaccinated with OipA + propolis and the controls, 
suggesting that propolis affected the induction of the most 
effective immune response towards the OipA antigen. 

The dominant role of Th1-related immune response 
via production of IL-12, IFN-γ, and IL-18 in protection of 
the host against H. pylori infections has been recognized 
(23,41–43). The presence of high titers of IgA in mucosally 
vaccinated animals in this work may explain the role of 
anti-OipA IgA in protection of mice against H. pylori 

infection. Although IgA was measured in mouse serum, 
its significant increase in mouse serum may correlate with 
its significant presence in mouse stomach mucosa.

Usage of propolis in this work was based on its potential 
adjuvant activity since it was proposed that propolis 
improves humoral and cellular immune responses, 
especially Th1-related immune response (14,44,45). 
Observation of unexpected adverse effects of propolis 
towards OipA in this work (Tables 1 and 2; Figures 1 and 
2) may be due to two things. The first possibility is that its 
phenolic, flavonoid, or other compounds attach to OipA 
and partially affect the antigenic structure of OipA, and the 
second possibility is that propolis affected the induction of 
appropriate cytokines and thereby prevented the effective 
immune response (16,46,47). Evaluation of the anti-OipA 
adverse effects of propolis from various fractions can help 
to clarify theses hypotheses.

The results of the present work support the choice of 
OipA as a component of oral vaccine candidates against 
H. pylori infection. It also indicates the importance of 
mucosal immunity in protection of the host against H. 
pylori infection.
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