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Abstract: In this paper, a method of generating robust residuals of a linear system, subject to unknown inputs, is

proposed. The impact of disturbances and uncertainty may create difficulties at the decision stage of diagnosis (false

alarm); this has resulted in the use of a robust observer for the unknown inputs to ensure the robustness of the system

based on the unknown input observer with an optimal decoupling approach, which has a sensitivity that is minimal

to unknown inputs and maximal to faults. A generation of robust residuals is then transformed into a problem of

robustness/sensitivity constraints (H∞ , H ) and then solved via a linear matrix inequality formulation by the solver

CVX. An application for the method performance is also given.
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1. Introduction

In the context of linear systems, the generation of residuals and the detection of faults based on observers of

states are effective. Observer−based residual generation is a technique that is well developed. Based on a

good operating system model, this technique consists of performing a states estimation given the inputs and

outputs of the system. The residual vector is then constructed as the difference between the estimated output

and the measured output, using the output error estimation. This residual is sensitive to faults f(t) and to

unknown inputs d(t), as well. The observers were created for purely technological and commercial reasons

(cost minimization), as hardware sensors are replaced by software sensors that allow reconstructing internal

information (states, unknown inputs, unknown parameters) of the system from a model that involves unknown

inputs.

The unknown input observer (UIO), with approximate decoupling, could solve the problem of adjusting

the sensitivity to various faults and disturbances, as well as the problem of optimization. by introducing their

state matrices into the equations of observer synthesis for residual generation, whose decision-making requires

comparing the indicator of faults with the empirical or theoretical threshold obtained. Robustness is the main

element in the synthesis of this observer in model−based diagnosis, which means determining the ability of

such a method by detecting faults with few false alarms (no fault alarm).

The literature offers several works in this field. Wang et al. [1] were the first to use the UIO design

problem in systems with some unknown inputs. In the mid-1980s, Viswanadham and Srichander [2] introduced

observers to detect faults.

∗Correspondence: sd.tahraoui@gmail.com
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Golub and Van Loan [3] and Rambeaux et al. [4] introduced the standard H∞H− , which reflects the

maximum and minimum gain values, respectively, between signals in the optimization of residuals.

Moreover, Ding et al. [5] worked on H∞ techniques; Wang and Lum [6] used techniques that are based

on the linear matrix inequality (LMI) method, which has become an active theme.

Other methods have been developed in this context by Ding and Frank [7], Jiang and Chowdhury [8],

Johansson et al. [9], Meseguer et al. [10], Khan and Ding [11], Chen and Patton [12], Mangoubi [13], Rank and

Niemann [14], and Henry and Zolghadri [15,16].

In this context, the generation of residual systems based on linear models has been the subject of several

research studies using the UIO; among these are the works of Kiyak et al. [17,18], Hajiyev and Caliskan [19],

and Patton et al. [20]. Observer-based approaches have become the most popular and important methods for

model-based fault detection and isolation, as in the studies of Fonod et al. [21], Bagherpour and Hairi-Yazdi

[22], and Hamdaoui et al. [23].

Toscano [24] proposed a new structure for generating robust residuals based on LMI. This technique was

resolved by the solver CVX. Based on the aforementioned application, we conducted a detailed investigation on

the detection of faults.

2. Problem description

The problem is to generate a residual such that{
sup
ω σ̄(Gd(jω)) < γ

inf
ω σ (Gf (jω))>β

. (1)

σ and σ are the largest and the smallest singular values, respectively. Gf (jω) and Gd(jω) are transfer

matrices that link residuals to faults and unknown inputs, respectively.

α and β are the levels of sensitivity to disturbances d and faults f .

γ must take the smallest singular value of Gd and β the largest singular value of Gf .

The detection problem can be redefined as a problem of approximate decoupling [25].{
∥ψ(d (t) , 0)∥n<γ
∥Ψ(d (t) ,f (t) )∥n>β

(2)

∥.∥n with n = {1,2,∞ } is a standard.

After reformulation of Eq. (2), we have

J+/−=
∥Gd(p)∥∞
∥Gf (p)∥−

. (3)

∥Gd∥∞ is the standard H∞ of transfer between the indicator signal r and the disturbances d .

∥Gf∥− is the index H− of transfer between the indicator signal r and the faults f to be detected.

The index H is defined on a specified frequency range within which we want to reach the desired

sensitivity.

It is assumed that the residual r depends only on disturbances d and faults f , via a vector function ψ

such that
r (t) = ψ (d (t) , f (t)) . (4)

96



TAHRAOUI et al./Turk J Elec Eng & Comp Sci

The residual vector should be almost zero in normal operation and nonzero in the presence of a fault.

The uniqueness of a solution of Eq. (3) was demonstrated by Ding et al. [1], when only additive

uncertainty is considered .

Of course, it is necessary to use the matrices V and K in the context of solving the optimization problem.

minK,V
∥Gd(p,K,V )∥∞
∥Gf (p,K,V )∥−

(5)

Gf (p,K, V ) andGd (p,K, V ) are transfer matrices that link residuals to faults and unknown inputs, respec-

tively; K and V are adjustment matrices.

We will later present the approach that solves this min/max problem in the form of very simplified LMIs;

this allows a rapid and accurate numerical resolution [25].

3. Designing an UIO with approximate optimal decoupling

The perfect decoupling can only be implemented if the number of independent measurements is greater than the

number of unknown inputs we want to decouple. Practically, this decoupling condition is not always satisfied.

Imperfect modeling of the system can greatly influence the detection and location of faults; this means

that we need to have a new model that takes into account the modeling uncertainties and faults’ effects on the

behavior of the nominal system.

The system to monitor is supposed to be correctly described by the following state representation:

{
ẋ (t)=Ax (t)+Bu (t)+Fxf (t)+Dxd(t)

y (t)=Cx (t)+Du (t)+Fyf (t)+Dyd (t)
. (6)

x (t)∈Rnu (t) ϵRmd (t)∈Rndf(t) ∈Rnf

Dx and Dy are action matrices of disturbances d(t), and Fx and Fy are action matrices of faults f(t) to be

detected.

The structure of the UIO adopted with approximate optimal decoupling is as follows [24]:


˙̂x (t)=Ax̂ (t)+Bu (t)+Fxf (t)+Dxd(t)

ŷ (t)=Cx̂ (t)+Du (t)

r (t)=V (y (t)−ŷ (t))
. (7)

r(t) is the residual vector of Eq. (5).

The block diagram of the UIO is shown in Figure 1.

Let ex (t) = x (t)− x̂ (t) be the state estimation error.

{
ėx (t)= (A−KC) ex+(Fx−KFy) f (t)+ (Dx−KDy) d(t)

r (t)=V Cex (t)+V Fyf (t)+V Dyd (t)
(8)
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Figure 1. Block diagram of UIO.

Using Laplace transform of r (t) (zero initial conditions), we get

r (p)=Gf (p,K,V ) f (p)+Gd (p,K,V ) d (p) . (9)

The transfer matrices Gf and Gd are given by

Gf (p,K,V )=V C[pI−(A−KC)]−1
(Fx−KF y)+V Fy, (10)

Gd (p,K, V ) = V C [pI − (A−KC)]
−1

(Dx −KDy) + V Dy. (11)

In order to achieve an effective resolution, we introduce an LMI formulation of the optimization problem that

satisfies the two conditions of robustness and sensitivity.

4. Joint synthesis H∞ / H of a residual generator

In order to solve the optimization problem, the two constraints H∞ / H are checked in the form of an LMI,

using the conditions of robustness and sensitivity, respectively.

4.1. The robustness condition

The purpose is to make the residual generator less sensitive to unknown inputs. This condition can be satisfied

by imposing ∥Gd∥∞<γ .

If we can find three matrices P = PT > 0, K , and V , the following matrix inequality is satisfied:[
(A−KC)T P+P (A−KC)+CTV TV C P (Dx−KDy)+C

TV TV Dy(
P (Dx−KDy)+C

TV TV Dy

)T
DT

y V
TV Dy−γ2I

]
< 0. (12)

Note that the above inequality of Eq. (12) has the disadvantage of being nonlinear with respect to the variables

K,P, V . A resolution method can be used for a change of variables; it allows us to have a linear LMI.

Put Q=V TV L=PK , and hence[
(A

T
P+PA−LC−CTLT+CTQC PDx−LDy+C

TQDy

(PDx−LDy+C
TQDy)

T
DT

y QDy−γ2I

]
< 0. (13)

98



TAHRAOUI et al./Turk J Elec Eng & Comp Sci

Therefore, Eq. (13) is an LMI problem, which is to be solved with respect to L,P, and Q, for a given value of
γ .

4.2. The condition of sensitivity to faults

The purpose is not only to make the residual generator insensitive to unknown inputs but also to make it as

sensitive as possible to faults. This condition can be satisfied as we consider ∥Gf∥−>β .

If P = PT > 0, then K and V will allow satisfying this matrix inequality, which is not linear.

[
CTV TV C−(A−KC)TP−P (A−KC) CTV TV Fy−P (F x−KF y)

(CTV TV Fy−P (Fx−KF y) )
T

FT
y V

TV Fy−β2I

]
> 0 (14)

We obtain Eq. (15) where the change of variables is performed to pass to the next linearity: Q=V TV L=PK .

[
CTQC −ATP − PA+ CTLT + LC CTQFy − PF x + LF y

(CTQFy − PFx + LF y)
T

FT
y QFy − β2I

]
> 0 (15)

The joint synthesis is then introduced, with g = γ2 and b = β2 , P = PT > 0.

P is a symmetric positive definite matrix.

If P=PT> ,

[
(A

T
P+PA−LC−CTLT+CTQC PDx−LDy+C

TQDy

(PDx−LDy+C
TQDy)

T
DT

y QDy−γ2I

]
<0, (16)

[
CTQC−ATP−PA+CTLT+LC CTQFy−PF x+LF y

(CTQFy−PFx+LF y)
T

FT
y QFy−β2I

]
>0. (17)

Popt, Lopt, gopt give the solution of the optimization problem.

Kopt=P
−1
optLopt, Vopt=Q

1
2
opt

Kopt, Vopt are the matrices of the robust residual generator.

5. Fault detection

According to Ding and Frank [26], the detection threshold is defined as the maximum value of the function J(r)

in the absence of faults, or in normal operation.

J (r,ε)=[
1

2Πε

ω1+ε∫
ω1

r∗ (jω) r (jω) dω]

1/2

(18)

J2 (r, ε) is the average power of residual r(jω) on the window of frequencies [ω1ω1 + ε ].

In approximate decoupling, the thresholds are calculated using the two optimization conditions.
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6. Application

Consider the model under representation in Eq. (6), with two outputs and four states, given by the following

states form.

A =


−2.121 −0.5624 −0.2651 −0.25

4 0 0 0

0 1 0 0

0 0 0.25 0

B =


1

1

1

1

Fx =


1 0

0 1

0 1

0 1

D = 0Dx =


0.02 −0.02 0

0.02 0.1 0

0.02 −0.02 0

0.02 0.1 0



C =

[
−1.414 −0.4374 −0.1768 0

0 0 0 1

]
Fy =

[
2 0

0 2

]
Dy =

[
0 1 0

0 0 1

]

In this application, the output y(t) and the internal states support unknown additive inputs d(t).

The MATLAB software program is used to solve the convex optimization. The program developed is

based on commands of the solver CVX (20) (semidefinite program (SDP) - LMI). This solver is known for

high-speed digital resolution, accuracy, and robustness.

Variation matrices V and K are the solutions of the optimization problem.

For b = 0.1, β=
√
b= 0.3162, γopti= 1.1385, we have:

V=

[
0.4125 −0.2617

−0.2617 0.6622

]
, K=


0.4278 0.0313

0.0919 0.3649
−0.1896

−0.0613

0.7829

0.6027

 ,

r (p)=Gf (p,K,V ) f (p)+Gd (p,K,V ) d (p) .

Gfij is defined as follows.

Gf11=
0.825P 4+1.744P 3+1.992P 2+1.522P + 0.8463

P 4+2.229P 3+2.61P 2+1.962P + 1.133

Gf12=
−0.5234P 4−1.091P 3−1.271P 2−0.998P − 0.5492

P 4+2.229P 3+2.61P 2+1.962P + 1.133

Gf21=
−0.5234P 4−1.046P 3−1.122P 2−0.8317P − 0.3929

P 4+2.229P 3+2.61P 2+1.962P + 1.133

Gf22=
1.324P 4+2.802P 3+3.162P 2+2.352P + 1.317

P 4+2.229P 3+2.61P 2+1.962P + 1.133

The transfer matrix Gd that relates the unknown input to the residual vector is

Gd (p,K, V )= V C [pI− (A−KC)]
−1

(Dx−KDy)+V Dy,

Gd (p,K, V )=

[
Gd11 Gd12

Gd21 Gd22

]
.
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Gdij is the transfer function of the transfer matrix Gd .

Gd11=
−0.01971P 3−0.03173P 2−0.02286P − 0.01694

P 4+2.229P 3+2.61P 2+1.962P + 1.133

Gd12=
0.4125P 4+1.074P 3+1.466P 2+1.133P + 0.71

P 4+2.229P 3+2.61P 2+1.962P + 1.133

Gd21=
0.02243P 3+0.0376P 2+0.03341P + 0.03458

P 4+2.229P 3+2.61P 2+1.962P + 1.133

Gd22=
−0.2617P 4−0.6014P 3−0.7642P 2−0.5314P − 0.5584

P 4+2.229P 3+2.61P 2+1.962P + 1.133

r (p)=

[
Gf11 Gf12

Gf21 Gf22

]
f (p)+

[
Gd11 Gd12

Gd21 Gd22

]
d(p)

Then a table of theoretical signatures, generated by the set of signals ri defined as

ri (p) =

{
1 if the residue is sensitive to fi

0 if the residue is insensitive to fi
,

is drawn up. In the Table , “1” means that fault fi will certainly affect residual ri , while “0” means that the

residual is insensitive to the fault.

Table. Table of theoretical fault signatures.

f1 f2 d1 d2
Residual 1 1 1 0 1
Residual 2 1 1 0 1

According to r(p), when the transfer matrices Gf and Gd are evaluated for p → ∞ , we verify that the

zero elements correspond to 0, and nonzero elements to 1, in the table of signatures [27].

The structure of the residual generator adopted is (Eq. (7)) as follows.

ˆ̇x (t)=


−2.121 −0.5624 −0.2651

4 0 0
0

0

1

0

0

0.25

−0.25

0

0

0

x (t)+


1

1

1

1

u (t)+


1 0

0 1

0

0

1

1

 f (t)

+


0.2 −0.2 0

0.2 0.1 0

0.2

0.2

−0.2

0.1

0

0

 d (t)

ˆ̇y=

 −1.41 −0.4374 −0.1768 0

0 0 0 1

 ˆ̇x

r (t)= V (y (t)−ŷ (t))
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V=

[
0.4125 −0.2617

−0.2617 0.6622

]

We have the state representation of the residual generator as follows.



ˆ̇x (t)=


−2.121 −0.5624 −0.2651

4 0 0

0

0

1

0

0

0.25

−0.25

0

0

0

x (t)

+


1

1

1

1

u (t)+


1 0

0 1

0

0

1

1

 f (t)+


0.2 −0.2 0

0.2 0.1 0

0.2

0.2

−0.2

0.1

0

0

 d (t)

ˆ̇y=

 −1.41 −0.4374 −0.1768 0

0 0 0 1

 ˆ̇x

r (t)=

[
0.4125 −0.2617

−0.2617 0.6622

]
(y (t)−ŷ (t))

r (t) is the residual vector. The signature table is established from the following reasoning: the observer builds

residuals 1 and 2 of the system; if the output gives a fault, then it will be evaluated and will directly present the

fault. Therefore, if residuals r1 and r2 deviate from the threshold interval, fault f1 or fault f2 will certainly

appear. Thus, with this observer, we have a good level of fault detection.

In the application, faults f1 and f2 are supposed to be defined for t ≥ 3s .

The detection threshold is determined by simulations, with no faults, of the residual generator obtained

in normal operation. It is set to +
−γ > 1.1385 (the highest singular value of the transfer function of unknown

inputs Gd).

7. Results and discussion

The use of the proposed observer allows designing a residual generator to achieve a good level of fault detection.

The strategy used here is to design an observer with minimum sensitivity to disturbance and maximum

sensitivity to the faults of the system to be monitored. As an application example, our system has two outputs.

Simulating the system presented in the previous section allows finding the residuals shown in the figures,

with the detection threshold determined in normal system operation. The fault affecting the two residuals is an

amplitude bias between 3 and 4, occurring at time t ≥ 3s . The analysis of residuals 1 and 2 by the proposed

observer allows concluding that there is a fault, indeed.

Figures 2–5 give the theoretical results; Figures 6–9 indicate the two residuals associated with the observer

in the absence or presence of faults and disturbances.
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Figure 2. Residuals r1 and r2 with no disturbance and no fault.
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Figure 3. Residuals r1 and r2 with disturbance and no fault.
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Figure 4. Residuals r1 and r2 with disturbance and fault f1 .
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Figure 5. Residuals r1 and r2 with disturbance and with fault f2 .

Simulation results of residual generation with a UIO approximately decoupled with unknown inputs and

the theoretical results of the residual vector r(p) are well correlated, except for residual r1(p), which is almost

decoupled from perturbations according to the signature table; this seems to lead to a better robustness of this

solution for modeling errors.

The observer provides residuals r1 and r2 , respectively, in the absence of faults and disturbances, as

illustrated in Figures 2 and 6.
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Figure 6. Residuals r1 and r2 with no disturbance and no fault.

The observer provides residuals r1 and r2 , respectively, in the absence of faults and in the presence of

disturbances, as illustrated in Figures 3 and 7.
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Figure 7. Residuals r1 and r2 with disturbance and no fault.

The residuals r1 and r2 generated by the observer indicate that there is a fault at a time t ≥ 3s , which

corresponds to a fault f1 , as illustrated in Figures 4 and 8.
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Figure 8. Residuals r1 and r2 with disturbance and with fault f1 .

However, fault f2 appears on residuals r1 and r2 , shown in Figures 5 and 9.
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threshold
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Figure 9. Residuals r1 and r2 with disturbance and with fault f2 .
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From these simulations, some interesting points can be mentioned:

• Simulation results of Figures 2–5 correspond to the table of theoretical signatures.

• Using this dedicated observer to estimate each one of faults f1 and f2 allows for a good detection level.

We equally note that false alarms are avoided.

• The structure of the obtained Table is not a localizing one (same signature for f1 and f2), because the

number of faults exceeds the number of residuals. In this example, there are two actuator faults and two

sensor faults according to Fx and Fy . This means that the two residuals have identical signatures (two

sensor and two actuator faults). The maximum number of localizable faults is conditioned by the number

q of residuals, which is equal to 2q − 1; this is not our case. This situation is due to the nonlocalization

of faults in the signature table.

8. Conclusion

In this paper, a strategy for generating robust residuals for linear systems is presented. A UIO with approximate

decoupling is used to generate robust residuals capable of detecting faults. These residuals are represented by the

observer, using the design conditions (robustness and sensitivity constraints) under the LMI formalism, when

the faults to be detected affect the system. These conditions are established using the Lyapunov method under

the LMI form in order to highlight the presence of faults despite the presence of disturbances. The resolution of

these LMI constraints is carried out using a method based on a variable change, which is considered as a global

method that allows an easier determination of matrices describing the UIO observer. Such a variable change is

not always possible, as it depends on the structure of the initial nonlinear inequality that can be easily solved

with the latest digital SDP tools of the CVX (20) solver.

We have shown, through an application, how the proposed technique of generating robust residuals can

be exploited in a diagnostic context of linear systems and can have a good level of fault detection (minimizing

the number of false alarms).

Nomenclature
UIO Unknown input observer
LMI Linear matrix inequality
H− The index norm
H∞ H∞ norm
CVX Convex programming
SDP Semidefinite program - LMI
σ σ The largest and the smallest singular values
d(t) Disturbances (unknown inputs)
f(t) Faults signal
Gf (jω) , Gd(jω) Transfer matrices that link residuals to faults and unknown inputs
∥Gf∥− The index H− of transfer between the indicator signal r and the faults f to be detected

∥Gd∥∞ The standard H∞ of transfer between the indicator signal r and the disturbances d
FxFy Action matrices of faults f(t)
Dx, Dy Action matrices of disturbances d(t)
r(t) The residual vector
KV Adjustment matrices
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