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Abstract: We study the asymptotics of the ruin probability in a discrete time risk insurance model with stationary claims

following the aggregated heavy-tailed AR(1) process discussed in Puplinskaitė and Surgailis (2010). The present work

is based on the general characterization of the ruin probability with claims modeled by stationary α -stable process in

Mikosch and Samorodnitsky (2000). We prove that for the aggregated AR(1) claims’ process, the ruin probability decays

with exponent α(1 − H) , where H ∈ [1/α, 1) is the asymptotic self-similarity index of the claim process, 1 < α < 2.

This result agrees with the decay rate of the ruin probability with claims modeled by increments of linear fractional

motion in Mikosch and Samorodnitsky (2000) and also with other characterizations of long memory of the aggregated

AR(1) process with infinite variance in Puplinskaitė and Surgailis (2010).

Key words: Ruin probability, dependent α -stable claims, aggregation, random-coefficient AR(1) process, mixed stable

moving average, self-similar process, long memory

1. Introduction and the main result
The present note studies the asymptotics of the ruin probability

ψ(u) := P
(

sup
n≥1

(
n∑

t=1

Yt − cn) > u
)
, as u → ∞, (1)

where ‘claims’ {Yt} form a stationary, α -stable process of a certain type, 1 < α < 2, obtained by aggregating

independent copies of random-coefficient AR(1) heavy-tailed processes. In (1), c > 0 is interpreted as a constant
deterministic premium rate and u is the initial capital. The above problem was investigated in Mikosch and
Samorodnitsky (2000) (see [8]) for stable processes {Yt} . Applying large deviations methods for Poisson point

processes, they proved the asymptotics ψ(u) ∼ ψ0(u), where f(u) ∼ g(u) means that f(u)/g(u) → 1 as
u → ∞ , and the function ψ0 is written in terms of the kernel and the control measure of stochastic integral
representation of {Yt} (see (15), below, in the special case when {Yt} is a mixed stable moving average). Using

the above result, Mikosch and Samorodnitsky ([8]) obtained the ‘classical’ decay rate ψ(u) ∼ const. u−(α−1)
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(see e.g. [4]), for a wide class of weakly dependent symmetric α -stable (SαS) stationary claims, and a markedly

different decay rate ψ(u) ∼ const. u−α(1−H) for increments of fractional SαS motion with self-similarity index

H ∈ (1/α, 1). In view of these findings, Mikosch and Samorodnitsky ([8], p.1817) propose the decay rate of the

ruin probability as an alternative characteristic of long-range dependence of a SαS process. See also [1], [2].

The present note complements the results in [8], by obtaining the characteristic decay of the ruin

probability when claims are modeled by the mixed SαS process studied in [10]. The latter process arises in the

result of aggregation of independent copies of random-coefficient AR(1) processes with heavy-tailed innovations,

following the classical scheme of contemporaneous aggregation (see [6]). Aggregation is a common procedure
in statistical and econometric modeling and can explain certain empirical ‘stylized facts’ of financial time series
(such as long memory) from simple heterogeneous dynamic models describing the evolution of individual ‘agents’.

See [3], [12], [13], [14], [5], among others.

Puplinskaitė and Surgailis (see [9], [10]) discussed aggregation of infinite variance random-coefficient

AR(1) processes and long-memory properties of the limiting aggregated process. Let us describe the main

results of the last paper. Let {Xt, t ∈ Z} be a stationary solution of the AR(1) equation

Xt = aXt−1 + εt, (2)

where {εt, t ∈ Z} are i.i.d. r.v.’s in the domain of the (normal) attraction of an α -stable law, 0 < α < 2, and

where a ∈ (−1, 1) is a r.v., independent of {εt} and satisfying some mild additional condition. Let the Xit =

aiXi,t−1+εit, i = 1, 2, . . . , be independent copies of (2). Then the aggregated process
{
N−1/α

∑N
i=1 Xit, t ∈ Z

}
tends, as N → ∞ , in the sense of weak convergence of finite-dimensional distributions, to a limiting process

{X̄t} written as a stochastic integral

X̄t =
∑
s≤t

∫
(−1,1)

at−sMs(da), (3)

where {Ms, s ∈ Z} are i.i.d. copies of an α -stable random measure M on (−1, 1) with control measure

proportional to the distribution Φ(dx) = P(a ∈ dx) of r.v. a (see [10]). In the case when 1 < α < 2 and the

mixing distribution Φ is concentrated in the interval (0, 1) having a density φ such that

φ(x) ∼ φ1 (1 − x)b as x → 1, for some φ1 > 0, 0 < b < α − 1, (4)

the above authors proved that the aggregated process in (3) has long memory. In particular, it was shown

that normalized partial sums of {X̄t} in (3) tend to an α -stable stationary increment process {Z(τ )} , which

is self-similar with index H = 1 − (b/α) ∈ (1/α, 1) and is written as a stochastic integral

Z(τ ) :=
∫

(0,∞)×R

(
f(x, τ − s) − f(x,−s)

)
ν(dx, ds), (5)

f(x, t) :=

{
1 − e−xt, if x > 0 and t > 0,

0, otherwise,

with respect to an α -stable random measure ν(dx, ds) on (0,∞)× R with control measure φ1x
b−αdxds . Let

us note that (5) is different from the α -stable fractional motion discussed in [8], which arises in a similar
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context by aggregating AR(1) processes with common infinite-variance innovations; see [9]. Under the same

assumptions in (4), Puplinskaitė and Surgailis (see [10]) established, further, long memory properties of {X̄t}
in (3), namely, a (hyperbolic) decay rate of codifference and the long-range dependence (sample Allen variance)

property of Heyde and Yang (see [7]). They also showed that the value b = α − 1 separates long memory and
short memory in the above aggregation scheme; indeed, in the case b > α − 1 the aggregated process has the
short-range dependence (sample Allen variance) property and its partial sums tend to an α -stable Lévy process

with independent increments (see [10]).

The present paper extends the above-mentioned characterization of long memory in the aggregated AR(1)

process of (3) to the ruin probability in (1) with stationary SαS claims {X̄t}, 1 < α < 2.

In the rest of the paper, we assume that {X̄t, t ∈ Z} is the mixed moving average in (3), where Ms(da) is

a SαS random measure with characteristic function EeiθMs(A) = e−ωα|θ|αΦ(A), θ ∈ R , where 1 < α < 2, ωα > 0

and A ⊂ (0, 1) is any Borel set. This means that all finite-dimensional distributions of {X̄t, t ∈ Z} are SαS. In
particular,

EeiθX̄0 = e−σα |θ|α , θ ∈ R, where σα := ωα

∞∑
k=0

E|a|αk = ωαE
1

1 − |a|α .

Let Cα > 0 be the constant determined from the relation

lim
u→∞

uαP(X̄0 > u) =
1
2
Cασα. (6)

The constant Cα depends only on α and is explicitly written in [11]

Cα =
1 − α

Γ(2 − α) cos(πα/2)
.

Also define

g(z) := sup
w>0

1 − e−w

w + z
, z > 0. (7)

The function g is continuous in the interval (0,∞) and satisfies the following conditions

lim
z→0

g(z) = 1, lim
z→∞

zg(z) = 1. (8)

The main result of our paper is the following theorem.

Theorem 1 Assume that the mixing distribution Φ(A) = P(a ∈ A) is absolutely continuous having a density

φ(a) = ϕ(a)(1 − a)b, a ∈ (0, 1), (9)

where b > 0 and ϕ is integrable on (0, 1) and has limit lima→1 ϕ(a) =: φ1 > 0 . Let ψ(u) be the ruin probability

in (1) corresponding to {Yt ≡ X̄t} .

(i) Let 0 < b < α − 1 . Then

ψ(u) ∼ CαK(α, b)
2cHα

u−α(1−H), u → ∞, (10)
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where H = 1 − (b/α) ∈ (1/α, 1) and

K(α, b) :=
φ1

α

∫ ∞

0

zb−1gα(z)dz +
φ1

b

∫ ∞

0

zbgα(z)dz. (11)

(ii) Let b > α − 1 . Then

ψ(u) ∼ CαK(α, Φ)
2c

u−(α−1), u → ∞, (12)

where

K(α, Φ) :=
1

α − 1
E

[ 1
(1 − a)α

]
. (13)

In what follows, C stands for a constant whose precise value is unimportant and which may change from
line to line.

2. Proof of Theorem 1

The proof of Theorem 1 is based on Theorem 2, below, due to [8], Theorem 2.5. For our purpose, we formulate

the above mentioned result in a special case of mixed SαS moving average in (14). For terminology and

properties of stochastic integrals with respect to stable random measures, we refer to [11].

Let {Yt} = {Yt, t = 1, 2, · · ·} be a stationary SαS process, 1 < α < 2, having the form

Yt =
∫

W×R

f(v, x − t)M(dv, dx), t = 1, 2, · · · , (14)

where M is a SαS random measure on a measurable product space W × R with control measure ν × Leb, ν

is a σ−finite measure on W , Leb is the Lebesgue measure, and f ∈ Lα(W ×R) is a measurable function with∫
W×R

|f(v, x)|αν(dv)dx < ∞ . Introduce

mn := C1/α
α

(∫
W×R

∣∣ n∑
t=1

f(v, x − t)
∣∣αν(dv)dx

)1/α

and a function ψ0 : (0,∞) → (0,∞) by

ψ0(u) :=
Cα

2

∫
W×R

sup
n≥1

( ∑n
t=1 f(v, x − t)

)α

+

(u + nc)α
ν(dv)dx (15)

+
Cα

2

∫
W×R

sup
n≥1

( ∑n
t=1 f(v, x − t)

)α

−
(u + nc)α

ν(dv)dx,

where x+ := max(x, 0), x− := max(−x, 0) and where the constant Cα is the same as in (6).

Theorem 2 (see [8]). Let {Yt} be given as in (14). Assume that mn = O(nβ) for some β ∈ (0, 1) . Then

ψ(u) ∼ ψ0(u) (u → ∞).
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Proof of Theorem 1. In order to use Theorem 2, we first rewrite the process in (3) in the form of (14):

X̄t =
∫

(0,1)×R

f(a, t − x)M(da, dx), (16)

where

f(a, x) := a[x]1(x ≥ 0) =

{
a[x], x ≥ 0,

0, x < 0,
(a, x) ∈ (0, 1) × R,

and M(da, dx) is a SαS random measure on (0, 1)× R with control measure Φ × Leb; [x] is the integer part
of x ∈ R .

Condition mn = O(nβ) of Theorem 2 for the process in (3) is verified in [10], (A.12), with β = H =

1−(b/α) ∈ (1/α, 1). Therefore it suffices to show (10) with ψ(u) replaced by ψ0(u) as defined in (15). We have

ψ0(u) =
Cα

2

∫
(0,1)×R

sup
n≥1

( ∑n
t=1 a[t−x]1(t ≥ x)

)α

(u + nc)α
Φ(da)dx

=
Cα

2

(
E

0∑
x=−∞

sup
n≥1

( ∑n
t=1 at−x

)α

(u + nc)α
+ E

∞∑
x=1

sup
n≥x

( ∑n
t=x at−x

)α

(u + nc)α

)

=:
Cα

2
(
I1 + I2

)
. (17)

Consider first the expectation

I2 = E
∞∑

x=1

1
(1 − a)α

sup
k≥1

( 1 − ak

u + (k − 1 + x)c

)α

= c−α

∫ 1

0

y−αφ(1 − y) dy

∞∑
x=1

sup
k≥1

( 1 − (1 − y)k

(u/c) + k − 1 + x

)α

= c−α
{∫ ε

0

y−αφ(1 − y) dy

∞∑
x=1

sup
k≥1

( 1 − (1 − y)k

(u/c) + k − 1 + x

)α

+
∫ 1

ε

y−αφ(1 − y) dy
∞∑

x=1

sup
k≥1

( 1 − (1 − y)k

(u/c) + k − 1 + x

)α}

=: c−α
{
I21 + I22

}
. (18)

Clearly, in view of (9), we can replace φ(1 − y) by φ1y
b in the integral I21 . For notational simplicity, assume
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that φ(1 − y) = φ1y
b, 0 < y < ε . Then ubI21 can be rewritten as

ubI21 = φ1u
b

∫ ε

0

yb−α dy

∞∑
x=1

sup
k≥1

( 1 − (1 − y)k

(u/c) + k − 1 + x

)α

= φ1u
b

∫ ε

0

yb dy

∞∑
x=1

sup
k≥1

( 1 − (1 − y)k

y((u/c) + x − 1) + yk

)α

= φ1u
b

∫ ε((u/c)+x−1)

0

zb

((u/c) + x − 1)b
d
( z

(u/c) + x − 1

) ∞∑
x=1

sup
k≥1

(1 −
(
1 − z

(u/c)+x−1

)k

z + zk
(u/c)+x−1

)α

= φ1

∞∑
x=1

ub

((u/c) + x− 1)b+1

∫ ε((u/c)+x−1)

0

zb(gu,x(z))αdz, (19)

where

gu,x(z) := sup
k≥1

1 −
(
1 − z

(u/c)+x−1

)k

z + zk
(u/c)+x−1

1(0 < z < ε((u/c) + x − 1)). (20)

According to Lemma 3 below, the function gu,x(z) tends to g(z) in (7) as u → ∞ , and satisfies condition (25);

therefore, by dominated convergence theorem, the integral in (19) tends to
∫ ∞
0

zbgα(z)dz < ∞ uniformly in

x ≥ 1. We also have that

∞∑
x=1

ub

((u/c) + x − 1)b+1
=

∞∑
x=0

1
u

1(
(1/c) + (x/u)

)b+1
→

∫ ∞

0

dx

((1/c) + x)b+1
=

cb

b
.

Whence and from (19) we obtain that

lim
u→∞

ubI21 =
φ1c

b

b

∫ ∞

0

zbgα(z)dz. (21)

On the other hand,

|I22| ≤ CE
[
(1 − a)−α1(0 < a < 1 − ε)

∞∑
x=1

sup
k≥1

( 1 − ak

(u/c) + k − 1 + x

)α
]

≤ C

∞∑
x=1

( 1
(u/c) + x

)α

= O(u−(α−1)),

implying limu→∞ ubI22 = 0 thanks to condition b < α − 1.
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Consider the term I1 in (17):

I1 = E
0∑

x=−∞
sup
n≥1

( ∑n
t=1 at−x

)α

(u + nc)α

= E
0∑

x=−∞
sup
n≥1

a(1−x)α(1 − an)α

(1 − a)α(u + nc)α

= c−α

∫ 1

0

dy y−αφ(1− y)
0∑

x=−∞
(1 − y)(1−x)α sup

n≥1

(1 − (1 − y)n

(u/c) + n

)α

= c−α
{ ∫ ε

0

dy y−αφ(1− y)
0∑

x=−∞
(1 − y)(1−x)α sup

n≥1

(1 − (1 − y)n

(u/c) + n

)α

+
∫ 1

ε

dy y−αφ(1 − y)
0∑

x=−∞
(1 − y)(1−x)α sup

n≥1

(1 − (1 − y)n

(u/c) + n

)α}

=: c−α
{
I11 + I12

}
.

For notational simplicity, assume that φ(1 − y) = φ1y
b, 0 < y < ε . Then ubI11 can be rewritten as

ubI11 = ubφ1

∫ ε

0

dy yb−α
0∑

x=−∞
(1 − y)(1−x)α sup

n≥1

(1 − (1 − y)n

(u/c) + n

)α

= ubφ1

∫ ε

0

dy yb (1 − y)α

1 − (1 − y)α
sup
n≥1

(1 − (1 − y)n

(yu/c) + yn

)α

= cbφ1

∫ εu/c

0

dz
( c

u

) (1 − cz/u)α

1 − (1 − cz/u)α
zb sup

n≥1

(1 − (1 − cz/u)n

z + czn/u

)α

= cbφ1

∫ εu/c

0

dz
(cz

u

) (1 − cz/u)α

1 − (1 − cz/u)α
zb−1(gu,1(z))α.

Using Lemma 3 below, and the facts that limx→0 x(1−x)α/(1−(1−x)α) = 1/α and 0 ≤ x(1−x)α/(1−(1−x)α) ≤
1/α for all x ∈ (0, 1] , we have that

lim
u→∞

ubI11 =
φ1c

b

α

∫ ∞

0

zb−1gα(z)dz. (22)

Next,

I12 = E
[
(1 − a)−α1(0 < a < 1 − ε)

0∑
x=−∞

a(1−x)α sup
n≥1

( 1 − an

(u/c) + n

)α]

≤ cαE
[
(1 − a)−α1(0 < a < 1 − ε)

aα

1 − aα

]
u−α

= Cu−α.

Since b < α − 1, we have limu→∞ ubI12 = 0. This proves part (i).
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(ii) We use Theorem 2 as in part (i). Condition mn = O(nβ) is proved in [10], (A.13), with β = 1/α ∈ (0, 1).

Therefore it suffices to show (10) for ψ0(u). Consider the expectation I2 in (17). Then

uα−1I2 = uα−1c−αE
[

1
(1 − a)α

∞∑
x=1

1
((u/c) + x − 1)α

qα
u(a, x)

]
,

where

qu(a, x) := sup
k≥1

1 − ak

1 + k
(u/c)+x−1

.

Note 0 ≤ qu(a, x) ≤ 1 and qu(a, x) → 1 (u → ∞) for any 0 < a < 1, x ≥ 1 fixed. Indeed,

qu(a, x) − 1 = sup
k≥1

−ak − k
(u/c)+x−1

1 + k
(u/c)+x−1

= − inf
k≥1

ak + k
(u/c)+x−1

1 + k
(u/c)+x−1

→ 0

follows by taking, e.g., k = [logu] in the last infimum. Therefore by the dominated convergence theorem

lim
u→∞

uα−1I2 = c−α lim
u→∞

E
[

1
(1 − a)α

∞∑
x=1

uα−1

((u/c) + x − 1)α

]

=
1

c(α − 1)
E

[ 1
(1 − a)α

]
= c−1K(α, Φ), (23)

where we used the fact that the last expectation is finite.
Next, consider

I1 = E
[

aα

(1 − aα)(1 − a)α

(
sup
n≥1

1 − an

u + nc

)α
]
.

We claim that I1 = o(u−(α−1)) and therefore part (ii) follows from the limit in (23). To prove the last claim,
split the expectation I1 = I11 + I12 according to whether 0 < a < 1 − ε or 1 − ε < a < 1 holds, similarly to

(18). It is clear that I11 = O(u−α) = o(u−(α−1)). Therefore it suffices to estimate I12 only. Then using (26),

below, and the inequality |1 − (1 − y)α| > Cy, 0 < y < ε , we obtain

I12 ≤ C

∫ ε

0

yb−αdy

1 − (1 − y)α

(
sup
n≥1

1 − (1 − y)n

u + nc

)α

≤ C

∫ ε

0

yb−1dy
(

sup
n≥1

1 − (1 − y)n

y(u/c) + ny

)α

≤ C

∫ ε

0

yb−1dy
(

sup
n≥1

1 − e−ny

y(u/c) + ny

)α

≤ C

∫ ε

0

yb−1gα(yu/c)dy

≤ C

∫ ε

0

yb−1

(1 + yu)α
dy

= Cu−b

∫ εu

0

zb−1

(1 + z)α
dz,
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where the last inequality follows from (8). If α > b , the last integral is bounded and hence I12 = O(u−b) =

o(u−(α−1)). On the other hand, if b ≥ α , we easily obtain I21 = O(u−α log(u)) = o(u−(α−1)). This concludes
the proof of Theorem 1.

Lemma 3 Let g(z), gu,x(z) be defined at (7), (20), respectively. Then

lim
u→∞

gu,x(z) = g(z) (∀ z > 0, ∀x ≥ 1), (24)

gu,x(z) ≤ Cg(z), (∀ z > 0, ∀u ≥ 1, ∀x ≥ 1), (25)

where the constant C is independent of u, x, z . The function g(z) satisfies (8).

Proof Let τk(y) := (1 − (1 − y)k)/(1 − e−ky), 0 < y < 1, k = 1, 2, · · · . Let us first prove the elementary
inequality: for any 0 < ε < 1 there exists a constant C > 0, independent of 0 < ε < 1, k ≥ 1 and such that

|τk(y) − 1| ≤ C(ε + k−1), ∀ 0 < y < ε, ∀ k = 1, 2, . . . . (26)

Indeed, let 0 < y ≤ 1/(2k). Since 1 − e−x ≥ x/2, 0 < x < 1/2 so

|τk(y) − 1| ≤ 2
|e−ky − (1 − y)k |

ky
≤ C

k|e−y − 1 + y|
ky

≤ Cy ≤ C/k.

Next, let 1/(2k) < y < ε < 1. Then 1 − e−ky ≥ 1 − e−1/2 > 0 and log(1 − y) ≤ −y(1 − ε). Therefore

|τk(y) − 1| ≤ C|e−ky − (1 − y)k | ≤ C sup
k≥1, 1/2<x≤εk

|ek log(1−x
k ) − e−x|

≤ C sup
x>1/2

(
e−x(1−ε) − e−x

)
≤ Cε,

since supx≥1/2 xe−x(1−ε) < ∞ . This proves (26).

Using (26) we can write

gu,x(z) := sup
k≥1

τk

( z

(u/c) + x − 1

)1 − e−
zk

(u/c)+x−1

z + zk
(u/c)+x−1

1(0 < z < ε((u/c) + x − 1)) (27)

≤ C sup
k≥1

1− e−
zk

(u/c)+x−1

z + zk
(u/c)+x−1

≤ Cg(z),

thus proving the bound in (25). The convergence (24) follows similarly from (27) and (26).

To show (8), note that ω �→ 1−e−ω

z+ω increases on the interval (0, ω∗) and decreases on (ω∗,∞), where

ω∗ = ω∗(z) > 0 is the unique solution of ω + z + 1 = eω . Thus, g(z) = 1
z+1+ω∗

. It is clear that

ω∗ → 0 (z → 0) and therefore limz→0 g(z) = 1. Moreover, ω∗ → ∞ (z → ∞) and ω∗ ≤ log(1 + z), im-

plying limz→∞ zg(z) = limz→∞ z
z+1+ω∗

= 1. Lemma 3 is proved. �
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References

[1] Alparslan, U.T.: Exceedance of power barriers for integrated continuous-time stationary ergodic stable processes.

Adv. Appl. Probab. 41, 874–892 (2009).

[2] Alparslan, U.T., Samorodnitsky, G.: Asymptotic analysis of exceedance probability with stationary stable steps

generated by dissipative flows. Scandinavian Actuarial J. 78, 1–28 (2007).

[3] Ding, Z., Granger, C.W.J.: Modeling volatility persistence of speculative returns: a new approach. J. Econometrics

73, 185–215 (1996).

[4] Embrechts, P., Veraverbeke, N.: Estimates for the probability of ruin with special emphasis on the possibility of

large claims. Insurance: Mathematics and Economics 1, 55–72 (1982).

[5] Giraitis, L., Leipus, R., Surgailis, D.: Aggregation of random coefficient GLARCH(1,1) process. Econometric Theory

26, 406–425 (2010).

[6] Granger, C.W.J.: Long memory relationship and the aggregation of dynamic models. J. Econometrics 14, 227–238

(1980).

[7] Heyde, C.C.,Yang, Y.: On defining long-range dependence. J. Appl. Probab. 34, 939–944 (1997).

[8] Mikosch, T., Samorodnitsky, G.: Ruin probability with claims modeled by a stationary ergodic stable process. Ann.

Probab. 28, 1814–1851 (2000).
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