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Abstract: A right R -module M is called semi-projective if, for any submodule N of M , every epimorphism π : M → N

and every homomorphism α : M → N , there exists a homomorphism β : M → M such that πβ = α (see [11]). In this

paper, we consider some generalizations of semi-projective module, that is quasi pseudo principally projective module.

Some properties of this class of module are studied.

Key words: Semi-projective module, pseudo principally projective module

1. Introduction

Throughout the paper, R represents an associative ring with identity 1 �= 0 and all modules are unitary R -
modules. We write MR (resp., RM ) to indicate that M is a right (resp., left) R -module. We also write J(R)

for the Jacobson radical of R . If N is a submodule of M (resp., proper submodule) we denote by N ≤ M

(resp., N < M ). Moreover, we write N ≤e M, N � M to indicate that N is an essential submodule, a small
submodule, respectively. A module M is called uniform if M �= 0 and every non-zero submodule of M is
essential in M . A module M has finite uniform dimension if M has an essential submodule which is a finite
direct sum of uniform submodules or, equivalently, M contains no infinite direct sum of nonzero submodules.
In case that ⊕n

i=1Mi ≤e M for each Mi uniform, we write dim(M) = n . A right R -module N is called

M -generated if there exists an epimorphism M (I) → N for some index set I . If I is finite, then N is called
finitely M -generated. In particular, N is called M -cyclic if it is isomorphic to M/L for some submodule L

of M . Hence, any M -cyclic submodule X of M can be considered as the image of an endomorphism of M .
Following Wisbauer ([11]), σ[M ] denotes the full subcategory of Mod-R , whose objects are the submodules of
M -generated modules.

A right R -module N is called pseudo M -principally injective if every monomorphism from an M -cyclic
submodule of M to N can be extended to a homomorphism from M to N. Equivalently, for any homomorphism
α ∈ End(M), every monomorphism from α(M) to N can be extended to a homomorphism from M to N (see

[9]). A module M is called pseudo semi-injective if M is pseudo M -principally injective. A ring R is called
right pseudo semi-injective if RR is pseudo semi-injective. Some characterizations of pseudo semi-injective
module are studied and developed.

Next we will introduce the dual notion of pseudo M -principally injective. Following Clark et al. (see [2]

or [5]), a right R -module N is called epi-M -projective if for any submodule A of M , every epimorphism

∗Correspondence: tcquynh@live.com
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N → M/A can be lifted to a homomorphism N → M . A module M is called epi-projective if M is
epi-M -projective. Authors studied some properties and characterizations of class epi-projective modules.
Following Wisbauer ([11]), a right R -module M is called semi-projective if, for any submodule N of M , every
epimorphism π : M → N and every homomorphism α : M → N , there exists a homomorphism β : M → M

such that πα = β or equivalently, for any endomorphism γ of M , and every homomorphism α : M → γ(M),
there exists a homomorphism β : M → M such that γβ = α . Naturally we consider module M with the
following property: For any endomorphism γ of M , and every epimorphism α : M → γ(M), there exists a
homomorphism β : M → M such that γβ = α .

M

M γ (M) 0

0

α
β

γ

If module M has this property, M is said to be quasi pseudo principally projective (or pseudo semi-projective).
Thus the notion pseudo semi-projective is generalization notion of semi-projective and dual notion of pseudo
semi-injective. In this paper, we study some properties and characterizations of pseudo semi-projective module.
Moreover, we consider relations of pseudo semi-projective module with its endomorphism ring.

General background material can be found in [1], [3], [6], [7] and [11].

2. On pseudo M -principally projective

Definition 2.1 A right R -module N is called pseudo M -principally projective if, for any endomorphism ε of
M, every epimorphism p : M → ε(M) and every epimorphism f : N → ε(M) , there exists a homomorphism
h : N → M such that ph = f .

N

M ε(M) 0

0

f
h

p

or equivalently if, for any endomorphism ε of M and every epimorphism f : N → M/Kerε, there exists a

homomorphism h : N → M such that πh = f with π : M → M/Kerε the natural projection.
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A module M is called quasi pseudo principally projective (or pseudo semi-projective) if M is pseudo
M -principally projective. A module M is called pseudo principally projective if M is pseudo N -principally
projective for all right R -module N .

Then we have the relations:

self-projective ⇒ semi-projective ⇒ pseudo semi-projective.

Note that there is the pseudo semi-projective module but not self-projective module (see [2, Exercise

4.45(8)]). Until now, we do not know a discriminate example of pseudo semi-projective module and semi-
projective module.

Next we will give some characterizations of pseudo M -principally projective modules.

Lemma 2.2 Let M , N be right R -modules and S = End(M) . Then the following are equivalent:

1. N is pseudo M -principally projective.

2. For all α ∈ S ,
{β ∈ Hom(N, M)| Im(α) = Im(β)} ⊆ αHom(N, M).

3. For all α ∈ S ,

{β ∈ Hom(N, M)| Imβ = Imα} = α{β ∈ Hom(N, M)|Imβ + Kerα = M}.

Proof (1) ⇒ (2). Assume that N is pseudo M -principally projective and for each α ∈ S . Let β ∈ Hom(N, M)
with Imα = Imβ . We consider the epimorphism β : N → Imβ = Imα .

N

M Imα 0

β
h

α

By our hypothesis, there exists h ∈ Hom(N, M) such that β = αh . Therefore β = αHom(N, M).

(2) ⇒ (3). It is easy to see that

α{β ∈ Hom(N, M)| Imβ + Kerα = M} ⊆ {γ ∈ Hom(N, M)| Imγ = Imα}.

Conversely, for each γ ∈ Hom(N, M) such that Imγ = Imα . Then by (2) there exists h ∈ Hom(N, M)
such that γ = αh . It follows that

h ∈ {β ∈ Hom(N, M)| Imβ + Kerα = M},

which implies
{γ ∈ Hom(N, M)| Imγ = Imα} ⊆ α{β ∈ Hom(N, M)| Imβ + Kerα = M}.

(3) ⇒ (1). For any endomorphism γ ∈ S , every epimorphism α : M → γ(M) and every epimorphism

φ : N → γ(M).
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N

M γ (M) 0

φ
h

α

Then Imφ = Imα = Imγ . By (3), there exists h ∈ Hom(N, M) such that φ = αh . Thus N is pseudo M -
principally projective. �

Corollary 2.3 Module N is pseudo M -principally projective if and only if for any endomorphism ε of M and
every epimorphism f : N → ε(M) , there exists a homomorphism h : N → M such that εh = f .

Next, we have some properties of pseudo M -principally projective modules.

Proposition 2.4 Let M and N be R -modules.

1. If N is pseudo M -principally projective if and only if N is pseudo K -principally projective for each
M -cyclic submodule K of M .

2. If N is pseudo M -principally projective, P is pseudo M -principally projective for each direct summand
P of N .

3. Assume that N = ⊕i∈INi . Then N is pseudo M -principally projective if and only if Ni is pseudo
M -principally projective for all i ∈ I .

4. If N 
 N ′ and N is pseudo M -principally projective, N ′ is also pseudo M -principally projective.

Proof (1) (⇒). Let K = s(M) for some s ∈ S = End(M). For each α ∈ End(K) and β ∈ Hom(N, K) with

Imα = Imβ . Then αs ∈ S , ιβ ∈ Hom(N, M) and Imαs = Imιβ , with ι : s(M) → M the inclusion monomor-

phism. It follows that ιβ = (αs)g for some g ∈ Hom(N, M) by Lemma 2.2. Thus β ∈ αHom(N, s(M)). That
means N is pseudo K -principally projective.

(⇐) is obvious.

(2), (3) and (4) are clear. �

Theorem 2.5 Let M and N be modules and X = M ⊕ N. The following conditions are equivalent:

1. N is pseudo M -principally projective.

2. For each submodule K of X such that X/K 
 A with A ≤ M and K + M = K + N = X , there exists
C ≤ K such that M ⊕ C = X .

Proof (1) ⇒ (2). Let f : N → M/(M ∩K) via f(n) = m+M ∩K for all n = k+m ∈ N with k ∈ K, m ∈ M.

Then f is an epimorphism. We get M/(M ∩ K) 
 (M + K)/K 
 X/K 
 A with A ≤ M , then we may

regard M/(M ∩K) as a M -cyclic submodule of M . Since N is pseudo M -principally projective, there exists

h : N → M such that πh = f with π : M → M/(M ∩K) the natural projection. Let C = {n− h(n)| n ∈ N} .
Then C ≤ K and M ⊕ C = X .
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(2) ⇒ (1). Let α ∈ End(M), f : N → M/Kerα an epimorphism and π : M → M/Kerα the natural

projection. Let K = {n+m| f(n) = −π(m)} . It is easy to see that K +M = K +N = X and K ∩M = Kerα .

Then X/K 
 M/(M ∩ K) = M/Kerα 
 Imα . By (2), there exists C ≤ K such that M ⊕ C = X . Let

p : M ⊕ C → M be the canonical projection. It follows that πp|N = f . Thus N is pseudo M -principally
projective. �

3. Some results on pseudo semi-projective modules

In this section, we study some properties of pseudo semi-projective module and its endomorphism ring.
Firstly, following Lemma 2.2, we get this next lemma.

Lemma 3.1 Let M be a right R -module and S = End(M) . Then the following are equivalent:

1. M is pseudo semi-projective.

2. For all α, β ∈ S with Im(α) = Im(β) , αS = βS .

3. For all α, β ∈ S , we have:

{γ ∈ S| Im(βγ) = Im(βα)} ⊆ αS + {θ ∈ S| Imθ ≤ Kerβ}.

When M ⊕ M is pseudo semi-projective, we have

Proposition 3.2 If M ⊕ M is pseudo semi-projective then M is semi-projective.

Proof Let M = M ⊕ M be pseudo semi-projective, we show that M is semi-projective. Let s ∈ End(M),

and f : M → s(M) be a homomorphism. Let g : M → s(M) with g(m1 + m2) = f(m1) + s(m2) for all

m1 ∈ M, m2 ∈ M . Then g is an epimorphism. By Proposition 2.4, M is pseudo M -principally projective,

there is a homomorphism h : M → M such that g = sh . Let ι : M → M be the canonical inclusion. Therefore
s(hι) = gι = f . Thus M is semi-projective. �

Corollary 3.3 For any integer n ≥ 2 , if Mn is pseudo semi-projective then M is semi-projective.

Proposition 3.4 Let M be pseudo semi-projective and α ∈ End(M) . Then Kerα is a direct summand of M

if and only if α(M) is pseudo M -principally projective.

Proof Assume that Kerα is a direct summand of M . Then M/Kerα is isomorphic to a direct summand of

M . It follows that α(M) 
 M/Kerα is pseudo M -principally projective by Proposition 2.4. Conversely, we
consider the diagram

M/Kerα

M M/Kerα 0

id
h

p
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with p the canonical projection. Since α(M) 
 M/Kerα is pseudo M -principally projective, there exists

h : M/Kerα → M such that ph = id . It follows that Kerα is a direct summand of M . �

A module M is called D2 if, for any submodule A of M for which M/A is isomorphic to a direct summand of
M then A is a direct summand of M . From the Proposition 3.4, we get

Corollary 3.5 If M is pseudo semi-projective then M has D2.

Proposition 3.6 Assume that M is pseudo semi-projective and α, β ∈ S = End(M) . If α(M) 
 β(M) then
αS 
 βS .

Proof Let f : α(M) → β(M) be an isomorphism. We consider the following diagram

M α(M)

M β(M)

0.

α

h f

β

It is easy to see that fα is an epimorphism. Since M is pseudo semi-projective, there exists h : M → M such
that βh = fα . Let φ : αS → βS via φ(αs) = βhs for all s ∈ S . Then φ is a S -monomorphism. On the other

hand, β(M) = f(α(M)) = β(h(M)) = βh(M) by Lemma 3.1, whence βS = βhS = Imφ . It follows that φ is
an epimorphism. �

Recall that MR is a principal self-generator (briefly, self p-generator) if every element m ∈ M has the form

m = λ(m1) for some λ : MR −→ mR and m1 ∈ M (see [8]).

Lemma 3.7 Let M be self p-generator and pseudo semi-projective with S = End(M) . If N is essential in L

with L ≤ M , Hom(M, N) is essential in right S -module Hom(M, L).

Proof Let f ∈ Hom(M, L) and Hom(M, N) ∩ fS = 0. Assume that f(m) ∈ N ∩ Imf . Since M is self

p-generator, there exist epimorphisms g : M → f(m)R and s : M → mR . Then g(M) = fs(M). It follows

that gS = fsS by Lemma 3.1. Thus g = fst for some t ∈ S , whence g ∈ Hom(M, N) ∩ fS = 0 or f(m) = 0.

It means we proved that N ∩ Imf = 0. However, N ≤e L , Imf = 0 or f = 0. Thus Hom(M, N) is essential

in right S -module Hom(M, L). �

Now we consider the relation of finite uniform dimension of M and its endomorphism ring.

Theorem 3.8 Assume that M is a self p-generator and pseudo semi-projective module with S = End(M) .
Then M has finite uniform dimension if and only if SS has finite uniform dimension. Moreover in this case,
dim(MR) = dim(SS)
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Proof (⇒) Assume that dim(MR) = k . There exists Ui ≤ M, i = 1, 2, ..., k such that U1⊕U2⊕· · ·⊕Uk ≤e M ,
with Ui uniform. By Lemma 3.7 we have

Hom(M, U1 ⊕ U2 ⊕ · · · ⊕ Uk) ≤e SS .

Since M is self p-generator, pseudo semi-projective and Ui uniform, Hom(M, Ui) is uniform as right S -module

for each i = 1, 2, ..., k . In fact, assume that for elements f, g ∈ Hom(M, Ui) such that fS ∩ gS = 0. Then if

m ∈ f(M) ∩ g(M), m = f(m1) = g(m2) for some m1 , m2 ∈ M . Therefore mR = f(m1R) = g(m2R). Since

M is self p-generator, there exists h, h′ ∈ S such that m1R = h(M), m2R = h′(M), whence mR = fh(M) =

gh′(M). It follows that fhS = gh′S ≤ fS ∩ gS = 0 or fh = 0 and hence m = 0. Thus f(M) ∩ g(M) = 0.

But Mi is uniform, f(M) = 0 or g(M) = 0. Moreover, we also have

Hom(M, U1 ⊕ U2 ⊕ · · · ⊕ Uk) = Hom(M, U1) ⊕ Hom(M, U2) ⊕ · · · ⊕ Hom(M, Uk)

and hence Hom(M, U1) ⊕ Hom(M, U2) ⊕ · · · ⊕ Hom(M, Uk) ≤e SS . It follows that SS has finite uniform

dimension and dim(SS) = k .

(⇐) Assume that M contains a infinite direct sum of nonzero submodules ⊕i∈IMi . Then S contains

the infinite direct sum of right ideals ⊕i∈IHom(M, Mi), a contradiction. In fact, for all f ∈ Hom(M, Mi) ∩
Σi∈I,i �=jHom(M, Mj), then f = fj1 + · · · + fjn , with j1, . . . , jn ∈ {j ∈ I| j �= i} and fjl ∈ Hom(M, Mil).

Hence, for all m ∈ M , f(m) = (fj1 + · · · + fjn)(m) = fj1 (m) + · · · + fjn(m) ∈ Mi ∩ (Mj1 + · · · + Mjn) = 0,

whence f(m) = 0 or f = 0. Thus M contains no infinite direct sums of submodules or M has finite uniform
dimension. �

Remark. In [10, Theorem 3.1], authors proved that: Let M be a quasi-projective, finitely generated right

R -module which is a self-generator. Then, M has finite uniform dimension if and only if S = End(M) has finite

uniform dimension. Moreover in this case, dim(MR) = dim(SS). It is well known if M is self-generator, quasi-
projective, then M is retractable and semi-projective. On the other hand, if M is a semi-projective module,
then Hom(M, s(M)) = s for any s in S . And if M is retractable, then Hom(M, N) is nonzero for all nonzero
submodule N of M . Therefore the Theorem 3.8 is also true in case M retractable semi-projective. Thus we
have the following result: “Let M be a semi-projective, right R -module which is retractable. Then, M has finite
uniform dimension if and only if S = End(M) has finite uniform dimension and dim(MR) = dim(SS)”. This
result and Theorem 3.8 are new results. But is Theorem 3.8 true for M retractable, pseudo semi-projective?

The following is an application for the above results.

Example 3.9 Let R be a ring with dim(RR) = k , n be a positive integer and S be a ring of n × n matrices

with entries in R . Then dim(SS) = nk .

Proof By the hypothesis, dim(Rn
R) = nk . Since ring S is isomorphic to endomorphism ring of Rn , we also

get dim(SS) = nk . �

It is well known that endomorphism ring of a self-projective, Artinian module is semiprimary. We also
have a similar result for pseudo semi-projective module and is given by the following theorem.

Theorem 3.10 If M is pseudo semi-projective and Artinian then S = End(M) is semiprimary.
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Proof Assume that
s1S ≥ s2S ≥ · · ·

with si ∈ S . Then we also s1(M) ≥ s2(M) ≥ · · · . Since M is Artinian, there exists n ∈ N such that

sn(M) = sn+k(M), ∀k ∈ N . It follows that snS = sn+kS, ∀k ∈ N by pseudo semi-projectivity of M . Thus S

is left perfect.

We will claim that J(S) is nilpotent. In fact, we have chain submodules of M

J(S)(M) ≥ J(S)2(M) ≥ · · · .

Since M is Artinian, there exists n ∈ N such that J(S)n(M) = J(S)n+k(M), ∀k ∈ N . Let I = J(S)n , hence

we get IM = I2M . Assume that J(S) is not nilpotent. There exists s ∈ I such that sI �= 0. Let s0M be

minimal in the set {sM | s ∈ I, sI �= 0} . Since s0IM = s0IIM , there exists t ∈ s0I ≤ I such that tI �= 0
and tM ≤ s0IM ≤ s0M . It follows that tM = s0M by minimality of s0M and hence s0M = s0gM for some
g ∈ I . On the other hand, M is pseudo semi-projective, there exists f ∈ S with s0 = s0gf for some f ∈ S . It
follows that s0(1 − gf) = 0. Since gf ∈ J(S), s0 = 0, a contradiction. Thus S is semiprimary. �

Remark. In [11, 31.11], author proved that endomorphism ring of a self-projective, Artinian module is

semiprimary. But in this proof, author used the property “Hom(M, s(M)) = s for any s in S = End(M)”

to show that S is a left perfect. In Theorem 3.10, we only used the property “f(M) = g(M) if and only if
Sf = Sg for all f, g ∈ S ” to prove that S is a left perfect. Moreover, if M is semi-projective then M is pseudo
semi-projective. Thus Theorem 3.10 is extension of [11, 31.11].

Next, we get some characterizations of semisimple ring via pseudo semi-projectivity. The following result
is similar to Theorem 2.11 in [4].

Theorem 3.11 The following conditions are equivalent for ring R .

1. R is semisimple.

2. Every pseudo semi-projective module is projective.

3. Every direct sum of any family of pseudo semi-projective modules is projective.

4. The direct sum of two pseudo semi-projective modules is projective.

Proof (1) ⇒ (2) by [1, Exercise 16.9] and (2) ⇒ (3) ⇒ (4) is obvious.

(4) ⇒ (1). Let M be a simple right R -module. It follows that M is pseudo semi-projective. Then

M ⊕ RR is projective by our assumption and hence M is projective. Thus R is semisimple by [1, Exercise

16.9]. �

Note that the direct sum of two pseudo semi-projective modules need not be semi-projective. For example
Z -module M = Z⊕Z /2 Z is direct sum of two pseudo semi-projective, but M is not pseudo semi-projective

(see [5, Example 3.1]).

It is well known a ring R is right perfect if and only if every right R -module has projective cover. We
also have a similar result for pseudo semi-projective modules in the following theorem.

Theorem 3.12 The following conditions are equivalent for ring R :
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1. R is right perfect.

2. For any right R -module M , there exists an epimorphism f : N → M such that N is pseudo semi-
projective and Kerf � N .

Proof (1) ⇒ (2) is obviously.

(2) ⇒ (1) Let M be a right R -module. There exists a free module F and an epimorphism ψ : F → M .

By (2), there exists an epimorphism φ : S → F ⊕ M such that S is pseudo semi-projective and Kerφ � S .
Denote p1 : F ⊕M → F and p2 : F ⊕M → M the natural projections. Then p1φ : S → F is an epimorphism.
By projectivity of F , S = Ker(p1φ) ⊕ T with T ≤ S . Let M ′ = Ker(p1φ). We get S/M ′ 
 F and S/M ′ 
 T

and hence F 
 T . From this, we can regard S = M ′ ⊕ F . We get f = φ|M ′ : M ′ → M is an epimorphism.

Now we will show that M ′ is a projective cover of M . Assume that A + Kerf = M ′ . Since Kerf ≤ Kerφ ,
F + A + Kerφ = M ′ + F = S whence F + A = F + M ′ . Hence A = M ′ or Kerf � M ′.

On the other hand, F is projective, there exists ψ : F → M ′ such that fψ = ψ . But Kerf � M ′ and

so ψ is an epimorphism. Let π1 : S → F, π2 : S → M ′ the natural projections. We consider the diagram

S

S M 0.

π2
h

ψπ1

Since M ′ is a direct summand of S (and so M ′ is a S -cyclic submodule of S ) and S is pseudo semi-projective,

there exists h : S → S such that ψπ1h = π2. Let g = π1hι with ι : M ′ → S the natural inclusion. Then

ψg = id , and M ′ is isomorphic to a direct summand of F and hence M ′ is projective. Thus M ′ is the
projective cover of M . �

From the Theorem 3.12, we get the following corollaries:

Corollary 3.13 The following conditions are equivalent for ring R :

1. R is semiperfect.

2. For any finitely generated right R -module M , there exists an epimorphism f : N → M such that N is
pseudo semi-projective and Kerf � N .

Corollary 3.14 For ring R . The following conditions are equivalent:

1. R is semiregular.

2. For any finitely presented right R -module M , there exists an epimorphism f : N → M such that N is
pseudo semi-projective and Kerf � N .

Proof Note that in proof of Theorem 3.12, if M is finitely presented, M 
 F/K with F free and both F

and K finitely generated. Then F ⊕ M is also finitely presented. Thus M has a projective cover. It follows
that R is semiregular by [7, Theorem B.56]. �
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